Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods
3.1. Sample and Petrography
3.2. Analytical Methods
4. Results
5. Discussion
5.1. Crystallization Sequence of the Texturally Constrained Apatites
5.2. Behavior of the Volatiles during the Rhyolitic Magmatic Differentiation
5.2.1. Influence of Cooling and Decompression on Compositional Variability of Apatite Volatiles
5.2.2. Compositional Variability of Apatite Volatiles during Magmatic Differentiation
5.3. Implications for Magmatic Contribution to Hydrothermal System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiuppa, A.; Baker, D.; Webster, J. Halogens in volcanic systems. Chem. Geol. 2009, 263, 1–18. [Google Scholar] [CrossRef]
- De Vivo, B.; Lima, A.; Webster, J.D. Volatiles in magmatic-volcanic systems. Elements 2005, 1, 19–24. [Google Scholar] [CrossRef]
- Edmonds, M.; Wallace, P.J. Volatiles and exsolved vapor in volcanic systems. Elements 2017, 13, 29–34. [Google Scholar] [CrossRef]
- Edmonds, M.; Woods, A.W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 2018, 368, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, P.M.; Candela, P.A. Apatite in Igneous Systems. Rev. Mineral. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- Scott, J.A.; Humphreys, M.C.; Mather, T.A.; Pyle, D.M.; Stock, M.J. Insights into the behaviour of S, F, and Cl at Santiaguito Volcano, Guatemala, from apatite and glass. Lithos 2015, 232, 375–394. [Google Scholar] [CrossRef] [Green Version]
- Zimova, M.; Webb, S.L. The combined effects of chlorine and fluorine on the viscosity of aluminosilicate melts. Geochim. Cosmochim. Acta 2007, 71, 1553–1562. [Google Scholar] [CrossRef]
- Giordano, D.; Romano, C.; Dingwell, D.; Poe, B.; Behrens, H. The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim. Cosmochim. Acta 2004, 68, 5159–5168. [Google Scholar] [CrossRef]
- Moretti, R.; Arienzo, I.; Di Renzo, V.; Orsi, G.; Arzilli, F.; Brun, F.; D’Antonio, M.; Mancini, L.; Deloule, E. Volatile segregation and generation of highly vesiculated explosive magmas by volatile-melt fining processes: The case of the Campanian Ignimbrite eruption. Chem. Geol. 2019, 503, 1–14. [Google Scholar] [CrossRef]
- Popa, R.G.; Tollan, P.; Bachmann, O.; Schenker, V.; Ellis, B.; Allaz, J.M. Water exsolution in the magma chamber favors effusive eruptions: Application of Cl-F partitioning behavior at the Nisyros-Yali volcanic area. Chem. Geol. 2021, 570, 120170. [Google Scholar] [CrossRef]
- Roggensack, K. Explosive Basaltic Volcanism from Cerro Negro Volcano: Influence of Volatiles on Eruptive Style. Science 1997, 277, 1639–1642. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, H. Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev. Geophys. 2008, 46, RG4005. [Google Scholar] [CrossRef] [Green Version]
- Mason, E.; Wieser, P.E.; Liu, E.J.; Edmonds, M.; Ilyinskaya, E.; Whitty, R.C.; Mather, T.A.; Elias, T.; Nadeau, P.A.; Wilkes, T.C. Volatile metal emissions from volcanic degassing and lava–seawater interactions at Kīlauea Volcano, Hawai’i. Commun. Earth Environ. 2021, 2, 79. [Google Scholar] [CrossRef]
