Field-Measurement of Surface Wind and Sediment Transport Patterns in a Coastal Dune Environment, Case Study of Cala Tirant (Menorca, Spain)
Abstract
:1. Introduction
2. Study Site
2.1. General Characterization
2.2. Blowout Characterization
3. Materials and Methods
3.1. Experiment Setup
3.2. Wind Measurements
3.3. Computational Fluid Dynamics Model (CFD)
3.4. Sand Transport Measurement
4. Results
4.1. Wind Characterization
4.1.1. Mean and Maximum Wind Speed
4.1.2. Wind Direction
4.1.3. Fractional Speed-Up Ratio
4.1.4. Patterns of Sediment Transport
5. Discussion
5.1. Wind Flow and Topographic Control
5.2. Transport and Supply Limiting Factors
5.3. Implications for Management
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagnold, R.A. The Physics of Blown Sand and Deserts Dunes; Methuen: London, UK, 1954; p. 265. [Google Scholar]
- Hesp, P. Flow dynamics in trough blowout. J. Bound. Layer Meteorol. 1996, 77, 245–268. [Google Scholar] [CrossRef]
- Bate, G.; Ferguson, M. Blowouts in coastal foredunes. Landsc. Urban Plan. 1996, 34, 215–224. [Google Scholar] [CrossRef]
- Hesp, P.; Hyde, R. Flow dynamics and geomorphology of trough blowouts. Sedimentology 1996, 43, 505–525. [Google Scholar] [CrossRef]
- Davis, J.R.; Fitzerald, D.M. Beaches and Coasts; Blackwell Publishing: Carlton, Australia, 2004; p. 432. [Google Scholar]
- Smyth, T.A.G.; Jackson, D.W.T.; Cooper, J.A.G. High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout. Geomorphology 2012, 177, 62–63. [Google Scholar] [CrossRef]
- Mir-Gual, M.; Pons, G.X.; Martín-Prieto, J.A.; Roig-Munar, F.X.; Rodríguez-Perea, A. Geomorphological and ecological features of blowouts in a western Mediterranean coastal dune complex: A case study of Es Comú de Muro beach-dune system on the island of Mallorca, Spain. Geo.-Mar. Lett. 2013, 33, 129–141. [Google Scholar] [CrossRef]
- Hesp, P. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Glenn, M. Glossary: A Study of Global Sand Seas. In US Geological Surveys Professional Paper; McKee, E.D., Ed.; U.S. Government Printing Office: Washington, DC, USA, 1979; pp. 399–407. [Google Scholar]
- Carter, R.W.; Hesp, P.; Nordstrom, K.F. Erosional Landforms and Coastal Dunes. In Coastal Dunes: Form and Processes; Nordstrom, K.F., Psuty, N.P., Carter, R.W., Eds.; John Wiley: London, UK, 1990; pp. 217–249. [Google Scholar]
- Smith, H.T. Physiography and Photo Interpretation of Coastal Sand Dunes. In Final Report NONR–2242 (00); Office of Naval Research, Geographical Branch: Arlington, VA, USA, 1960; p. 60. [Google Scholar]
- Ritchie, W. The evolution of coastal sand dunes. Scott. Geogr. Mag. 1972, 88, 19–35. [Google Scholar] [CrossRef]
- Cooper, W.S. Coastal Sand Dunes of Oregon and Washington; Geological Society of America: Boulder, CO, USA, 1958; p. 169. [Google Scholar]
- Bird, E. Coastal Geomorphology. An Introduction; John Wiley & Sons: London, UK, 2008; p. 411. [Google Scholar]
- Gutiérrez-Elorza, M.; Desir, G.; Gutiérrez-Santolalla, F.; Marín, C. Origin and evolution of playas and blowouts in the semiarid zone of Tierra de Pinares (Duero Basin, Spain). Geomorphology 2005, 72, 177–192. [Google Scholar] [CrossRef]
