Valuing the Natural Capital of Sea Areas Based on Emergy Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Emergy Anlaysis Method
2.2.1. Renewable Resources (R)
2.2.2. Imported Emergy (I)
2.2.3. Output Emergy (O)
2.2.4. Data Collection
2.2.5. Emergy Indicators
3. Result and Discussion
3.1. Emergy Evaluation of Zhoushan Sea Area
3.2. Changes of Marine Aquaculture and Fishing Product
3.3. Emergy Indices of Zhoushan Sea Area
3.4. Comparison of Emergy Analysis in Different Sea Area
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Item | Raw Data | Sources |
---|---|---|
Sunlight | ||
Solar radiation | 4.35 × 109 J/m2 | |
Sea area | 2.08 × 1010 m2 | Marine Function Zoning of Zhoushan, 2013–2020 |
Sunlight energy | =(solar radiation) × (sea area) =4.35 × 109 J/m2·yr × 2.08 × 1010 m2 =9.05 × 1019 J | |
Wind | ||
Air density | 1.29 kg/m3 | |
Drag Coefficient | 0.001 | |
Wind speed | 7 m/s | Zhuge, 2015 [56] |
Wind energy | =(air density) × (drag coefficient) × (wind speed)3 × (times) × (sea area) =1.29 kg/m3 × 0.001 × (7 m/s)3 × (365 × 24 × 60)s × 2.08 × 1010 m2 =6.65 × 1010 J | |
Rain chemical energy | ||
Net precipitation | =(1.5826 − 0.9353) =0.6473 m | Zhoushan Statistical Yearbook, 2012–2017 [54] |
Rain chemical energy | =(net precipitation) × (water density) × (Gibbs number) × (sea area) =0.6473 m × 1000 kg/m3 × 4940 J/kg × 2.08 × 1010 m2 =6.65 × 1016 J | |
Wave | ||
Coastline length | 2444 km | Chinese Island Chronicles, 2014 [37] |
Wave height | 0.2 m | |
Wave energy | =(coastline length) × (1/8) ×(sea water density) × (gravity) × (wave height)2 × (velocity) × (time) =2444 km × 1/8 × 1025 kg/m3 × 9.8 N/kg × (0.2 m)2 × × (365 × 24 × 60) s =5.42 × 1015 J | |
Tides | ||
Intertidal area | 184.4 km2 | Chinese Island Chronicles, 2014 [37] |
Tide height | 2.01 m | |
Annual tides times | 705 | |
Tides energy | =(intertidal area) × (1/2) × (seawater density) × (gravity) × (tide height)2 × (tide times) =184.4 km2 × 1/2 × 1025 kg/m3 × 9.8 N/kg × (2.01 m)2 × 705 =2.64 × 1015 J | |
Runoff | ||
Water volume | 7.3771 × 1011 kg | Zhoushan Water Resources Bulletin, 2014 [55] |
Runoff chemical energy | =(water volume) × (water density) × (Gibbs number) =7.3771 × 1011 kg × 1000 kg/m3 × 4.94 J/g =3.64 × 1015 J | |
Phosphate (upwelling) | ||
Flux per unit area | 0.1135 g/(m2∙d) | Wang and Zang,1987 [45] Shi et al., 1999 [46] |
Total flux | =(flux per unit area) × (time) × (sea area) =0.1135 g/(m2 ∙d) × 365 d × 2.08 × 1010 m2 =8.62 × 1011 g | |
Inorganic nitrogen (upwelling) | ||
Flux per unit area | 0.4945 g/(m2∙d) | Wang and Zang,1987 [45] Shi et al., 1999 [46] |
Total flux | =(flux per unit area) × (time) × (sea area) =0.4945 g/(m2∙d) × 365 d× 2.08 × 1010 m2 =3.08 × 1011 g | |
Fishing vessel fuel | ||
Total power of fishing vessels | 1,450,498 kW (2011) | Zhoushan Statistical Yearbook, 2012–2017 [54] |
Working hours | 1500 h | Xu et al., 2009 [48] |
Fishing vessel fuel energy | =(total power of fishing vessels) × (fuel consumption per unit power) × (working hours) × (fuel calorific value) =1,450,498 kW × 250 g/(kW∙h) × 1500 h × 42,652 J/g =2.32 × 1016 J |
Item | Raw Data | Transformity (sej/Unit) | Sources of Transformity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | Unit | ||||
Renewable resources | ||||||||||
1 | Sun | 9.05 × 1019 | J | 1 | Odum, 1996 [22] | |||||
2 | Wind | 2.90 × 1017 | J | 1470 | Campbell et al., 2005 [44] | |||||
3 | Rain chemical energy | −4.08 × 1016 | 3.63 × 1016 | −5.52 × 1016 | 5.52 × 1016 | 6.65 × 1016 | 6.21 × 1016 | J | 18,100 | Campbell et al., 2005 [44] |
4 | Wave | 5.42 × 1015 | J | 25,900 | Brown et al., 1991 [42] | |||||
5 | Tides | 2.64 × 1015 | J | 16,842 | Odum, 1996 [22] | |||||
6 | Runoff chemical energy | 3.64 × 1015 | J | 18,100 | Campbell et al., 2005 [44] | |||||
