Variability of the Primary Productivity in the Yellow and Bohai Seas from 2003 to 2020 Based on the Estimate of Satellite Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. VGPM Model
2.2. Data Sources
2.3. Data Analysis
3. Results
3.1. Regional and Seasonal Variations
3.2. Interannual Variations
3.3. Comparison with Online PP Product and In Situ Measurements
4. Discussion
4.1. Causes of the Variability of Primary Productivity in the Yellow and Bohai Seas
4.2. Implications for the Marine Ecosystem, Fishery, and Climate Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Q.; Xue, C.J.; Liu, J.Y.; Liu, X.; Hong, Y.L.; Wu, C.B. Mining analysis of spatiotemporal correlation patterns between global marine primary productivity and marine environmental elements. Mar. Environ. Sci. 2020, 39, 9, (In Chinese with English Abstract). [Google Scholar]
- Sha, L.; Li, D.; Liu, Y.; Wu, B.; Wu, Y.; Knudsen, K.L.; Li, Z.; Xu, H. Biogenic silica concentration as a marine primary productivity proxy in the Holsteinsborg Dyb, West Greenland, during the last millennium. Acta Oceanol. Sin. 2020, 39, 78–85. [Google Scholar] [CrossRef]
- Duc Hieu, N.T.; Huan, N.H.; Thi Van, T.; Liên, N.P. Assessing the distribution and variation characteristics of marine primary productivity in the coastal marine area of Vietnam South Centre. IOP Conf. Ser. Earth Environ. Sci. 2022, 946, 012011. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zhou, F.; Zhang, W.; Hao, Q. Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay. J. Mar. Sci. Eng. 2022, 10, 356. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.J.; Randerson, J.T.; McClain, C.R.; Feldman, G.C.; Los, S.O.; Tucker, C.J.; Falkowski, P.G.; Field, C.B.; Frouin, R.; Esaias, W.E.; et al. Biospheric Primary Production During an ENSO Transition. Science 2001, 291, 2594–2597. [Google Scholar] [CrossRef] [Green Version]
- Laws, E.; Maiti, K. Temperature Affects the Time Required to Discern the Relationship between Primary Production and Export Production in the Ocean. Water 2021, 13, 3085. [Google Scholar] [CrossRef]
- Vybernaite-Lubiene, I.; Zilius, M.; Bartoli, M.; Petkuviene, J.; Zemlys, P.; Magri, M.; Giordani, G. Biogeochemical Budgets of Nutrients and Metabolism in the Curonian Lagoon (South East Baltic Sea): Spatial and Temporal Variations. Water 2022, 14, 164. [Google Scholar] [CrossRef]
- Cherif, E.K.; Mozetič, P.; Francé, J.; Flander-Putrle, V.; Faganeli-Pucer, J.; Vodopivec, M. Comparison of In-Situ Chlorophyll-a Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea). Water 2021, 13, 1903. [Google Scholar] [CrossRef]
- Thomas, H.; Bozec, Y.; Elkalay, K.; de Baar, H.J.W. Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping. Science 2004, 304, 1005–1008. [Google Scholar] [CrossRef] [Green Version]
- Laruelle, G.G.; Cai, W.-J.; Hu, X.; Gruber, N.; Mackenzie, F.T.; Regnier, P. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 2018, 9, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, E.S. The Use of Radio-active Carbon (C14) for Measuring Organic Production in the Sea. ICES J. Mar. Sci. 1952, 18, 117–140. [Google Scholar] [CrossRef]
- Wang, J. Primary Productivity of Phytoplankton and Black-and-white Bottle Oxygen Measurement. Freshw. Fish. 1980, 3, 24–28, (In Chinese with English Abstract). [Google Scholar]
- Fei, Z.L.; Zhu, M.Y. Determination of Marine Primary Productivity. Bohai Seas 1984, 1, 86–90, (In Chinese with English Abstract). [Google Scholar]
- Ryther, J.H.; Yentsch, C.S. The Estimation of Phytoplankton Production in the Ocean from Chlorophyll and Light Data1. Limnol. Oceanogr. 1957, 2, 281–286. [Google Scholar] [CrossRef]
- Cadée, G.; Hegeman, J. Primary production of phytoplankton in the Dutch Wadden Sea. Neth. J. Sea Res. 1974, 8, 240–259. [Google Scholar] [CrossRef]
- Smith, R.C.; Eppley, R.W.; Baker, K.S. Correlation of primary production as measured aboard ship in Southern California Coastal waters and as estimated from satellite chlorophyll images. Mar. Biol. 1982, 66, 281–288. [Google Scholar] [CrossRef]