- Esler, A.E. Manawatu sand dune vegetation. Proc. N. Z. Ecol. Soc. 1970, 17, 41–46. [Google Scholar]
- Patriquin, D.G. “Migration” of blowouts in seagrass beds at Barbados and Carriacou, West Indies, and its ecological and geological implications. Aquat. Bot. 1975, 1, 163–189. [Google Scholar] [CrossRef]
- Harris, C. Wind speed and sand movement in a costal dune environment. Area 1974, 6, 243–249. [Google Scholar]
- Jennings, J.N. On the orientation of parabolic U-dune. Geogr. J. 1957, 124, 474–480. [Google Scholar] [CrossRef]
- Roig-Munar, F.X.; Rodríguez-Perea, A.; Martín-Prieto, J.A.; Pons, G.X. Soft management of beach-dune systems as a tool for their sustainability. J. Coast. Res. 2009, SI56, 1284–1288. [Google Scholar]
- van Boxel, J.H.; Jungerius, P.D.; Kieffer, N.; Hample, N. Ecological effects of reactivation of artificially stabilized dunes. J. Coast. Conserv. 1997, 3, 57–62. [Google Scholar] [CrossRef]
- Fraser, G.S.; Bennet, S.W.; Olyphant, G.A.; Bauch, N.J.; Ferguson, V.; Gellasch, C.A.; Millard, C.L.; Mueller, B.; O’Malley, P.J.; Way, N.; et al. Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan. J. Coast. Res. 1998, 14, 451–460. [Google Scholar]
- Barchyn, T.E.; Hugenholtz, C.H. Reactivation of supply-limited dune fields from blowouts: A conceptual framework for state characterization. Geomorphology 2013, 201, 172–182. [Google Scholar] [CrossRef]
- Landsberg, H.; Riley, N.A. Wind influences on the transportation of sand over Michigan sand dune. In Proceedings of the 2nd Hydraulics Conference Bulletin 27, University of Lowa Studies in Engineering, Lowa City, IA, USA, 1–4 June 1942. [Google Scholar]
- Byrne, M.L. Seasonal sand transport through a trough blowout at Pinery Provincial Park, Ontario. Can. J. Earth Sci. 1997, 34, 1460–1466. [Google Scholar] [CrossRef]
- Jungerius, P.D.; Van Der Meulen, F. Aeolian dynamics in relation to vegetation in a blowout complex in the Meijendel dunes, The Netherlands. J. Coast. Conserv. 1997, 3, 63–70. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Wolfe, S.A. Form-flow interactions of an aeolian saucer blowout. Earth Surf. Process. Landf. 2009, 34, 919–928. [Google Scholar] [CrossRef]
- Smyth, T.A.G.; Jackson, D.W.T.; Cooper, J.A.G. Computational fluid dynamic modelling of three-dimensional airflow over dune blowouts. J. Coast. Res. 2011, SI64, 314–318. [Google Scholar]
- Smyth, T.A.G.; Jackson, D.W.T.; Cooper, J.A.G. Three-dimensional airflow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds. Aeolian Res. 2013, 9, 111–123. [Google Scholar] [CrossRef]
- Smyth, T.A.G.; Jackson, D.W.T.; Cooper, J.A.G. Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions. Earth Surf. Process. Landf. 2014, 39, 1847–1854. [Google Scholar] [CrossRef]
- Hesp, P.; Walker, I.J. Three-dimensional aeolian dynamics within a bowl blowout during offshore winds: Greenwich Dunes, Prince Edward Island, Canada. Aeolian Res. 2012, 3, 389–399. [Google Scholar] [CrossRef]
- Puertos del Estado. Available online: https://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx (accessed on 25 February 2023).
