Evaluating Ice Load during Submarine Surfacing and Ice Breaking
Abstract
:1. Introduction
2. Theoretical Calculation Model of Ice-Breaking Resistance
2.1. Calculation Model of Ice-Breaking Resistance of Command Tower
2.2. Calculation Model of Ice Resistance of Submarine Hull
3. Numerical Simulation
3.1. Establishment of Numerical Model
3.2. Numerical Simulation Results
3.3. Comparison of Theoretical Model and Numerical Simulation Results
4. Results and Discussion
4.1. The Influence of the Upper Area of the Control Tower
4.2. The Influence of Initial Crack Length on Submarine Ice-Breaking Resistance
4.3. The Influence of Ice Thickness on Submarine Ice-Breaking Resistance
4.4. The Influence of Ice Bending Strength
4.5. The Influence of Ice Elastic Modulus
4.6. The Influence of Ice Friction Coefficient
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Wu, Q.; Zhao, X. Analysis of Polar Class Ship Development. Ship Eng. 2016, 11, 1–5. [Google Scholar]
- Liu, R.W.; Xue, Y.Z.; Lu, X.K.; Cheng, W.X. Simulation of ship navigation in ice rubble based on peridynamics. Ocean. Eng. 2018, 148, 286–298. [Google Scholar] [CrossRef]
- Suyuthi, A.; Leira, B.J.; Riska, K. A generalized probabilistic model of ice load peaks on ship hulls in broken-ice fields. Cold Reg. Sci. Technol. 2014, 97, 7–20. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, C.J.; Kim, Y.S.; Choi, G.G.; Lew, J.M. Determination of global ice loads on the ship using the measured full-scale motion data. Int. J. Nav. Archit. Ocean. 2016, 8, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Di, S.; Ji, S.; Xue, Y. Analysis of ship navigation in level ice-covered regions with discrete element method. Ocean. Eng. 2017, 35, 59–69. [Google Scholar]
- Lubbad, R.; Loset, S. A numerical model for real-time simulation of ship–ice interaction. Cold Reg. Sci. Technol. 2011, 65, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Guan, P.; Mu, Y.U. Study of the Sailing’s Moving Responses of An Icebreaker in Ice. Math. Pract. Theory 2015, 45, 149–160. [Google Scholar]
- Liang, Y.; Ji, H.; Zhao, Q.; Wu, H.; Liu, Z. Technical progress of Russian submarine ice navigation tests. Mar. Equip./Mater. Mark. 2021, 29, 1–6. [Google Scholar]
- Lewis, J.; Edwards, R. Methods for predicting icebreaking and ice resistance characteristics of icebreakers. SNAME Trans. 1970, 78, 213–249. [Google Scholar]
- Kotras, T.; Baird, A.; Naegle, J. Predicting ship performance in level ice. Trans. Soc. Nav. Archit. Mar. Eng. SNAME 1983, 91, 329–349. [Google Scholar]
- Lindqvist, G. A straightforward method for calculation of ice resistance of ships. In Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Lulea, Sweden, 12–16 June 1989; pp. 722–735. [Google Scholar]
- Keinonen, A.; Robbins, I. Icebreaker Characteristics Synthesis; Report for the Transportation Development Centre; Report (TP12812E); Transport Canada: Ottawa, ON, Canada, 1996. [Google Scholar]
- Riska, K.; Wilhelmson, M.; Englund, K.; Leiviska, T. Performance of merchant vessels in the Baltic; Report 52; Helsinki University of Technology: Helsinki, Finland, 1997. [Google Scholar]
- Spencer, D.; Jones, S.J. Model-Scale/Full-Scale Correlation in Open Water and Ice for Canadian Coast Guard “R-Class” Icebreakers. J. Ship Res. 2001, 45, 249–261. [Google Scholar] [CrossRef]
- Valanto, P. The resistance of ships in level ice. SNAME Trans. 2001, 109, 53–83. [Google Scholar]
- Jeong, S.; Lee, C.; Cho, S. Ice Resistance Prediction for Standard Icebreaker Model Ship. In Proceedings of the Twentieth International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; pp. 1300–1304. [Google Scholar]