- Eppley, R.W.; Stewart, E.; Abbott, M.R.; Heyman, U. Estimating ocean primary production from satellite chlorophyll. Introd. Reg. Differ. Stat. South. Calif. Bight. J. Plankton Res. 1985, 7, 57–70. [Google Scholar] [CrossRef]
- Fei, Z.L.; Li, B.H. Correlation between chlorophyll a and primary productivity. J. Qingdao Ocean Univ. 1990, 1, 73–80, (In Chinese with English Abstract). [Google Scholar]
- Sathyendranath, S.; Longhurst, A.; Caverhill, C.M.; Platt, T. Regionally and seasonally differentiated primary production in the North Atlantic. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 1773–1802. [Google Scholar] [CrossRef]
- Antoine, D.; André, J.-M.; Morel, A. Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Glob. Biogeochem. Cycles 1996, 10, 57–69. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Lomas, M.; Moran, S.; Casey, J.; Bell, D.; Tiahlo, M.; Whitefield, J.; Kelly, R.; Mathis, J.; Cokelet, E. Spatial and seasonal variability of primary production on the Eastern Bering Sea shelf. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 126–140. [Google Scholar] [CrossRef]
- Vase, V.K.; Ajay, N.; Kumar, R.; Ramanathan, S.; Jayaraman, J.; Rohit, P. Temporal dynamics of primary productivity in the north-eastern Arabian Sea: An evaluation of ocean color models. Arab. J. Geosci. 2021, 14, 1338. [Google Scholar] [CrossRef]
- Tan, S.; Shi, G. Satellite-derived primary productivity and its spatial and temporal variability in the China seas. J. Geogr. Sci. 2006, 16, 447–457. [Google Scholar] [CrossRef]
- Jiao, N.; Liang, Y.; Zhang, Y.; Liu, J.; Zhang, Y.; Zhang, R.; Zhao, M.; Dai, M.; Zhai, W.; Gao, K.; et al. Carbon pools and fluxes in the China Seas and adjacent oceans. Sci. China Earth Sci. 2018, 61, 1535–1563. [Google Scholar] [CrossRef]
- Yang, X.G. Remote Sensing Estimation of Chlorophyll and Primary Productivity in the Yellow Sea. Ph.D. Dissertation, Graduate School of Chinese Academy of Sciences (Institute of Oceanography), Qingdao, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Cong, P.F. Remote Sensing Inversion of Marine Chlorophyll and Estimation of Marine Primary Productivity. Ph.D. Dissertation, Institute of Remote Sensing Application, Chinese Academy of Sciences, Beijing, China, 2006. (In Chinese with English Abstract). [Google Scholar]
- Jia, Y.H.; Sun, Y.; Niu, B.Y. Estimation of marine primary productivity in the Yellow Sea based on RS and GIS. J. Huaihai Inst. Technol. 2010, 19, 87–91, (In Chinese with English Abstract). [Google Scholar]
- Ding, Q.X.; Chen, W.Z. Temporal and spatial variation of net primary productivity in China offshore based on VGPM. Ocean Dev. Manag. 2016, 8, 31–35, (In Chinese with English Abstract). [Google Scholar]
- Li, X.X.; Yuan, J.G.; Liu, X.J.; Li, Z.Y. Temporal and Spatial variation of net primary productivity in Bohai Sea based on MODIS data. J. Ecol. Environ. 2017, 26, 785–793, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Liu, D.; Tang, D.L. Application of a generalized additive model (GAM) for estimating chlorophyll-a concentration from MODIS data in the Bohai and Yellow Seas, China. Int. J. Remote Sens. 2017, 38, 639–661. [Google Scholar] [CrossRef]
- Shang, S.; Lee, Z.; Wei, G. Characterization of MODIS-derived euphotic zone depth: Results for the China Sea. Remote Sens. Environ. 2011, 115, 180–186. [Google Scholar] [CrossRef]
- Carr, M.-E.; Friedrichs, M.A.; Schmeltz, M.; Aita, M.N.; Antoine, D.; Arrigo, K.R.; Asanuma, I.; Aumont, O.; Barber, R.; Behrenfeld, M.; et al. A comparison of global estimates of marine primary production from ocean color. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 741–770. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.-E.; Park, J.; Yoo, S. Comparison of primary productivity algorithms for Korean waters. Ocean Sci. J. 2012, 47, 473–487. [Google Scholar] [CrossRef]