7 | Phosphate (upwelling) | 8.62 × 1011 | g | 1.40 × 1010 | Brown et al., 1991 [42] | |||||
8 | Inorganic nitrogen (upwelling) | 3.08 × 1011 | g | 7.71 × 109 | Franzese et al., 2008 [34] | |||||
Imported emergy | ||||||||||
9 | Fishing vessel fuel | 2.32 × 1016 | 2.50 × 1016 | 2.54 × 1016 | 2.60 × 1016 | 2.61 × 1016 | 2.67 × 1016 | J | 111,000 | Franzese et al., 2008 [34] |
10 | Labor (Fishing) | 1.35 × 104 | 1.38 × 104 | 1.33 × 104 | 1.30 × 104 | 1.25 × 104 | 1.29 × 104 | h | 6.03 × 1016 | Franzese et al., 2008 [34] |
11 | Labor (Aquaculture) | 1.23 × 103 | 1.09 × 103 | 1.03 × 103 | 9.52 × 102 | 9.58 × 102 | 9.54 × 102 | h | 6.03 × 1016 | Franzese et al., 2008 [34] |
12 | Service &Capital (Fishing)(Yuan) | 4.46 × 1022 | 4.61 × 1022 | 4.82 × 1022 | 5.01 × 1022 | 4.99 × 1022 | 5.03 × 1022 | yuan | 7.52 × 1012 | Li et al., 2015 [47] |
13 | Service &Capital (Aquaculture)(Yuan) | 1.13 × 1021 | 1.29 × 1021 | 1.84 × 1021 | 1.79 × 1021 | 2.08 × 1021 | 2.78 × 1021 | yuan | 7.52 × 1012 | |
Output emergy | ||||||||||
14 | Net primary production | 9.56 × 1021 | 9.50 × 1021 | 9.56 × 1021 | 9.92 × 1021 | 9.68 × 1021 | 9.74 × 1021 | J | 48,600 | Franzese et al., 2008 [34] |
15 | kelp | 4.59 × 1011 | 5.31 × 1011 | 7.13 × 1011 | 6.21 × 1011 | 9.99 × 1011 | 7.43 × 1011 | J | 4.86 × 104 | Calculated by our study |
16 | Nori | 1.27 × 1011 | 1.28 × 1011 | 1.24 × 1011 | 7.01 × 1010 | 6.28 × 1010 | 1.72 × 1011 | J | 4.86 × 104 | |
17 | Chinese shrimp | 1.41 × 1013 | 1.77 × 1013 | 1.73 × 1013 | 1.78 × 1013 | 1.91 × 1013 | 2.62 × 1013 | J | 6.12 × 105 | |
18 | Razor clam | 2.03 × 1013 | 1.77 × 1013 | 1.91 × 1013 | 1.93 × 1013 | 1.80 × 1013 | 1.91 × 1013 | J | 1.54 × 106 | |
19 | Mussel | 1.26 × 1014 | 1.81 × 1014 | 1.95 × 1014 | 2.11 × 1014 | 2.44 × 1014 | 3.09 × 1014 | J | 1.54 × 106 | |
20 | Clam | 2.33 × 1013 | 2.18 × 1013 | 1.92 × 1013 | 1.84 × 1013 | 1.63 × 1013 | 2.26 × 1013 | J | 1.54 × 106 | |
21 | Spiral shell | 2.69 × 1012 | 2.02 × 1012 | 1.61 × 1012 | 1.96 × 1012 | 1.64 × 1012 | 2.72 × 1012 | J | 1.54 × 106 | |
22 | Algae | 1.21 × 1012 | 1.42 × 1012 | 2.15 × 1012 | 2.12 × 1012 | 2.32 × 1012 | 2.15 × 1012 | J | 4.86 × 104 | |
23 | Crabs | 3.85 × 1014 | 4.28 × 1014 | 5.68 × 1014 | 8.41 × 1014 | 7.32 × 1014 | 6.91 × 1014 | J | 6.12 × 105 | |
24 | Shrimps | 7.41 × 1014 | 8.31 × 1014 | 8.20 × 1014 | 7.54 × 1014 | 8.27 × 1014 | 8.15 × 1014 | J | 6.12 × 105 | |
25 | Butterfish | 1.60 × 1014 | 1.39 × 1014 | 9.71 × 1013 | 7.83 × 1013 | 9.03 × 1013 | 1.24 × 1014 | J | 9.70 × 105 | |
26 | long-finned herring | 1.59 × 1012 | 2.60 × 1012 | 2.17 × 1012 | 2.22 × 1012 | 1.11 × 1013 | 1.95 × 1013 | J | 1.22 × 106 | |
27 | Jerk filefish | 7.06 × 1012 | 4.11 × 1012 | 3.12 × 1012 | 5.74 × 1012 | 2.71 × 1012 | 2.62 × 1012 | J | 1.22 × 106 | |
28 | Shellfish& Cephalopoda | 9.73 × 1014 | 1.13 × 1015 | 1.20 × 1015 | 1.54 × 1015 | 1.78 × 1015 | 2.03 × 1015 | J | 1.54 × 106 | |
29 | Small yellow croaker | 2.41 × 1014 | 2.20 × 1014 | 1.91 × 1014 | 2.17 × 1014 | 2.32 × 1014 | 2.22 × 1014 | J | 2.44 × 106 | |
30 | Large yellow croaker | 1.05 × 1012 | 1.61 × 1012 | 1.62 × 1012 | 2.09 × 1012 | 2.53 × 1012 | 3.00 × 1012 | J | 6.12 × 106 | |
31 | Mackerel and scad | 9.63 × 1014 | 7.63 × 1014 | 6.18 × 1014 | 5.15 × 1014 | 4.02 × 1014 | 4.78 × 1014 | J | 7.70 × 106 | |
32 | Spanish mackerel | 2.42 × 1013 | 2.89 × 1013 | 3.25 × 1013 | 3.43 × 1013 | 4.25 × 1013 | 5.09 × 1013 | J | 3.07 × 107 | |
33 | hairtail | 6.20 × 1014 | 6.23 × 1014 | 6.43 × 1014 | 5.75 × 1014 | 6.23 × 1014 | 6.43 × 1014 | J | 3.86 × 107 |
References
- Brown, M.T.; Campbell, D.E.; Vilbiss, C.D.; Ulgiati, S. The geobiosphere emergy baseline: A synthesis. Ecol. Model. 2016, 339, 92–95. [Google Scholar] [CrossRef]
- Natural Capital Committee. How Do It: A Natural Capital Workbook, Version 1; NCC: UK, 2017.