- Mason, E.; Hogg, O. Volcanic Outgassing of Volatile Trace Metals. Annu. Rev. Earth Planet. Sci. 2022, 50, 79–98. [Google Scholar]
- Candela, P.A. Toward a thermodynamic model for the halogens in magmatic systems: An application to melt-vapor-apatite equilibria. Chem. Geol. 1986, 57, 289–301. [Google Scholar] [CrossRef]
- Stock, M.J.; Humphreys, M.C.S.; Smith, V.C.; Isaia, R.; Pyle, D.M. Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions. Nat. Geosci. 2016, 9, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Stock, M.J.; Humphreys, M.C.S.; Smith, V.C.; Isaia, R.; A Brooker, R.; Pyle, D.M. Tracking Volatile Behaviour in Sub-volcanic Plumbing Systems Using Apatite and Glass: Insights into Pre-eruptive Processes at Campi Flegrei, Italy. J. Petrol. 2018, 59, 2463–2492. [Google Scholar] [CrossRef] [Green Version]
- Zafar, T.; Leng, C.-B.; Zhang, X.-C.; Rehman, H.U. Geochemical attributes of magmatic apatite in the Kukaazi granite from western Kunlun orogenic belt, NW China: Implications for granite petrogenesis and Pb-Zn (-Cu-W) mineralization. J. Geochem. Explor. 2019, 204, 256–269. [Google Scholar] [CrossRef]
- Li, W.; Costa, F. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim. Cosmochim. Acta 2020, 269, 203–222. [Google Scholar] [CrossRef]
- Li, H.; Hermann, J. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: A new experimentally derived thermodynamic model. Am. Mineral. 2017, 102, 580–594. [Google Scholar] [CrossRef]
- Li, H.; Hermann, J. Apatite as an indicator of fluid salinity: An experimental study of chlorine and fluorine partitioning in subducted sediments. Geochim. Cosmochim. Acta 2015, 166, 267–297. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Z.; Wang, X.; Yin, X.; Chen, S.; Guo, K.; Lai, Z.; Zhang, Y.; Ma, Y.; Qi, H.; et al. U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern Okinawa Trough: Implications for petrogenesis. J. Asian Earth Sci. 2018, 161, 1–13. [Google Scholar] [CrossRef]
- Du, X.; Zeng, Z.; Chen, Z. Volatile Characteristics of Apatite in Dacite from the Eastern Manus Basin and Their Geological Implications. J. Mar. Sci. Eng. 2022, 10, 698. [Google Scholar] [CrossRef]
- Boudreau, A.E.; McCallum, I.S. Investigations of the Stillwater Complex: Part V. Apatites as indicators of evolving fluid composition. Contrib. Mineral. Petrol. 1989, 102, 138–153. [Google Scholar] [CrossRef]
- Boudreau, A.E.; Kruger, F.J. Variation in the Composition of Apatite through the Merensky Cyclic Unit in the Western Bushveld Complex. Econ. Geol. 1990, 85, 737–745. [Google Scholar] [CrossRef]
- Cawthorn, R.G. Formation in of chlor- and fluor-apatite layered intrusions. Mineral. Mag. 1994, 38, 299–306. [Google Scholar] [CrossRef]
- Meurer, W.P.; Boudreau, A.E. An evaluation of models of apatite compositional variability using apatite from the Middle Banded series of the Stillwater Complex, Montana. Contrib. Mineral. Petrol. 1996, 125, 225–236. [Google Scholar] [CrossRef]
- Li, W.; Costa, F.; Nagashima, K. Apatite crystals reveal melt volatile budgets and magma storage depths at Merapi volcano, Indonesia. J. Petrol. 2021, 62, egaa100. [Google Scholar] [CrossRef]