- Servera, J. Coastal Dune Systems in Balearic Islands. Ph.D. Thesis, Earth Science Department, University of the Balearic Islands, Mallorca, Spain, 1997. (In Catalan). [Google Scholar]
- Roig-Munar, F.X.; Martín-Prieto, J.A.; Rodríguez-Perea, A.; Pons, G.X.; Mir-Gual, M. Risk assessment of beach-dune system erosion: Beach management impacts on the Balearic Islands. J. Coast. Res. 2012, 28, 1488–1499. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Jackson, P.S.; Hunt, J.C.R. Turbulent wind flow over a low hill. Q. J. R. Meteo. Soc. 1975, 101, 929–955. [Google Scholar] [CrossRef]
- Leatherman, S.P. A new aeolian sand trap design. Sedimentology 1978, 25, 303–306. [Google Scholar] [CrossRef]
- Sarre, R. Eolian sand transport. Prog. Phys. Geogr. 1987, 11, 155–182. [Google Scholar] [CrossRef]
- Gares, P.A. Topographic changes associated with coastal dune blowouts at Island Beach State Park, NJ. Earth Surf. Process. Landf. 1992, 17, 589–604. [Google Scholar] [CrossRef]
- Sherman, D.J.; Jackson, D.W.T.; Namikas, S.L.; Wang, J. Wind-blown sand on beaches: An evaluation of models. Geomorphology 1998, 22, 113–133. [Google Scholar] [CrossRef]
- Sabatier, F.; Chaibi, M.; Pons, F. Validation of aeolian sediment transport formulae by sediment traps. In Proceedings of the Med & Black Sea Beaches, Sarigerme/Dalaman, Turkey, 3–27 October 2002. [Google Scholar]
- Cabrera, L.L.; Alonso, I. Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers. J. Mar. Syst. 2010, 80, 235–242. [Google Scholar] [CrossRef]
- Hansen, E.; DeVries-Zimmerman, S.; van Dijk, D.; Yurk, B. Patterns of wind flow and aeolian deposition on a parabolic dune on the southeastern shore of Lake Michigan. Geomorphology 2009, 105, 147–157. [Google Scholar] [CrossRef]
- Gares, P.A.; Nordstrom, K.F. A cyclic model of foredune blowout evolution for a leeward coast: Island Beach. New Jersey. Ann. Assoc. Am. Geogr. 1995, 85, 1–20. [Google Scholar]
- Jungerius, P.D.; Van Der Meulen, F. The development of dunes blowouts, as measured with erosion pins and sequential air photos. Catena 1989, 16, 369–376. [Google Scholar] [CrossRef]
- de Rooij, P.C.E.M.; van der Putten, W.H.; Peters, B.A.M. Effects of sand deposition on the interaction between Ammophila arenaria, plant-parasitic nematodes, and pathogenic fungi. Can. J. Bot. 1995, 73, 1141–1150. [Google Scholar] [CrossRef]
- Pethick, J. An introduction to Coastal Geomorphology; Edward Arnold Publishers: London, UK, 2001; 272p. [Google Scholar]
- Hilton, M. The loss of New Zealand’s active dunes and the spread of marram grass (Ammophila arenaria). N. Z. Geogr. 2006, 62, 105–120. [Google Scholar] [CrossRef]
- Hilton, M.; Konlechner, T. Incipient Foredunes Developed from Marine-dispersed Rhizome of Ammophila arenaria. J. Coast. Res. 2011, SI64, 288–292. [Google Scholar]