- Barbier, E.B. The concept of natural capital. Oxf. Rev. Econ. Policy 2019, 35, 14–36. [Google Scholar] [CrossRef]
- Groot, R.D.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Mellino, S.; Ripa, M.; Zucaro, A.; Ulgiati, S. An emergy-GIS approach to the evaluation of renewable resource flows: A case study of Campania Region, Italy. Ecol. Model. 2014, 271, 103–112. [Google Scholar] [CrossRef]
- Stebbings, E.; Hooper, T.; Austen, M.C.; Papathanasopoulou, E.; Yan, X. Accounting for benefits from natural capital: Applying a novel composite indicator framework to the marine environment. Ecosyst. Serv. 2021, 50, 101308. [Google Scholar] [CrossRef]
- Catucci, E.; Buonocore, E.; Franzese, P.P.; Scardi, M. Assessing the Natural Capital Value of Posidonia Oceanica Meadows in the Italian Seas by Integrating Habitat Suitability and Environmental Accounting Models. ICES J. Mar. Sci. 2022, fsac034. Available online: www.gov.uk/government/groups/natural-capital-committee (accessed on 20 December 2022). [CrossRef]
- Campbell, E.T.; Brown, M.T. Environmental accounting of natural capital and ecosystem services for the US National Forest System. Environ. Dev. Sustain. 2012, 14, 691–724. [Google Scholar] [CrossRef]
- Dong, X.B.; Yang, W.K.; Ulgiati, S.; Yan, M.C.; Zhang, X.S. The impact of human activities on natural capital and ecosystem services of natural pastures in North Xinjiang, China. Ecol. Model. 2012, 225, 28–39. [Google Scholar] [CrossRef]
- Dong, X.B.; Yu, B.H.; Brown, M.T.; Zhang, Y.S.; Kang, M.Y.; Jin, Y.; Zhang, X.S.; Ulgiati, S. Environmental and economic consequences of the overexploitation of natural capital and ecosystem services in Xilinguole League, China. Energy Policy 2014, 67, 767–780. [Google Scholar] [CrossRef]
- Vassallo, P.; Paoli, C.; Rovere, A.; Montefalcone, M.; Morri, C.; Bianchi, C.N. The value of the seagrass Posidonia oceanica, a natural capital assessment. Mar. Pollut. Bull. 2013, 75, 157. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, X.; Lv, C.; Wang, H.; Di, D. Study on the quantification method of water pollution ecological compensation standard based on emergy theory. Ecol. Indic. 2018, 92, 189–194. [Google Scholar] [CrossRef]
- Brown, M.T.; Viglia, S.; Love, D.; Asche, F.; Nussbaumer, E.; Fry, J.; Neff, R. Quantifying the environmental support to wild catch Alaskan sockeye salmon and farmed Norwegian Atlantic Salmon: An emergy approach. J. Clean. Prod. 2022, 369, 133379. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Du, Y.-W. Evaluation of resources and environmental carrying capacity of marine ranching in China: An integrated life cycle assessment-emergy analysis. Sci. Total Environ. 2023, 856, 159102. [Google Scholar] [CrossRef]
- Agostinho, F.; Diniz, G.; Siche, R.; Ortega, E. The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brazil. Ecol. Model. 2008, 210, 37–57. [Google Scholar] [CrossRef]
- Pulselli, R.M. Integrating emergy evaluation and geographic information systems for monitoring resource use in the Abruzzo region (Italy). J. Environ. Manag. 2010, 91, 2349. [Google Scholar] [CrossRef]
- Song, L.I.; Luo, X. Emergy assessment and sustainability of ecological–economic system using GIS in China. Acta Ecol. Sin. 2015, 35, 160–167. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, F.; Di, D.; Wang, H. Study of spatial distribution characteristics of river eco-environmental values based on emergy-GeoDa method. Sci. Total Environ. 2022, 802, 149679. [Google Scholar] [CrossRef]
- Odum, H.T. Energy Analysis of the Environmental Role in Agriculture. In Energy and Agriculture, Advanced Series in Agriculture Sciences; Stanhill, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 14, pp. 24–51. [Google Scholar]
- Odum, H.T. Emergy in ecosystems. In Ecosystem Theory and Applications; Polunin, N., Ed.; John Wiley and Sons: NewYork, NY, USA, 1986; pp. 337–369. [Google Scholar]
- Odum, H.T.; Arding, J.E. Emergy Analysis of Shrimp Mariculture in Ecuador; Department of Environmental Engineering Sciences, University of Florida: Gainesvill, FL, USA, 1991; Working Paper prepared for Coastal Resources Center, University of Rhode Island, Narragansett, RI, USA. [Google Scholar]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; John Wiley & Sons: NewYork, NY, USA, 1996. [Google Scholar]
- Ulgiati, S.; Zucaro, A.; Franzese, P.P. Shared wealth or nobody’s land? The worth of natural capital and ecosystem services. Ecol. Econ. 2011, 70, 778–787. [Google Scholar] [CrossRef]