- Yoo, S.; Ahn, Y.-H.; Park, J. A depth-resolved primary production model for stratified water in the Yellow Sea. Proc. SPIE 2008, 7150, 71500Z. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.; Liu, D. Vertical average irradiance shapes the spatial pattern of winter chlorophyll-a in the Yellow Sea. Estuar. Coast. Shelf Sci. 2019, 224, 11–19. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z. Contrasting chlorophyll-a seasonal patterns between nearshore and offshore waters in the Bohai and Yellow Seas, China: A new analysis using improved satellite data. Cont. Shelf Res. 2020, 203, 104173. [Google Scholar] [CrossRef]
- Lee, Z.; Weidemann, A.; Kindle, J.; Arnone, R.; Carder, K.L.; Davis, C. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Liu, H.; Lin, L.; Wang, Y. Surface Chlorophyll-A Fronts in the Yellow and Bohai Seas Based on Satellite Data. J. Mar. Sci. Eng. 2021, 9, 1301. [Google Scholar] [CrossRef]
- Choi, J.K.; Noh, J.H.; Shin, K.S.; Hong, K.H. The early autumn distribution of chlorophyll-a and primary productivity in the Yellow Sea, 1992. Yellow Sea 1995, 1, 68–80. [Google Scholar]
- Song, H.; Ji, R.; Xin, M.; Liu, P.; Zhang, Z.; Wang, Z. Spatial heterogeneity of seasonal phytoplankton blooms in a marginal sea: Physical drivers and biological responses. ICES J. Mar. Sci. 2019, 77, 408–418. [Google Scholar] [CrossRef]
- González-Gil, R.; Banas, N.S.; Bresnan, E.; Heath, M.R. The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis. Biogeosciences 2022, 19, 2417–2426. [Google Scholar] [CrossRef]
- Zhai, F.; Wu, W.; Gu, Y.; Li, P.; Song, X.; Liu, P.; Liu, Z.; Chen, Y.; He, J. Interannual-decadal variation in satellite-derived surface chlorophyll-a concentration in the Bohai Sea over the past 16 years. J. Mar. Syst. 2020, 215, 103496. [Google Scholar] [CrossRef]
- Lin, L.; Liu, D.; Wang, Y.; Lv, T.; Zhao, Y.; Tan, W. Effect of wind on summer chlorophyll-a variability in the Yellow Sea. Front. Mar. Sci. 2023, 9, 2765. [Google Scholar] [CrossRef]
- Ye, H.; Xie, X.P.; Xu, W.Y. Evaluation of the Yellow Sea Based on VGPM Modell. J. Ludong Univ. (Nat. Sci. Ed.) 2017, 33, 171–176+192, (In Chinese with English Abstract). [Google Scholar]
- Liu, S.H.; Zhao, L.L.; Liu, W.; Wang, B.; Zhang, Z.H. The assessment of carrying capacity of marine biology resources-A case study of coastal waters of Rizhao. Haiyang Xuebao 2019, 223, 121–133, (In Chinese with English Abstract). [Google Scholar]
- Ban, X.; Shu, P.; Qi, T.; Long, A.Y.; Qi, H.F.; Du, H.; Yang, J.X.; Shi, J.Q.; Yang, H.L.; Li, J.T. Application of ocean color remote sensing products in estimation of fishing production potential in Lake Qinghai. J. Lake Scienses 2022, 34, 1271–1283, (In Chinese with English Abstract). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Yan, X.; Hong, Q.; Lin, L.; Zhang, Y. Variability of the Primary Productivity in the Yellow and Bohai Seas from 2003 to 2020 Based on the Estimate of Satellite Remote Sensing. J. Mar. Sci. Eng. 2023, 11, 684. https://doi.org/10.3390/jmse11040684
Fu Q, Yan X, Hong Q, Lin L, Zhang Y. Variability of the Primary Productivity in the Yellow and Bohai Seas from 2003 to 2020 Based on the Estimate of Satellite Remote Sensing. Journal of Marine Science and Engineering. 2023; 11(4):684. https://doi.org/10.3390/jmse11040684
Chicago/Turabian StyleFu, Qingjun, Xiao Yan, Qingchao Hong, Lei Lin, and Yujie Zhang. 2023. "Variability of the Primary Productivity in the Yellow and Bohai Seas from 2003 to 2020 Based on the Estimate of Satellite Remote Sensing" Journal of Marine Science and Engineering 11, no. 4: 684. https://doi.org/10.3390/jmse11040684
APA StyleFu, Q., Yan, X., Hong, Q., Lin, L., & Zhang, Y. (2023). Variability of the Primary Productivity in the Yellow and Bohai Seas from 2003 to 2020 Based on the Estimate of Satellite Remote Sensing. Journal of Marine Science and Engineering, 11(4), 684. https://doi.org/10.3390/jmse11040684