- Li, J.-X.; Li, G.-M.; Evans, N.J.; Zhao, J.-X.; Qin, K.-Z.; Xie, J. Primary fluid exsolution in porphyry copper systems: Evidence from magmatic apatite and anhydrite inclusions in zircon. Miner. Deposita 2020, 56, 407–415. [Google Scholar] [CrossRef]
- Piccoli, P.; Candela, P. Apatite in felsic rocks: A model for the estimation of initial halogen concentrations in the Biship Tuff (Long Vally) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. Am. J. Sci. 1994, 294, 92–135. [Google Scholar] [CrossRef]
- Sibuet, J.-C.; Letouzey, J.; Barbier, F.; Charvet, J.; Foucher, J.-P.; Hilde, T.W.C.; Kimura, M.; Chiao, L.-Y.; Marsset, B.; Muller, C.; et al. Back arc extension in the Okinawa Trough. J. Geophys. Res. Solid Earth 1987, 92, 14041–14063. [Google Scholar] [CrossRef] [Green Version]
- Sibuet, J.-C.; Deffontaines, B.; Hsu, S.-K.; Thareau, N.; Le Formal, J.-P.; Liu, C.-S. Okinawa trough backarc basin- Early tectonic and magmatic evolution. J. Geophys. Res. Solid Earth 1998, 103, 30245–30267. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-H.; Hsu, S.-K.; Chen, S.-C.; Wang, S.-Y.; Lin, L.-K.; Huang, P.-C.; Chen, K.-T.; Lin, H.-S.; Liang, C.-W.; Cho, Y.-Y. Active tectonics and volcanism in the southernmost Okinawa Trough back-arc basin derived from deep-towed sonar surveys. Tectonophysics 2021, 817, 229047. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Sibuet, J.-C.; Lee, C.-S.; Hsu, S.-K.; Klingelhoefer, F. Origin of the southern Okinawa Trough volcanism from detailed seismic tomography. J. Geophys. Res. Solid Earth 2007, 112, 582–596. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Z.; Wang, X.; Peng, X.; Zhang, Y.; Yin, X.; Chen, S.; Zhang, L.; Qi, H. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales. Lithos 2020, 376–377, 105776. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Z.; Qi, H.; Wang, X.; Yin, X.; Chen, S.; Yang, W.; Ma, Y.; Zhang, Y. Amphibole perspective to unravel the rhyolite as a potential fertile source for the Yonaguni Knoll IV hydrothermal system in the southwestern Okinawa Trough. Geol. J. 2020, 55, 4279–4301. [Google Scholar] [CrossRef]
- Chung, S.-L.; Wang, S.-L.; Shinjo, R.; Lee, C.-S.; Chen, C.-H. Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova 2000, 12, 225–230. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Z.; Yin, X.; Wang, X.; Zhang, Y.; Chen, S.; Shu, Y.; Guo, K.; Li, X. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: Constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes. Geol. J. 2019, 54, 316–332. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zeng, Z.; Wang, X.; Zhang, Y.; Yin, X.; Chen, S.; Ma, Y.; Li, X.; Qi, H. Mineral chemistry indicates the petrogenesis of rhyolite from the southwestern Okinawa Trough. J. Ocean. Univ. China 2017, 16, 1097–1108. [Google Scholar] [CrossRef]
- Guo, K.; Zhai, S.-K.; Wang, X.-Y.; Yu, Z.-H.; Lai, Z.-Q.; Chen, S.; Song, Z.-J.; Ma, Y.; Chen, Z.-X.; Li, X.-H.; et al. The dynamics of the southern Okinawa Trough magmatic system: New insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chem. Geol. 2018, 497, 146–161. [Google Scholar] [CrossRef]