- Ulgiati, S.; Odum, H.T.; Bastianoni, S. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecol. Model. 1994, 73, 215–268. [Google Scholar] [CrossRef]
- Zhao, S.; Song, K.; Gui, F.; Cai, H.; Jin, W.; Wu, C. The emergy ecological footprint for small fish farm in China. Ecol. Indic. 2013, 29, 62–67. [Google Scholar] [CrossRef]
- Buonocore, E.; Picone, F.; Donnarumma, L.; Russo, G.F.; Franzese, P.P. Modeling matter and energy flows in marine ecosystems using emergy and eco-exergy methods to account for natural capital value. Ecol. Model. 2019, 392, 137–146. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Giannetti, B.F.; Agostinho, F.; Almeida, C.M.; Casazza, M. Emergy-based ecosystem services valuation and classification management applied to China’s grasslands. Ecosyst. Serv. 2020, 42, 101073. [Google Scholar] [CrossRef]
- Franzese, P.P.; Buonocore, E.; Donnarumma, L.; Russo, G.F. Natural capital accounting in marine protected areas: The case of the Islands of Ventotene and S. Stefano (Central Italy). Ecol. Model. 2017, 360, 290–299. [Google Scholar] [CrossRef]
- Picone, F.; Buonocore, E.; D’Agostaro, R.; Donati, S.; Chemello, R.; Franzese, P.P. Integrating natural capital assessment and marine spatial planning: A case study in the Mediterranean sea. Ecol. Model. 2017, 361, 1–13. [Google Scholar] [CrossRef]
- Paoli, C.; Povero, P.; Burgos, E.; Dapueto, G.; Fanciulli, G.; Massa, F.; Scarpellini, F.; Vassallo, P. Natural capital and environmental flows assessment in marine protected areas: The case study of Liguria region (NW Mediterranean Sea). Ecol. Model. 2018, 368, 121–135. [Google Scholar] [CrossRef]
- Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J.L. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves. Ecol. Appl. 2003, 13, 90–107. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.T.; Woithe, R.D.; Odum, H.T.; Montague, C.L.; Odum, E.C. Emergy Analysis Perspectives of the Exxon Valdez Oil Spill in Prince William Sound, Alaska; University of Florida, Center for Wetlands and Water Resources: Gainesville, FL, USA, 1993. [Google Scholar]
- Campbell, D.E. Evaluation and emergy analysis of the Cobscook Bay ecosystem. Northeast. Nat. 2004, 11, 355–424. [Google Scholar] [CrossRef]
- Franzese, P.P.; Russo, G.F.; Ulgiati, S. Modelling the interplay of environment, economy and resources in Marine Protected Areas. A case study in Southern Italy. Ecol. Quest. 2008, 10, 91–97. [Google Scholar] [CrossRef]
- Vassallo, P.; Paoli, C.; Buonocore, E.; Franzese, P.P.; Russo, G.F.; Povero, P. Assessing the value of natural capital in marine protected areas: A biophysical and trophodynamic environmental accounting model. Ecol. Model. 2017, 355, 12–17. [Google Scholar] [CrossRef]
- Xu, W.; Dong, Y.E.; Teng, X.; Zhang, P.P. Evaluation of the development intensity of China’s coastal area. Ocean Coast. Manag. 2018, 157, 124–129. [Google Scholar] [CrossRef]
- Chinese Island Chronicles Compilation Committee. Chinese Island Chronicles. Southern Zhoushan Islands; China Ocean Press: Beijing, China, 2014; Zhejiang Volume 2. (In Chinese) [Google Scholar]
- Dong, G.; Zheng, S.Y.; Lee, P.T.-W. The effects of regional port integration: The case of Ningbo-Zhoushan Port. Transp. Res. Part E Logist. Transp. Rev. 2018, 120, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y. Planning island sustainable development policy based on the theory of ecosystem services: A case study of Zhoushan Archipelago, East China. Isl. Stud. J. 2019, 15, 237–252. [Google Scholar] [CrossRef]
- Odum, H.T. Ecological and General Systems: An Introduction to Systems Ecology; University Press of Colorado: Boulder, CO, USA, 1994; 644p, revised edition of Systems Ecology; Wiley: New York, NY, USA, 1983; pp.644–647. [Google Scholar]
- Liu, C.; Cui, W.L.; Yu, X.J. Assessment of the value of services and emergy in the Zhoushan coastal waters ecosystem. J. Environ. Ecol. 2017, 6, 8–27. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.T.; Tennenbaum, S.; Odum, H.T. Emergy analysis and policy perspectives for the sea of Cortez, Mexico; University of Florida, Center for Wetlands and Water Resources: Gainesville, FL, USA, 1991. [Google Scholar]
- Lan, S.F.; Qin, P.; Lu, H.F. (Eds.) Emergy Analysis of Ecosystems; Chemical Industry Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Campbell, D.E.; Brandt-Williams, S.L.; Meisch, M.E.A. Environmental Accounting Using Emergy: Evaluation of The State of West Virginia; USEPA (United States Environmental Protect Agency): Washington, DC, USA, 2005; Volume 116, EPA/6000R-05/006.