- Li, L.; Gao, Q.; Bekker, A.; Dai, H. Formulation of Ice Resistance in Level Ice Using Double-Plates Superposition. J. Mar. Sci. Eng. 2020, 8, 870. [Google Scholar] [CrossRef]
- Kozin, V.M.; Chizhumov, S.D.; Zemlyak, V.L. Influence of ice conditions on the effectiveness of the resonant method of breaking ice cover by submarines. J. Appl. Mech. Technol. Phys. 2010, 51, 398–404. [Google Scholar] [CrossRef]
- Pogorelova, A.; Zemlyak, V.; Kozin, V. Moving of a submarine under an ice cover in fluid of finite depth. J. Hydrodyn. 2019, 31, 562–569. [Google Scholar] [CrossRef]
- Sturova, I. The motion of a submerged sphere in a liquid under an ice sheet. J. Appl. Math. Mech. 2012, 76, 293–301. [Google Scholar] [CrossRef]
- Zemlyak, V.; Pogorelova, A.; Kozin, V. Influence of peculiarities of the form of a submarine vessel on the efficiency of breaking ice cover. In Proceedings of the International Offshore and Polar Engineering Conference, Anchorage, AL, USA, 30 June–4 July 2013; pp. 1252–1258. [Google Scholar]
- Zemlyak, V.L.; Kozin, V.M.; Baurin, N.O.; Ipatov, K.I.; Kandelya, M.V. The study of the impact of ice conditions on the possibility of the submarine vessels surfacing in the ice cover. J. Phys. Conf. Ser. 2017, 919, 012004. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.Y.; Wang, C.; Guo, C.Y. Peridynamic model for submarine surfacing through ice. Chin. J. Ship Res. 2018, 13, 51–59. [Google Scholar]
- Wang, C.; Wang, J.; Wang, C.; Guo, C.; Zhu, G. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method. Chin. J. Theor. Appl. Mech. 2021, 53, 3110–3123. [Google Scholar]
- Junzheng, Y.; Xianqian, W.; Chenguang, H. Multi-field coupling effect and similarity law of floating ice break by vehicle launched underwater. Chin. J. Theor. Appl. Mech. 2021, 53, 1930–1939. [Google Scholar]
- Dempsey, J.P.; Defranco, S.J.; Adamson, R.M.; Mulmule, S.V. Scale effects on the in situ tensile strength and fracture of ice. Part I: Large grained freshwater ice at Spray Lakes Reservoir, Alberta. In Fracture Scaling; Springer: Dordrecht, The Netherlands, 1999; pp. 325–345. [Google Scholar] [CrossRef]
- Palmer, A.; Dempsey, J. Models of large-scale crushing and spalling related to high-pressure zones. In Proceedings of the Iahr International Symposium on Ice, Montreal, QC, Canada, 19–23 June 2002. [Google Scholar]
- Dempsey, J.P. Research trends in ice mechanics. Int. J. Solids Struct. 2000, 37, 131–153. [Google Scholar] [CrossRef]
- Määttänen, M.; Hoikkanen, J. The effect of ice pile-up on the ice force of a conical structure. In Proceedings of the Iahr International Symposium on Ice, Espoo, Finland, 20–23 August 1990; pp. 131–153. [Google Scholar]
- von Bock und Polach, R.U.F.; Ettema, R.; Gralher, S.; Kellner, L.; Stender, M. The non-linear behavior of aqueous model ice in downward flexure. Cold Reg. Sci. Technol. 2019, 165, 102775. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Guyenne, P. Nonlinear simulation of wave group attenuation due to scattering in broken floe fields. Ocean. Model. 2023, 181, 102139. [Google Scholar] [CrossRef]
- Lu, W.; Lubbad, R.; Løset, S. In-plane fracture of an ice floe: A theoretical study on the splitting failure mode. Cold Reg. Sci. Technol. 2015, 110, 77–101. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Choi, K.; Kang, K.J.; Ha, J.S. Prediction of ship resistance in level ice based on empirical approach. Int. J. Nav. Archit. Ocean. 2017, 9, 613–623. [Google Scholar] [CrossRef]
- Li, L.; Shkhinek, K. Dynamic interaction between ice and inclined structure. Mag. Civ. Eng. 2014, 45, 71–79. [Google Scholar] [CrossRef]