- Li, Z.; Chu, F.; Zhu, J.; Ding, Y.; Zhu, Z.; Liu, J.; Wang, H.; Li, X.; Dong, Y.; Zhao, D. Magmatic sulfide formation and oxidative dissolution in the SW Okinawa Trough: A precursor to metal-bearing magmatic fluid. Geochim. Cosmochim. Acta 2019, 258, 138–155. [Google Scholar] [CrossRef]
- Suzuki, R.; Ishibashi, J.-I.; Nakaseama, M.; Konno, U.; Tsunogai, U.; Gena, K.; Chiba, H. Diverse Range of Mineralization Induced by Phase Separation of Hydrothermal Fluid: Case Study of the Yonaguni Knoll IV Hydrothermal Field in the Okinawa Trough Back-Arc Basin. Resour. Geol. 2008, 58, 267–288. [Google Scholar] [CrossRef]
- Zhang, X.; Zhai, S.; Yu, Z.; Yang, Z.; Xu, J. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough. Ore Geol. Rev. 2019, 111, 102944. [Google Scholar] [CrossRef]
- Zeng, Z.-G.; Chen, Z.-X.; Zhang, Y.-X. Zircon record of an Archaean crustal fragment and supercontinent amalgamation in quaternary back-arc volcanic rocks. Sci. Rep. 2021, 11, 12367. [Google Scholar] [CrossRef]
- Harrison, T.M.; Watson, E.B. The behaviour of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochim Cosmochim Acta. Geochim. Cosmochim. Acta 1984, 48, 1467–1477. [Google Scholar] [CrossRef]
- Riker, J.; Humphreys, M.C.; Brooker, R.A.; De Hoog, J.C. First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt. Am. Mineral. 2018, 103, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.D.; Tappen, C.M.; Mandeville, C.W. Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa. Chem. Geol. 2009, 73, 559–581. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Tamehe, L.S.; Zhang, Y.; Zeng, Z.; Xia, X.; Cui, Z.; Zhang, T.; Guo, K. Heavy Copper Isotopes in Arc-Related Lavas From Cold Subduction Zones Uncover a Sub-Arc Mantle Metasomatized by Serpentinite-Derived Sulfate-Rich Fluids. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024910. [Google Scholar] [CrossRef]
- Humphris, S.E.; Klein, F. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. Annu. Rev. Mar. Sci. 2018, 10, 315–343. [Google Scholar] [CrossRef]
- Alt, J.C. Subseafloor Processes in Mid-Ocean Ridge Hydrothennal Systems. Geophys. Monogr. Ser. 1995, 91, 85–114. [Google Scholar]
- Zeng, Z.; Chen, Z.; Zhang, Y.; Li, X. Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields. J. Oceanol. Limnol. 2020, 38, 985–1007. [Google Scholar] [CrossRef]
- Yang, K.; Scott, S.D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 1996, 383, 420–423. [Google Scholar] [CrossRef]
- Yang, K.; Scott, S.D. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: Evidence from melt inclusions. Econ. Geol. 2005, 100, 1085–1096. [Google Scholar] [CrossRef]
- Yang, K.; Scott, S.D. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific. Econ. Geol. 2002, 97, 1079–1100. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Z.; Tamehe, L.S.; Wang, X.; Chen, K.; Yin, X.; Yang, W.; Qi, H. Magmatic sulfide saturation and dissolution in the basaltic andesitic magma from the Yaeyama Central Graben, southern Okinawa Trough. Lithos 2021, 388–389, 106082. [Google Scholar] [CrossRef]