- Wang, G.Y.; Zang, J.Y. The Content and distribution of the chemical properties in the East Chian Sea. In Essays on the Investigation of Kuroshio; Xiangping, S., Yufen, S., Eds.; Ocean Press: Beijing, China, 1987; pp. 267–284. (In Chinese) [Google Scholar]
- Shi, J.R.; Zhang, L.; Zou, W.M.; Ren, S.J. Distribution feature of the nutrient in seawater of Zhoushan Fishery off-shore area. Mar. Environ. Sci. 1999, 2, 43–48. (In Chinese) [Google Scholar]
- Li, X.; Jiang, W.Q.; Zhao, S. Energy-based urban ecosystem health assessment, a case study of Zhoushan. Int. J. Ecol. 2015, 4, 93–99. (In Chinese) [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.L.; Zhao, P. Investigation and analysis of energy consumption of fishing vessels in China. China Fish. 2009, 9, 5–7. (In Chinese) [Google Scholar]
- Ding, Q.X.; Cheng, W.Z. Spatial-Temporal Variation of China’s Offshore Net Primary Production Based on Vertically Generalized Production Model. Ocean Dev. Manag. 2016, 33, 31–35. (In Chinese) [Google Scholar]
- Belgrano, A.; Scharler, U.M.; Dunne, J.; Ulanowicz, R.E. Aquatic Food Webs: An Ecosystem Approach; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Shen, G.Y.; Shi, B.Z. Marine Ecology, 2nd Edition; China Science Publishing & Media Ltd.: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Brown, M.T.; Cohen, M.J.; Bardi, E.; Ingwersen, W.W. Species diversity in the Florida Everglades, USA: A systems approach to calculating biodiversity. Aquat. Sci. 2006, 68, 254–277. [Google Scholar] [CrossRef]
- Chao, M.; Quan, W.M.; Li, C.H.; Chen, Y.L. Changes in trophic level of marine catches in the East China Sea region. Mar. Sci. 2005, 29, 51–55. (In Chinese) [Google Scholar]
- Zhoushan Statistical Yearbook. Zhoushan Bureau of Statistics; China Statistics Press: Zhoushan, China, 2012–2017. Available online: http://zstj.zhoushan.gov.cn/col/col1559852/index.html/ (accessed on 7 August 2020). (In Chinese)
- Zhoushan Water Resources Bulletin; Zhoushan Water Conservancy and Reclamation Bureau: Zhoushan, China. 2014. Available online: http://www.doc88.com/p-0951395564994.html/ (accessed on 7 August 2020). (In Chinese)
- ZhuGe, F.L. Study of Coastal Wind Simulation and Assessment Based on WRF Model and QuickSCAT/Windsat Data Assimilation in Zhoushan Islands; Atmosphere Physics College, Nanjing University of Information Science & Technology: Nanjing, China, 2015. (In Chinese) [Google Scholar]
- Di, Q.B.; Zhang, H.H.; Cao, K. Energy-based marine ecological footprint in Shandong province, China. Mar. Sci. Bull. 2015, 34, 68–81. (In Chinese) [Google Scholar]
- Eriksson, H.; Österblom, H.; Crona, B.; Troell, M.; Andrew, N.; Wilen, J.; Folke, C. Contagious exploitation of marine resources. Front. Ecol. Environ. 2015, 13, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Li, C.; Zhang, S. Hydrodynamic effect of a large offshore mussel suspended aquaculture farm. Aquaculture 2016, 451, 147–155. [Google Scholar] [CrossRef]
- Xu, H.N.; Sheng, H.X.; Zhang, L.P. Evaluation of marine ecosystem intrinsic value- a case study of Xiamen Bay. J. Appl. Oceanogr. 2014, 33, 585–593. (In Chinese) [Google Scholar]
- Garzke, J.; Ismar, S.M.H.; Sommer, U. Climate change affects low trophic level marine consumers: Warming decreases copepod size and abundance. Oecologia 2015, 177, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Pace, M.L.; Glasser, J.E.; Pomeroy, L.R. A simulation analysis of continental shelf food webs. Mar. Biol. 1984, 82, 47–63. [Google Scholar] [CrossRef]