- Delgado-Fernandez, I.; Davidson-Arnott, R.G.; Hesp, P.A. Is ‘re-mobilisation’ nature restoration or nature destruction? A commentary. J. Coast. Conserv. 2019, 23, 1093–1103. [Google Scholar] [CrossRef]
- Walker, I.J.; Davidson-Arnott, R.G.; Bauer, B.O.; Hesp, P.A.; Delgado-Fernandez, I.; Ollerhead, J.; Smyth, T.A. Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems. Earth-Sci. Rev. 2017, 171, 220–253. [Google Scholar] [CrossRef]
- Arens, S.M.; Van Kaam-Peters, H.M.E.; Van Boxel, J.H. Air flow over foredunes and implications for sand transport. Earth Surf. Process. Landf. 1995, 20, 315–332. [Google Scholar] [CrossRef]
RUN_1 (09:14–09:34) | RUN_2 (10:13–10:33) | RUN_3 (11:12–11:32) | RUN_4 (12:28–12:48) | RUN_5 (14:20–14:40) | RUN_6 (15:16–15:36) | RUN_7 (16:19–16:39) | RUN_8 (17:23–17:43) | RUN_9 (18:25–18:45) | RUN_10 (20:27–20:47) | RUN_11 (22:25–22:45) | RUN_12 (00:26–00:46) | RUN_13 (03:26–03:46) | δs χ | δs σ | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lenght | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | uz | Ratio (δ) | |||
Anem. 1 | 83 | 8.8 | 0.00 | 8.7 | 0.00 | 10.4 | 0.00 | 10.7 | 0.00 | 10.0 | 0.00 | 8.6 | 0.00 | 6.9 | 0.00 | 5.9 | 0.00 | 3.8 | 0.00 | 2.7 | 0.02 | 1.8 | 0.00 | 2.5 | 0.00 | 2.5 | 0.00 | 0.00 | 0.00 |
Anem. 2 | 73 | 7.2 | −0.18 | 7.1 | −0.18 | 8.8 | −0.15 | 9.0 | −0.16 | 8.3 | −0.17 | 7.2 | −0.16 | 5.7 | −0.17 | 4.7 | −0.20 | 3.1 | −0.18 | 2.2 | −0.19 | 1.4 | −0.22 | 2.0 | −0.20 | 2.0 | −0.20 | −0.18 | 0.02 |
Anem. 3 | 55 | 8.8 | 0.00 | 8.7 | 0.00 | 10.9 | 0.05 | 11.4 | 0.07 | 10.3 | 0.03 | 8.8 | 0.02 | 7.0 | 0.01 | 5.8 | −0.02 | 3.8 | 0.00 | 2.6 | −0.04 | 1.6 | −0.11 | 2.2 | −0.12 | 2.2 | −0.12 | −0.02 | 0.06 |
Anem. 4 | 38 | 9.8 | 0.11 | 9.9 | 0.14 | 11.3 | 0.09 | 11.5 | 0.07 | 10.9 | 0.09 | 9.1 | 0.06 | 7.2 | 0.04 | 6.1 | 0.03 | 3.7 | −0.03 | 2.7 | 0.00 | 1.6 | −0.11 | 2.6 | 0.04 | 2.6 | 0.04 | 0.04 | 0.06 |
Anem. 5 | 24 | 6.7 | −0.24 | 6.6 | −0.24 | 8.4 | −0.19 | 8.9 | −0.17 | 7.3 | −0.27 | 6.7 | −0.22 | 5.8 | −0.16 | 4.8 | −0.19 | 4.2 | 0.11 | 2.7 | 0.00 | 2.1 | 0.17 | 1.8 | −0.28 | 1.8 | −0.28 | −0.15 | 0.15 |
Anem. 6 | 47 | 10.0 | 0.14 | 10.1 | 0.16 | 11.3 | 0.09 | 11.5 | 0.07 | 10.8 | 0.08 | 9.1 | 0.06 | 7.2 | 0.04 | 6.0 | 0.02 | 3.2 | −0.16 | 2.2 | −0.19 | 1.0 | −0.44 | 2.3 | −0.08 | 2.3 | −0.08 | −0.02 | 0.17 |
Anem. 7 | 42 | 9.5 | 0.08 | 9.7 | 0.11 | 12.1 | 0.16 | 11.2 | 0.05 | 12.0 | 0.20 | 8.9 | 0.03 | 8.1 | 0.17 | 5.9 | 0.00 | 4.4 | 0.16 | 3.2 | 0.19 | 2.1 | 0.17 | 3.0 | 0.20 | 3.0 | 0.20 | 0.13 | 0.07 |
δs χ | −0.06 | 0.00 | 0.01 | −0.01 | −0.01 | −0.03 | −0.01 | −0.05 | −0.02 | −0.03 | −0.08 | −0.06 | −0.06 | ||||||||||||||||