- Yu, Z.; Zhai, S.; Zhao, G. The Evidence from Inclusions in Pumices for the Direct Degassing of Volatiles from the Magma to the Hydrothermal Fluids in the Okinawa Trough. J. Ocean. Univ. Qingdao 2002, 1, 171–175. [Google Scholar]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Heinrich, C.A. 100th Anniversary Special Paper: Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Zellmer, G.F.; Edmonds, M.; Straub, S.M. Volatiles in subduction zone magmatism. Geol. Soc. Lond. Spec. Publ. 2015, 410, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, J.; Tamehe, L.S.; Zhang, Y.; Zeng, Z.; Zhang, T.; Shuai, W.; Yin, X. Light Fe isotopes in arc magmas from cold subduction zones: Implications for serpentinite-derived fluids oxidized the sub-arc mantle. Geochim. Cosmochim. Acta 2023, 342, 1–14. [Google Scholar] [CrossRef]
- Kelley, K.A.; Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 2009, 325, 605–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat. Geosci. 2013, 6, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, O.; Williams-Jones, A.E.; Stix, J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nat. Geosci. 2010, 3, 501–505. [Google Scholar] [CrossRef]
AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P2O5 | 42.47 | 41.77 | 40.19 | 39.94 | 42.16 | 38.66 | 41.18 | 40.99 | 42.08 | 41.87 | 41.73 | 41.68 | 42.07 |
CaO | 53.93 | 54.21 | 53.88 | 53.06 | 53.83 | 50.82 | 53.66 | 53.28 | 52.93 | 53.26 | 54.19 | 54.11 | 54.28 |
SiO2 | 0.25 | 0.60 | 0.55 | 0.32 | 0.47 | 3.90 | 0.16 | 0.47 | 0.75 | 0.22 | 0.25 | 0.27 | 0.35 |
FeO | 1.03 | 1.17 | 1.48 | 1.25 | 1.23 | 1.33 | 1.14 | 1.15 | 1.42 | 0.96 | 1.17 | 0.88 | 1.37 |
F | 2.89 | 3.01 | 2.63 | 2.35 | 2.70 | 2.08 | 2.13 | 2.07 | 2.51 | 2.08 | 2.36 | 3.08 | 2.32 |
Cl | 0.64 | 0.64 | 0.65 | 0.58 | 0.71 | 0.67 | 0.70 | 0.67 | 0.69 | 0.58 | 0.61 | 0.63 | 0.68 |
Total | 101.46 | 101.58 | 99.51 | 97.66 | 101.30 | 97.71 | 99.16 | 98.75 | 100.58 | 99.10 | 100.49 | 100.84 | 101.15 |
1 XF | 0.77 | 0.80 | 0.70 | 0.62 | 0.72 | 0.55 | 0.56 | 0.55 | 0.67 | 0.55 | 0.63 | 0.82 | 0.62 |
2 XCl | 0.09 | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.10 |
3 XOH | 0.14 | 0.11 | 0.21 | 0.29 | 0.18 | 0.35 | 0.33 | 0.35 | 0.23 | 0.36 | 0.28 | 0.09 | 0.28 |
XF/OH | 5.51 | 7.60 | 3.40 | 2.15 | 4.03 | 1.59 | 1.70 | 1.57 | 2.87 | 1.53 | 2.21 | 9.25 | 2.17 |
XCl/OH | 0.67 | 0.90 | 0.47 | 0.30 | 0.59 | 0.28 | 0.31 | 0.28 | 0.44 | 0.24 | 0.31 | 1.05 | 0.35 |
XF/Cl | 8.23 | 8.46 | 7.27 | 7.28 | 6.84 | 5.62 | 5.50 | 5.56 | 6.53 | 6.44 | 7.02 | 8.79 | 6.13 |
AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P2O5 | 41.59 | 40.67 | 40.69 | 40.95 | 41.30 | 40.39 | 39.14 | 41.29 | 40.87 | 41.12 | 42.59 | 41.72 | 41.46 |
CaO | 53.88 | 54.28 | 54.56 | 54.06 | 53.21 | 53.57 | 51.67 | 54.49 | 52.87 | 53.46 | 54.34 | 53.83 | 53.60 |
SiO2 | 0.43 | 0.61 | 0.64 | 0.51 | 0.50 | 0.46 | 2.06 | 0.44 | 0.91 | 0.47 | 0.37 | 0.41 | 0.42 |
FeO | 0.69 | 0.93 | 0.92 | 0.76 | 0.98 | 0.96 | 1.38 | 0.90 | 1.16 | 0.98 | 0.88 | 1.02 | 0.93 |