- Baker, R.; Buckland, A.; Sheaves, M. Fish gut content analysis: Robust measures of diet composition. Fish Fish. 2014, 15, 170–177. [Google Scholar] [CrossRef]
- Valentini, A.; Miquel, C.; Nawaz, M.A.; Bellemain, E.; Coissac, E.; Pompanon, F.; Gielly, L.; Cruaud, C.; Nascetti, G.; Wincker, P.; et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. Mol. Ecol. Resour. 2009, 9, 51–60. [Google Scholar] [CrossRef]
- Zhao, S.; Li, M.N.; Wu, C.W. Emergy valuation of ecosystem services in the Zhoushan marine area. Acta Ecol. Sin. 2015, 35, 678–685. (In Chinese) [Google Scholar]
- Jiang, M.M.; Zhou, J.B.; Chen, B.; Chen, G.Q. Emergy-based ecological account for the Chinese economy in 2004. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 2337–2356. [Google Scholar] [CrossRef]
- Sun, C.Z.; Wang, Y.Y.; Zou, W. The marine ecosystem services values for China based on the emergy analysis method. Ocean Coast. Manag. 2018, 161, 66–73. [Google Scholar] [CrossRef]
- Qin, C.X.; Chen, P.M.; Zhang, A.K.; Yuan, H.R.; Li, G.Y.; Shu, L.M.; Zhou, Y.B.; Li, X.G. Evaluation of ecosystem service and emergy of Wanshan Waters in Zhuhai, Guangdong Province, China. Chin. J. Appl. Ecol. 2015, 26, 1847–1853. (In Chinese) [Google Scholar]
- Bundy, A.; Coll, M.; Shannon, L.J.; Shin, Y.J. Global assessments of the status of marine exploited ecosystems and their management: What more is needed? Curr. Opin. Environ. Sustain. 2012, 4, 292–299. [Google Scholar] [CrossRef]
- Ye, S.F.; Zhang, L.P.; Feng, H. Ecosystem intrinsic value and its evaluation. Ecol. Model. 2020, 430, 109131. [Google Scholar] [CrossRef]
- Farrow, R.S.; Goldburg, C.B.; Small, M.J. Economic valuation of the environment: A special issue. Environ. Sci. Technol. 2000, 34, 1381–1383. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Zhu, D.; Chen, Y.; Liu, X.; Chen, Y.; Wang, X. Application and problems of emergy evaluation: A systemic review based on bibliometric and content analysis methods. Ecol. Indic. 2020, 114, 106304. [Google Scholar] [CrossRef]
Item | Tropical Level | Transformity | |
---|---|---|---|
Marine Aquaculture Products | |||
1 | Kelp (Laminaria japonica) | 1 a | 4.86 × 104 |
2 | Nori (Porphyra spp.) | 1 a | 4.86 × 104 |
3 | Chinese shrimp (Penaeus orientalis) | 2.1 b | 6.12 × 105 |
4 | Razor clam (Sinonovacula constricta) | 2.5 a | 1.54 × 106 |
5 | Mussel (Mytilus edulis) | 2.5 a | 1.54 × 106 |
6 | Clam | 2.5 a | 1.54 × 106 |
7 | Spiral shell | 2.5 a | 1.54 × 106 |
Marine fishing products | |||
1 | Algae | 1 a | 4.86 × 104 |
2 | Crabs | 2.1 b | 6.12 × 105 |
3 | Shrimps | 2.1 b | 6.12 × 105 |
4 | Butterfish (Stromateidae) | 2.3 b | 9.70 × 105 |
5 | Long-finned herring (Ilisha elongata) | 2.4 b | 1.22 × 106 |
6 | Jerk filefish (Navodon septentrionalis) | 2.4 b | 1.22 × 106 |
7 | Shellfish& Cephalopoda | 2.5 b | 1.54 × 106 |
8 | Small yellow croaker (Pseudosciaena polyatis) | 2.7 b | 2.44 × 106 |
9 | Large yellow croaker (Pseudosciaena crocea) | 3.1 b | 6.12 × 106 |
10 | Mackerel and scad (Scombridae, Carangidae) | 3.2 b | 7.70 × 106 |
11 | Spanish mackerel (Scomberomorus niphonius) | 3.8 b | 3.07 × 107 |
12 | Hairtail (Trichiurus lepturus ) | 3.9 b | 3.86 × 107 |
Emergy Indices | Expression |
---|---|
Emergy source index | |
Emergy self-sufficiency ratio (ESR) | ESR = (R + N)/U |
Purchased emergy ratio (PR) | PR = I/U |
Social subsystem evaluation index | |
Emergy density (ED) | ED = U/Area |
Economic subsystem evaluation index | |