δs σ | 0.15 | 0.16 | 0.13 | 0.11 | 0.16 | 0.11 | 0.12 | 0.10 | 0.13 | 0.13 | 0.22 | 0.16 | 0.16 | ||||||||||||||||
Anem. 1 (ref) | 8.8 | 8.7 | 10.4 | 10.7 | 10.0 | 8.6 | 6.9 | 5.9 | 3.8 | 2.7 | 1.8 | 2.5 | 2.5 |
Back Beach | Embryo Dunes | Depositional Lobe | |||||
---|---|---|---|---|---|---|---|
A1 | TA | A2 | TB | A5 | TC | ||
Time | Speed | Transport | Speed | Transport | Speed | Transport | |
Run 1 | 9:14 | 8.3 | 13.89 | 6.9 | 2.915 | 8.3 | 112.925 |
9:15 | 8.5 | 0.04 | 7.3 | 0.06 | 8.6 | 0.225 | |
9:16 | 9.4 | 1.825 | 7.7 | 0.395 | 9.2 | 1.575 | |
9:17 | 9.1 | 4.785 | 7.7 | 0.575 | 9.6 | 50.91 | |
Run 2 | 10:13 | 8.5 | 23.015 | 7 | 2.28 | 8.4 | 111.835 |
10:14 | 7.7 | 0.17 | 6.9 | 0.015 | 8.1 | 0.58 | |
10:15 | 8.9 | 0.92 | 7.2 | 0.415 | 9.2 | 0.67 | |
10:16 | 8.3 | 0.41 | 6.5 | 0.97 | 7.8 | 57.465 | |
Run 3 | 11:12 | 9.7 | 57.655 | 7.8 | 22.79 | 9.8 | 113 |
11:13 | 9.1 | 4.395 | 7.7 | 1.695 | 9.3 | 6.3 | |
11:14 | 10.2 | 2.625 | 8.3 | 4.26 | 10.7 | 2.245 | |
11:15 | 11.1 | 1.79 | 9.4 | 15.76 | 12.3 | 64.285 | |
Run 4 | 12:28 | 9.7 | 58.29 | 7.9 | 30.31 | 10.4 | 100.18 |
12:29 | 10.3 | 1.79 | 8.6 | 12.195 | 10.7 | 3 | |
12:30 | 10.6 | 1.195 | 8.8 | 2.135 | 11.6 | 0.855 | |
12:31 | 10.6 | 1.57 | 9.4 | 19.455 | 11.8 | 64.625 | |
Run 5 | 14:20 | 10.4 | 21.93 | 9 | 6.1 | 10.8 | 100.665 |
14:21 | 10.5 | 2.575 | 8.5 | 4.225 | 10.8 | 7.37 | |
14:22 | 10.4 | 0.655 | 9 | 0.725 | 11.1 | 8.135 | |
14:23 | 9.9 | 0.445 | 8.5 | 2.68 | 10.5 | 71.64 | |
Run 6 | 15:16 | 8.9 | 2.125 | 7.8 | 0.385 | 9.5 | 56.75 |
15:17 | 9.5 | 0.425 | 7.7 | 2.82 | 9.8 | 10.605 | |
15:18 | 9.7 | 0.235 | 8 | 0.075 | 10.1 | 2.64 | |
15:19 | 8.8 | 0.055 | 8 | 0.22 | 9.6 | 42.83 | |
Run 7 | 16:19 | 7.9 | 0.05 | 6.4 | 0.035 | 7.4 | 18.99 |
16:20 | 7.2 | 0.56 | 6.2 | 0.5 | 7.8 | 1.175 | |
16:21 | 8 | 0.005 | 6.5 | 0.03 | 8 | 0.125 | |
16:22 | 7.4 | 0.01 | 6.6 | 0.05 | 7.7 | 2.15 | |
Run 8 | 17:23 | 7 | 0.045 | 5.9 | 0 | 6.6 | 11.745 |
17:24 | 6 | 0.110 | 5.1 | 0.145 | 6.1 | 0.03 | |
17:25 | 6.7 | 0.030 | 5.6 | 0 | 6.4 | 0.085 | |
17:26 | 7 | 0.030 | 5.5 | 0.065 | 6.5 | 0.13 | |
Run 9 | 18:25 | 4.5 | 0.030 | 3.7 | 0.065 | 4.5 | 9.785 |
18:26 | 4.1 | 0.075 | 3.4 | 0.085 | 4.1 | 0.02 | |
18:27 | 4.1 | 0.015 | 3.2 | 0 | 4.1 | 0.065 | |
18:28 | 4.4 | 0.020 | 3.8 | 0.04 | 4.7 | 0.105 | |
Run 10 | 20:27 | 1.5 | 0.020 | 1.5 | 0.03 | 1.4 | 7.095 |
20:28 | 1.6 | 0.055 | 1.6 | 0.07 | 1.8 | 0.015 | |
20:29 | 2.4 | 0.015 | 1.7 | 0 | 2.1 | 0.045 | |
20:30 | 2.4 | 0.015 | 1.7 | 0.03 | 2.3 | 0.075 | |
Run 11 | 22:25 | 1.9 | 0.010 | 1.4 | 0.005 | 1.6 | 2.050 |
22:26 | 2 | 0.005 | 1.7 | 0.01 | 1.8 | 0.010 | |
22:27 | 2 | 0.005 | 1.5 | 0 | 1.9 | 0.030 | |
22:28 | 1.8 | 0.005 | 1.6 | 0.015 | 1.8 | 0.050 | |
Run 12 | 0:26 | 4.3 | 0.025 | 3.5 | 0.06 | 3.9 | 5.87 |