F | 2.21 | 2.98 | 2.59 | 2.45 | 2.33 | 2.33 | 2.14 | 2.84 | 2.28 | 2.59 | 2.67 | 2.34 | 2.16 |
Cl | 0.72 | 0.61 | 0.50 | 0.66 | 0.72 | 0.64 | 0.67 | 0.68 | 0.66 | 0.67 | 0.57 | 0.67 | 0.66 |
Total | 99.52 | 100.07 | 99.90 | 99.39 | 99.04 | 98.34 | 97.08 | 100.65 | 98.76 | 99.28 | 101.42 | 99.99 | 99.23 |
XF | 0.59 | 0.79 | 0.69 | 0.65 | 0.62 | 0.62 | 0.57 | 0.75 | 0.60 | 0.69 | 0.71 | 0.62 | 0.57 |
XCl | 0.11 | 0.09 | 0.07 | 0.10 | 0.11 | 0.09 | 0.10 | 0.10 | 0.10 | 0.10 | 0.08 | 0.10 | 0.10 |
XOH | 0.31 | 0.12 | 0.24 | 0.25 | 0.28 | 0.29 | 0.33 | 0.15 | 0.30 | 0.22 | 0.21 | 0.28 | 0.33 |
XF/OH | 1.91 | 6.60 | 2.88 | 2.59 | 2.24 | 2.16 | 1.71 | 5.19 | 2.02 | 3.20 | 3.41 | 2.21 | 1.73 |
XCl/OH | 0.34 | 0.75 | 0.31 | 0.39 | 0.38 | 0.32 | 0.30 | 0.69 | 0.32 | 0.46 | 0.40 | 0.35 | 0.29 |
XF/Cl | 5.58 | 8.78 | 9.33 | 6.70 | 5.87 | 6.64 | 5.76 | 7.51 | 6.24 | 7.01 | 8.49 | 6.35 | 5.89 |
AP14 | AP15 | AP16 | AP17 | AP18 | AP19 | AP20 | AP21 | AP22 | AP23 | AP24 | AP25 | AP26 | |
P2O5 | 40.54 | 40.80 | 41.47 | 40.82 | 41.08 | 42.14 | 42.05 | 41.33 | 41.38 | 40.93 | 41.27 | 42.15 | 41.15 |
CaO | 53.43 | 54.05 | 54.06 | 53.55 | 53.55 | 54.98 | 54.83 | 53.79 | 54.02 | 53.91 | 54.73 | 54.73 | 54.65 |
SiO2 | 0.56 | 0.44 | 0.53 | 0.32 | 0.77 | 0.44 | 0.38 | 0.31 | 0.31 | 0.37 | 0.23 | 0.24 | 0.78 |
FeO | 0.95 | 0.66 | 0.72 | 0.69 | 1.16 | 1.00 | 0.78 | 0.79 | 0.62 | 0.67 | 0.90 | 0.93 | 0.87 |
F | 2.28 | 2.74 | 2.53 | 2.38 | 2.63 | 2.53 | 2.53 | 2.49 | 2.24 | 2.40 | 3.02 | 2.95 | 2.86 |
Cl | 0.66 | 0.66 | 0.70 | 0.66 | 0.67 | 0.62 | 0.59 | 0.68 | 0.68 | 0.69 | 0.64 | 0.70 | 0.64 |
Total | 98.42 | 99.35 | 100.01 | 98.42 | 99.86 | 101.70 | 101.15 | 99.38 | 99.25 | 98.96 | 100.78 | 101.70 | 100.95 |
XF | 0.61 | 0.73 | 0.67 | 0.63 | 0.70 | 0.67 | 0.67 | 0.66 | 0.60 | 0.64 | 0.80 | 0.78 | 0.76 |
XCl | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.09 | 0.09 | 0.10 | 0.10 | 0.10 | 0.09 | 0.10 | 0.09 |
XOH | 0.30 | 0.18 | 0.23 | 0.27 | 0.20 | 0.24 | 0.24 | 0.24 | 0.31 | 0.26 | 0.10 | 0.11 | 0.15 |
XF/OH | 2.04 | 4.15 | 2.97 | 2.33 | 3.42 | 2.80 | 2.77 | 2.76 | 1.95 | 2.42 | 7.70 | 6.86 | 5.17 |
XCl/OH | 0.33 | 0.56 | 0.45 | 0.36 | 0.48 | 0.38 | 0.36 | 0.42 | 0.33 | 0.38 | 0.89 | 0.91 | 0.64 |
XF/Cl | 6.24 | 7.47 | 6.56 | 6.54 | 7.14 | 7.42 | 7.76 | 6.65 | 5.99 | 6.31 | 8.61 | 7.57 | 8.11 |
AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 | AP9 | AP10 | AP11 | AP12 | AP13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P2O5 | 41.21 | 42.31 | 42.22 | 41.02 | 41.51 | 41.76 | 41.36 | 41.25 | 41.55 | 41.79 | 41.02 | 42.32 | 42.27 |
CaO | 53.38 | 54.08 | 53.91 | 53.67 | 53.19 | 53.88 | 52.82 | 53.33 | 53.33 | 52.79 | 53.32 | 53.50 | 53.54 |
SiO2 | 0.48 | 0.51 | 0.61 | 0.24 | 0.35 | 0.20 | 0.32 | 0.27 | 0.32 | 0.54 | 0.22 | 0.37 | 0.35 |
FeO | 0.79 | 0.63 | 0.80 | 0.50 | 0.39 | 0.66 | 0.44 | 0.55 | 0.35 | 0.90 | 0.47 | 0.74 | 0.46 |
F | 2.04 | 2.21 | 2.19 | 2.18 | 2.14 | 2.19 | 2.28 | 2.22 | 2.47 | 2.23 | 2.42 | 2.32 | 2.12 |
Cl | 0.70 | 0.72 | 0.67 | 0.71 | 0.70 | 0.66 | 0.71 | 0.68 | 0.70 | 0.71 | 0.71 | 0.70 | 0.70 |