Emergy/money ratio (EMR) | EMR = U/(GOP) |
Emergy exchange ratio (EER) | EER = I/O |
Renewable resources emergy ratio (%R) | RER = R/U |
Emdollar | Emergy/(Emergy/money ratio) |
Emdollar per area | U/Area of the research place |
Item | Solar Emergy (Sej) | ||||||
---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | ||
Renewable resources (R) | |||||||
1 | Sun | 9.05 × 1019 | |||||
2 | Wind | 4.27 × 1020 | |||||
3 | Rain chemical | −7.39 × 1020 | 6.57 × 1020 | −9.99 × 1020 | 9.50 × 1020 | 1.20 × 1021 | 1.12 × 1021 |
4 | Wave | 1.40 × 1020 | |||||
5 | Tides | 4.44 × 1019 | |||||
6 | Runoff chemical | 6.60 × 1019 | |||||
7 | Phosphate (upwelling) | 1.21 × 1022 | |||||
8 | Inorganic nitrogen (upwelling) | 2.37 × 1021 | |||||
Imported emergy (I) | |||||||
9 | Fishing vessel fuel | 2.58 × 1021 | 2.77 × 1021 | 2.82 × 1021 | 2.88 × 1021 | 2.89 × 1021 | 2.96 × 1021 |
10 | Labor (Fishing) | 8.14 × 1020 | 8.32 × 1020 | 8.04 × 1020 | 7.84 × 1020 | 7.56 × 1020 | 7.77 × 1020 |
11 | Labor (Aquaculture) | 7.43 × 1019 | 6.56 × 1019 | 6.24 × 1019 | 5.74 × 1019 | 5.78 × 1019 | 5.75 × 1019 |
12 | Service &Capital (Fishing) | 4.46 × 1022 | 4.61 × 1022 | 4.82 × 1022 | 5.01 × 1022 | 4.99 × 1022 | 5.03 × 1022 |
13 | Service &Capital (Aquaculture) | 1.13 × 1021 | 1.29 × 1021 | 1.84 × 1021 | 1.79 × 1021 | 2.08 × 1021 | 2.78 × 1021 |
Output emergy (O) | |||||||
14 | Net primary production | 9.56 × 1021 | 9.50 × 1021 | 9.56 × 1021 | 9.92 × 1021 | 9.68 × 1021 | 9.74 × 1021 |
15 | Marine aquaculture products | 2.73 × 1020 | 3.53 × 1020 | 3.72 × 1020 | 3.95 × 1020 | 4.42 × 1020 | 5.60 × 1020 |
16 | Marine fishing products | 3.50 × 1022 | 3.40 × 1022 | 3.38 × 1022 | 3.12 × 1022 | 3.28 × 1022 | 3.48 × 1022 |
Sea food (sum15–16) | 3.53 × 1022 | 3.44 × 1022 | 3.42 × 1022 | 3.16 × 1022 | 3.33 × 1022 | 3.54 × 1022 | |
Total renewable resources | 1.45 × 1022 | 1.59 × 1022 | 1.42 × 1022 | 1.62 × 1022 | 1.64 × 1022 | 1.63 × 1022 | |
Total imported emergy | 4.92 × 1022 | 5.10 × 1022 | 5.37 × 1022 | 5.56 × 1022 | 5.57 × 1022 | 5.68 × 1022 | |
Total output emergy | 4.49 × 1022 | 4.39 × 1022 | 4.38 × 1022 | 4.15 × 1022 | 4.30 × 1022 | 4.51 × 1022 | |
Total emergy (U) (sun 1–13) | 6.37 × 1022 | 6.69 × 1022 | 6.79 × 1022 | 7.18 × 1022 | 7.21 × 1022 | 7.31 × 1022 |
Item | Solar Emergy (Sej) | Proportion in Sea Food (Mean) | ||||||
---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |||
Marine aquaculture prodeucts | 1.17% | |||||||
1 | Kelp | 2.23 × 1016 | 2.58 × 1016 | 3.47 × 1016 | 3.02 × 1016 | 4.86 × 1016 | 3.61 × 1016 | 0.00% |
2 | Nori | 6.17 × 1015 | 6.24 × 1015 | 6.03 × 1015 | 3.41 × 1015 | 3.05 × 1015 | 8.37 × 1015 | 0.00% |
3 | Chinese shrimp | 8.64 × 1018 | 1.08 × 1019 | 1.06 × 1019 | 1.09 × 1019 | 1.17 × 1019 | 1.60 × 1019 | 0.03% |
4 | Razor clam | 3.12 × 1019 | 2.72 × 1019 | 2.93 × 1019 | 2.96 × 1019 | 2.76 × 1019 | 2.94 × 1019 | 0.09% |
5 | Mussel | 1.93 × 1020 | 2.78 × 1020 | 3.00 × 1020 | 3.24 × 1020 | 3.75 × 1020 | 4.75 × 1020 | 0.95% |
6 | Clam | 3.58 × 1019 | 3.34 × 1019 | 2.95 × 1019 | 2.83 × 1019 | 2.51 × 1019 | 3.48 × 1019 | 0.09% |
7 | Spiral shell | 4.13 × 1018 | 3.11 × 1018 | 2.48 × 1018 | 3.01 × 1018 | 2.52 × 1018 | 4.18 × 1018 | 0.01% |
Marine fishing prodeucts | 98.83% | |||||||
1 | Algae | 5.86 × 1016 | 6.89 × 1016 | 1.04 × 1017 | 1.03 × 1017 | 1.13 × 1017 | 1.04 × 1017 | 0.00% |
2 | Crabs | 2.36 × 1020 | 2.62 × 1020 | 3.47 × 1020 | 5.15 × 1020 | 4.48 × 1020 | 4.23 × 1020 | 1.10% |