- Xing, H.; Liu, Z.; Li, H. Calculation method of ice pressure of extruded ice plate in reservoirs based on the fracture mechanics. Adv. Sci. Technol. Water Resour. 2013, 33, 10–13. [Google Scholar] [CrossRef]
- Tameroğlu, S. General Solution of the Biharmonic Equation and Generalized Levy’s Method for Plates. J. Struct. Mech. 1986, 14, 33–51. [Google Scholar] [CrossRef]
- Dobrodeev, A. Ice resistance of ships in brash ice channel: Calculation method. Trans. Krylov State Res. Cent. 2019, 3, 11–21. [Google Scholar] [CrossRef]
- Institute, C.A.R. Handbook of Stress Strength Factors; Science Publishers: New York, NY, USA, 1993. [Google Scholar]
- Ji, S.; Liu, H.; Xu, N.; Ma, H. Experiments on sea ice fracture toughness in the Bohai Sea. Adv. Water Sci. 2013, 024, 386–391. [Google Scholar]
- Aksnes, V. A panel method for modelling level ice actions on moored ships. Part 1: Local ice force formulation. Cold Reg. Sci. Technol. 2011, 65, 128–136. [Google Scholar] [CrossRef]
- Sawamura, J. 2D numerical modeling of icebreaker advancing in ice-covered water. Int. J. Nav. Archit. Ocean. 2018, 10, 385–392. [Google Scholar] [CrossRef]
- Tan, X.; Su, B.; Riska, K.; Moan, T. A six-degrees-of-freedom numerical model for level ice-ship interaction. Cold Reg. Sci. Technol. 2013, 92, 1–16. [Google Scholar] [CrossRef]
- Zhou, L.; Riska, K.; Ji, C. Simulating transverse icebreaking process considering both crushing and bending failures. Mar. Struct. 2017, 54, 167–187. [Google Scholar] [CrossRef]
- Groves, N.C.; Huang, T.T.; Chang, M. Geometric Characteristics of DARPA SUBOFF Models; Report; David Taylor Research Center: Bremerton, WA, USA, 1989. [Google Scholar]
- Kjerstad, O.K.; Metrikin, I.; Løset, S.; Skjetne, R. Experimental and phenomenological investigation of dynamic positioning in managed ice. Cold Reg. Sci. Technol. 2015, 111, 67–79. [Google Scholar] [CrossRef]
- Huang, L.; Tuhkuri, J.; Igrec, B.; Li, M.; Stagonas, D.; Toffoli, A.; Cardiff, P.; Thomas, G. Ship resistance when operating in floating ice floes: A combined CFD&DEM approach. Mar. Struct. 2020, 74, 102817. [Google Scholar] [CrossRef]
- Han, D.; Paik, K.J.; Jeong, S.Y.; Choung, J. Prediction of the ice resistance of icebreakers using explicit finite element analyses with a real-time load control technique. Ocean. Eng. 2021, 240, 109825. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, Y. Numerical simulation of level ice-structure interaction using damage-based erosion model. Ocean. Eng. 2020, 220, 108485. [Google Scholar] [CrossRef]
- Truong, D.D.; Jang, B.S. Estimation of ice loads on offshore structures using simulations of level ice-structure collisions with an influence coefficient method. Appl. Ocean. Res. 2022, 125, 103235. [Google Scholar] [CrossRef]
Parameters (Unit) | Symbol | Value |
---|---|---|
Density [kg/m] | 900 | |
Modulus of elasticity [GPa] | E | 1.8 |
Shear modulus [GPa] | G | 0.72 |
Poisson’s ratio | 0.25 | |
Bending strength [MPa] | 0.36 | |
Compression strength [MPa] | 1.08 | |
Shear strength [MPa] | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Meng, X.; Bekker, A.; Makarov, O.; Wang, W.; Zhang, T. Evaluating Ice Load during Submarine Surfacing and Ice Breaking. J. Mar. Sci. Eng. 2023, 11, 736. https://doi.org/10.3390/jmse11040736
Li L, Meng X, Bekker A, Makarov O, Wang W, Zhang T. Evaluating Ice Load during Submarine Surfacing and Ice Breaking. Journal of Marine Science and Engineering. 2023; 11(4):736. https://doi.org/10.3390/jmse11040736
Chicago/Turabian StyleLi, Liang, Xiangbin Meng, Alexander Bekker, Oleg Makarov, Wei Wang, and Tao Zhang. 2023. "Evaluating Ice Load during Submarine Surfacing and Ice Breaking" Journal of Marine Science and Engineering 11, no. 4: 736. https://doi.org/10.3390/jmse11040736