Total | 98.70 | 100.57 | 100.50 | 98.50 | 98.43 | 99.50 | 98.01 | 98.49 | 98.96 | 99.14 | 98.37 | 100.06 | 99.61 |
XF | 0.54 | 0.59 | 0.58 | 0.58 | 0.57 | 0.58 | 0.60 | 0.59 | 0.66 | 0.59 | 0.64 | 0.62 | 0.56 |
XCl | 0.10 | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
XOH | 0.36 | 0.31 | 0.32 | 0.32 | 0.33 | 0.32 | 0.29 | 0.31 | 0.24 | 0.30 | 0.25 | 0.28 | 0.33 |
XF/OH | 1.52 | 1.91 | 1.81 | 1.83 | 1.72 | 1.81 | 2.07 | 1.89 | 2.72 | 1.95 | 2.54 | 2.19 | 1.69 |
XCl/OH | 0.29 | 0.34 | 0.31 | 0.33 | 0.31 | 0.30 | 0.36 | 0.32 | 0.42 | 0.34 | 0.41 | 0.36 | 0.31 |
XF/Cl | 5.29 | 5.55 | 5.91 | 5.54 | 5.48 | 6.05 | 5.78 | 5.92 | 6.41 | 5.70 | 6.21 | 6.02 | 5.50 |
AP14 | AP15 | AP16 | AP17 | AP18 | AP19 | AP20 | AP21 | AP22 | AP23 | AP24 | AP25 | AP26 | |
P2O5 | 40.02 | 41.69 | 39.90 | 40.20 | 41.25 | 41.29 | 40.32 | 40.94 | 40.48 | 40.45 | 39.76 | 41.44 | 38.62 |
CaO | 52.80 | 52.90 | 53.49 | 53.08 | 53.02 | 54.02 | 52.86 | 53.85 | 52.82 | 53.31 | 52.75 | 53.91 | 52.07 |
SiO2 | 0.34 | 0.42 | 0.63 | 0.89 | 0.43 | 0.41 | 0.63 | 0.38 | 0.62 | 0.48 | 1.63 | 0.33 | 2.13 |
FeO | 0.48 | 0.78 | 0.56 | 0.33 | 0.48 | 0.48 | 0.85 | 0.78 | 0.26 | 0.27 | 0.28 | 0.94 | 0.88 |
F | 1.76 | 2.31 | 2.76 | 2.64 | 2.21 | 2.76 | 2.39 | 3.08 | 2.14 | 2.22 | 2.33 | 2.54 | 2.65 |
Cl | 0.71 | 0.71 | 0.64 | 0.58 | 0.61 | 0.71 | 0.71 | 0.63 | 0.73 | 0.65 | 0.67 | 0.64 | 0.62 |
Total | 96.29 | 98.97 | 98.10 | 97.92 | 98.13 | 99.82 | 97.94 | 99.76 | 97.26 | 97.42 | 97.60 | 100.11 | 97.21 |
XF | 0.47 | 0.61 | 0.73 | 0.70 | 0.59 | 0.73 | 0.63 | 0.82 | 0.57 | 0.59 | 0.62 | 0.67 | 0.70 |
XCl | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.10 | 0.10 | 0.09 | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 |
XOH | 0.43 | 0.28 | 0.17 | 0.21 | 0.32 | 0.16 | 0.26 | 0.09 | 0.32 | 0.32 | 0.28 | 0.23 | 0.21 |
XF/OH | 1.09 | 2.18 | 4.23 | 3.28 | 1.81 | 4.48 | 2.42 | 8.95 | 1.75 | 1.87 | 2.19 | 2.88 | 3.41 |
XCl/OH | 0.24 | 0.37 | 0.55 | 0.40 | 0.28 | 0.64 | 0.40 | 1.01 | 0.33 | 0.30 | 0.35 | 0.40 | 0.44 |
XF/Cl | 4.50 | 5.87 | 7.74 | 8.17 | 6.55 | 7.04 | 6.10 | 8.82 | 5.32 | 6.17 | 6.31 | 7.20 | 7.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Soh Tamehe, L.; Qi, H.; Zhang, Y.; Zeng, Z.; Cai, M. Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough. J. Mar. Sci. Eng. 2023, 11, 583. https://doi.org/10.3390/jmse11030583
Chen Z, Soh Tamehe L, Qi H, Zhang Y, Zeng Z, Cai M. Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough. Journal of Marine Science and Engineering. 2023; 11(3):583. https://doi.org/10.3390/jmse11030583
Chicago/Turabian StyleChen, Zuxing, Landry Soh Tamehe, Haiyan Qi, Yuxiang Zhang, Zhigang Zeng, and Mingjiang Cai. 2023. "Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough" Journal of Marine Science and Engineering 11, no. 3: 583. https://doi.org/10.3390/jmse11030583
APA StyleChen, Z., Soh Tamehe, L., Qi, H., Zhang, Y., Zeng, Z., & Cai, M. (2023). Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough. Journal of Marine Science and Engineering, 11(3), 583. https://doi.org/10.3390/jmse11030583