3 | Shrimps | 4.54 × 1020 | 5.09 × 1020 | 5.02 × 1020 | 4.61 × 1020 | 5.06 × 1020 | 4.99 × 1020 | 1.44% |
4 | Butterfish | 1.55 × 1020 | 1.35 × 1020 | 9.42 × 1019 | 7.60 × 1019 | 8.76 × 1019 | 1.20 × 1020 | 0.33% |
5 | Long-finned herring | 1.94 × 1018 | 3.17 × 1018 | 2.65 × 1018 | 2.72 × 1018 | 1.35 × 1019 | 2.38 × 1019 | 0.02% |
6 | Jerk filefish | 8.62 × 1018 | 5.02 × 1018 | 3.81 × 1018 | 7.01 × 1018 | 3.31 × 1018 | 3.20 × 1018 | 0.02% |
7 | Shellfish& Cephalopoda | 1.49 × 1021 | 1.74 × 1021 | 1.84 × 1021 | 2.37 × 1021 | 2.74 × 1021 | 3.11 × 1021 | 6.54% |
8 | Small yellow croaker | 5.86 × 1020 | 5.35 × 1020 | 4.66 × 1020 | 5.29 × 1020 | 5.64 × 1020 | 5.41 × 1020 | 1.58% |
9 | Large yellow croaker | 6.41 × 1018 | 9.84 × 1018 | 9.94 × 1018 | 1.28 × 1019 | 1.55 × 1019 | 1.84 × 1019 | 0.04% |
10 | Mackerel and scad | 7.42 × 1021 | 5.88 × 1021 | 4.76 × 1021 | 3.96 × 1021 | 3.10 × 1021 | 3.68 × 1021 | 14.05% |
11 | Spanish mackerel | 7.42 × 1020 | 8.86 × 1020 | 9.96 × 1020 | 1.05 × 1021 | 1.30 × 1021 | 1.56 × 1021 | 3.21% |
12 | hairtail | 2.39 × 1022 | 2.41 × 1022 | 2.48 × 1022 | 2.22 × 1022 | 2.41 × 1022 | 2.48 × 1022 | 70.51% |
Item | Unit | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
ESR | % | 22.71 | 23.71 | 20.91 | 22.52 | 22.76 | 22.32 |
PR | % | 77.29 | 76.29 | 79.09 | 77.48 | 77.24 | 77.68 |
%R | % | 22.71 | 23.71 | 20.91 | 22.52 | 22.76 | 22.32 |
EER | % | 109.71 | 116.34 | 122.74 | 133.88 | 129.67 | 125.98 |
EMR | sej/yuan | 7.52 × 1012 | |||||
ED | sej/m2 | 3.06 × 1012 | 3.22 × 1012 | 3.27 × 1012 | 3.45 × 1012 | 3.47 × 1012 | 3.52 × 1012 |
Emdollar value | yuan | 8.46 × 109 | 8.89 × 109 | 9.03 × 109 | 9.53 × 109 | 9.58 × 109 | 9.72 × 109 |
Emdollar valueper area | yuan/m2 | 0.41 | 0.43 | 0.43 | 0.46 | 0.46 | 0.47 |
Location | Method | Total Emergy (sej) | ED (sej/m2) | EMR (sej/yuan) | Emdollar Value per Area (Yuan/m2) | References |
---|---|---|---|---|---|---|
Zhoushan | EA | 6.93 × 1022 | 3.33 × 1012 | 7.52 × 1012 | 0.44 | Current study (average) |
Southern Italy | 3.13 × 1019 | 6.24 × 1011 | 2.69 × 1011 | 2.32 | Franzese et al. (2008) [34] | |
Egadi Islands MPA | 8.85 × 1020 | 1.64 × 1012 | 1.31 × 1011 | 12.52 | Picone et al. (2017) [29] | |
Zhejiang | ES based on EA | 5.76 × 1022 | 2.21 × 1011 | 5.96 × 1011 | 0.37 | Sun et al. (2018) [67] |
Zhoushan | 4.37 × 1022 | 2.10 × 1012 | 1.86 × 1012 | 1.13 | Zhao et al. (2015) [65] | |
Wanshan | 2.00 × 1022 | 6.25 × 1012 | 1.74 × 1012 | 3.60 | Qin et al. (2015) [68] | |
Shandong | 1.99 × 1024 | 1.25 × 1013 | 2.83 × 1012 | 4.41 | Di et al. (2015) [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, G.; Sun, T.; Ding, J.; Wei, F.; Chen, C.; Toh, T. Valuing the Natural Capital of Sea Areas Based on Emergy Analysis. J. Mar. Sci. Eng. 2023, 11, 500. https://doi.org/10.3390/jmse11030500
Ye G, Sun T, Ding J, Wei F, Chen C, Toh T. Valuing the Natural Capital of Sea Areas Based on Emergy Analysis. Journal of Marine Science and Engineering. 2023; 11(3):500. https://doi.org/10.3390/jmse11030500
Chicago/Turabian StyleYe, Guanqiong, Teng Sun, Jieqiong Ding, Fangyi Wei, Chong Chen, and Taichong Toh. 2023. "Valuing the Natural Capital of Sea Areas Based on Emergy Analysis" Journal of Marine Science and Engineering 11, no. 3: 500. https://doi.org/10.3390/jmse11030500
APA StyleYe, G., Sun, T., Ding, J., Wei, F., Chen, C., & Toh, T. (2023). Valuing the Natural Capital of Sea Areas Based on Emergy Analysis. Journal of Marine Science and Engineering, 11(3), 500. https://doi.org/10.3390/jmse11030500