0:27 | 3.7 | 0.005 | 3.1 | 0.045 | 3.7 | 0.01 | |
0:28 | 4.2 | 0.010 | 3.3 | 0 | 3.7 | 0.035 | |
0:29 | 3.9 | 0.015 | 3.1 | 0.035 | 4 | 0.06 | |
Run 13 | 3:26 | 3.1 | 0.010 | 2.5 | 0.005 | 3 | 1 |
3:27 | 2.8 | 0.005 | 2.2 | 0.01 | 2.7 | 0.005 | |
3:28 | 2.2 | 0.005 | 1.6 | 0 | 2.1 | 0.025 | |
3:29 | 2.4 | 0.005 | 1.8 | 0.02 | 2.1 | 0.04 |
TA | TB | TC | |
---|---|---|---|
Run | Values in kg m−1 min−1 | ||
1 | 5.14 | 0.99 | 41.41 |
2 | 6.13 | 0.92 | 42.64 |
3 | 16.62 | 11.13 | 46.46 |
4 | 15.71 | 16.02 | 42.17 |
5 | 6.40 | 3.43 | 46.95 |
6 | 0.71 | 0.88 | 28.21 |
7 | 0.16 | 0.15 | 5.61 |
8 | 0.05 | 0.07 | 3.00 |
9 | 0.04 | 0.05 | 2.49 |
10 | 0.03 | 0.03 | 1.81 |
11 | 0.01 | 0.01 | 0.54 |
12 | 0.01 | 0.035 | 1.494 |
13 | 0.006 | 0.009 | 0.268 |
Time | Run | Qtrap (kg m−1 min−1) |
---|---|---|
Morning | TA1 | 5.14 |
TB1 | 0.99 | |
TC1 | 41.41 | |
TA2 | 6.13 | |
TB2 | 0.92 | |
TC2 | 42.64 | |
TA3 | 16.62 | |
TB3 | 11.13 | |
TC3 | 46.46 | |
TA4 | 15.71 | |
TB4 | 16.02 | |
TC4 | 42.17 | |
TA5 | 6.40 | |
TB5 | 3.43 | |
TC5 | 46.95 | |
Afternoon | TA6 | 0.71 |
TB6 | 0.88 | |
TC6 | 28.21 | |
TA7 | 0.16 | |
TB7 | 0.15 | |
TC7 | 5.61 | |
TA8 | 0.05 | |
TB8 | 0.07 | |
TC8 | 3.00 | |
TA9 | 0.04 | |
TB9 | 0.05 | |
TC9 | 2.49 | |
Night | TA10 | 0.03 |
TB10 | 0.03 | |
TC10 | 1.81 | |
TA11 | 0.01 | |
TB11 | 0.01 | |
TC11 | 0.54 | |
TA12 | 0.01 | |
TB12 | 0.035 | |
TC12 | 1.494 | |
TA13 | 0.006 | |
TB13 | 0.009 | |
TC13 | 0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir-Gual, M.; Pons, G.X.; Delgado-Fernández, I.; Smyth, T.A.G. Field-Measurement of Surface Wind and Sediment Transport Patterns in a Coastal Dune Environment, Case Study of Cala Tirant (Menorca, Spain). J. Mar. Sci. Eng. 2023, 11, 2361. https://doi.org/10.3390/jmse11122361
Mir-Gual M, Pons GX, Delgado-Fernández I, Smyth TAG. Field-Measurement of Surface Wind and Sediment Transport Patterns in a Coastal Dune Environment, Case Study of Cala Tirant (Menorca, Spain). Journal of Marine Science and Engineering. 2023; 11(12):2361. https://doi.org/10.3390/jmse11122361
Chicago/Turabian StyleMir-Gual, Miquel, Guillem X. Pons, Irene Delgado-Fernández, and Thomas A. G. Smyth. 2023. "Field-Measurement of Surface Wind and Sediment Transport Patterns in a Coastal Dune Environment, Case Study of Cala Tirant (Menorca, Spain)" Journal of Marine Science and Engineering 11, no. 12: 2361. https://doi.org/10.3390/jmse11122361
APA StyleMir-Gual, M., Pons, G. X., Delgado-Fernández, I., & Smyth, T. A. G. (2023). Field-Measurement of Surface Wind and Sediment Transport Patterns in a Coastal Dune Environment, Case Study of Cala Tirant (Menorca, Spain). Journal of Marine Science and Engineering, 11(12), 2361. https://doi.org/10.3390/jmse11122361