Toward an Astrochronology-Based Age-Model for a Messinian Pre-Evaporitic Succession: The Example of Torrente Vaccarizzo Section in Sicily (Italy)
Abstract
:1. Introduction
2. Geological Setting and Study Area
3. The Stratigraphy of the TVCZ Section
- (i)
- In the first 6.5 m, dark grey to grey silts are dominant and related to the topmost part of the Terravecchia Fm. Their maximum thickness is about 2 m. In particular, the bottom part (0–4 m) is characterized by the alternation of black clays (sapropels), silts, and marls, which gradually pass upwards into silts. The latter are followed by a 25 cm layer of lime mudstone.
- (ii)
- From 8 to 19 m, the succession is dominated by the alternation of sapropels and marls. From 13 m upwards, three layers of laminated diatomites, of about 30 cm each, precede the deposition of a 20 cm thick gypsum bed that marks the first evaporitic bed of the section. On top of it, the succession shows a 1.4 m thick sapropel overlain by 60 cm of marls.
- (iii)
- From 19 m to 27 m, laminites and marls of different thicknesses are alternated. Specifically, the lower part (19–22 m) is dominated by a highly slumped dark grey laminite (over 1 m thick) with interbedded gypsum layers. A 20 cm black level interrupts the facies alternation of laminites and marls.
- (iv)
- From 27 m to the top, tens of meters thickness of CdB beds follow. They are alternated with thin layers of marls and sapropels. Overall, marls show a grey to dark grey color, which becomes greenish towards the CdB beds.
4. Materials and Methods
4.1. Sampling Strategy
4.2. Quantitative Analysis: Calcareous Nannofossils
4.3. Quantitative Analysis: Planktonic Foraminifers
5. Calcareous Plankton Biostratigraphy Preceding MSC
5.1. Calcareous Nannofossils in the TVCZ Section
5.2. Planktonic Foraminifers in the TVCZ Section
6. Age-Models
- (1).
- The First abundance influx (FAI) of T. multiloba in Sample TVCZ-14 (495 cm from the base) and dated at 6.412 My, according to Sierro et al. [11], also described as “FCO of T. multiloba” and dated at 6.40 My [6], 6.41 My [17,18], and 6.415 My [56]. Therefore, an age of 6.42 My [5,11,17,18,56] has been fixed as TP for the preliminary age-model.
- (2).
New Sample Numeration | Original Sample Numeration | Position (cm) | Sedim. Rate (cm/ky) | Age (ky) | New Sample Numeration | Original Sample Numeration | Position (cm) | Sedim. Rate (cm/ky) | Age (ky) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
TVCZ | 53 | 22 | 1875 | 3.11 | 5957.74 | TVCZ | 26 | 45 | 930 | 2.75 | 6269.93 |
TVCZ | 52 | 25 | 1855 | 5964.16 | TVCZ | 25 | 6B | 920 | 6273.56 | ||
TVCZ | 51 | 24 | 1820 | 5975.41 | TVCZ | 24 | 6 | 855 | 2.32 | 6297.20 | |
TVCZ | 50 | 21 | 1780 | 5988.27 | TVCZ | 23 | 5 | 795 | 6323.08 | ||
TVCZ | 49 | 23 | 1750 | 5997.91 | TVCZ | 22 | 4 | 760 | 6338.18 | ||
TVCZ | 48 | 20 | 1710 | 6010.77 | TVCZ | 21 | 3 | 710 | 6359.75 | ||
TVCZ | 47 | 19 bis | 1670 | 6023.63 | TVCZ | 20 | 2 | 685 | 6370.53 | ||
TVCZ | 46 | 19 | 1650 | 6030.06 | TVCZ | 19 | 43 | 670 | 6377.00 | ||
TVCZ | 45 | 18B | 1590 | 6049.34 | TVCZ | 18 | 1 | 655 | 6383.47 | ||
TVCZ | 44 | 18 bis | 1555 | 6060.59 | TVCZ | 17 | 42 | 640 | 6389.95 | ||
TVCZ | 43 | 18 | 1510 | 6075.06 | TVCZ | 16 | 46 | 600 | 4.63 | 6407.20 | |
TVCZ | 42 | 17 | 1470 | 6087.91 | TVCZ | 15 | 47 | 550 | 6418.01 | ||
TVCZ | 41 | 16B | 1440 | 6097.56 | TVCZ | 14 | 48 | 495 | 6429.90 | ||
TVCZ | 40 | 16 | 1410 | 6107.20 | TVCZ | 13 | 49 | 455 | 6438.55 | ||
TVCZ | 39 | 15 | 1365 | 6121.66 | TVCZ | 12 | 50 | 425 | 6445.04 | ||
TVCZ | 38 | 14B | 1320 | 6136.13 | TVCZ | 11 | 51 | 395 | 6451.52 | ||
TVCZ | 37 | 14 | 1290 | 6145.77 | TVCZ | 10 | 52 | 375 | 6455.85 | ||
TVCZ | 36 | 13 | 1240 | 6161.84 | TVCZ | 9 | 53 | 320 | 6467.74 | ||
TVCZ | 35 | 12B | 1215 | 6169.88 | TVCZ | 8 | 54 | 260 | 6480.71 | ||
TVCZ | 34 | 12 | 1190 | 6177.91 | TVCZ | 7 | 55 | 230 | 6487.20 | ||
TVCZ | 33 | 11 | 1130 | 2.75 | 6197.20 | TVCZ | 6 | 56 | 185 | 6496.93 | |
TVCZ | 32 | 10 | 1100 | 6208.11 | TVCZ | 5 | 57 | 150 | 6504.50 | ||
TVCZ | 31 | 44 | 1095 | 6209.93 | TVCZ | 4 | 58 | 130 | 6508.82 | ||
TVCZ | 30 | 9 | 1060 | 6222.65 | TVCZ | 3 | 59 | 90 | 6517.47 | ||
TVCZ | 28 | 7B | 995 | 6246.29 | TVCZ | 2 | 60 | 45 | 6527.20 | ||
TVCZ | 27 | 7 | 940 | 6266.29 | TVCZ | 1 | 61 | 10 | 6534.77 |
7. Discussion
7.1. Age of Calcareous Nannofossils Bioevents in the TVCZ Section
7.2. Age of Foraminiferal Bioevents in the TVCZ Section
8. Conclusions
- (1)
- The building of an astrochronology-based age-model for the Messinian pre-evaporitic TVCZ Section. It is based on the abundance variation of Orbulina spp. (Orbulina peaks), which proved to fit well the 100ky-Eccentricity cycles. This methodology is useful in the absence of other chronostratigraphic constraints, such as magnetostratigraphy and radiometric dating.
- (2)
- Based on the astrochronological age-model, all the collected samples have been dated. Therefore, the age of all recognized bioevents, both nannofossils and foraminifers, was calculated. Some well-known bioevents were confirmed to be reliable markers for biostratigraphic correlation, and new ones were detected for the first time, improving the biostratigraphic resolution at the MSC onset. In particular, the I Sphenolitus + Helicosphaera peak (here renamed CN_MSC_OE), with an inferred age of 5.997–5.957 My, represents the last plankton event preceding the CdB deposition. This event is preceded by the disappearance of planktonic foraminifers, which is not abrupt but records an alternation of evaporitic and normal marine phases in the basin.
- (3)
- Many taxa show characteristic “peak-abundance distribution” reflecting stressed conditions in the basin, highlighted by rapid changes in oxygen content, nutrient, salinity, and temperature of the water mass. This trend was already described elsewhere in the stratigraphic levels preceding the MSC.
- (4)
- The age of the MSC onset calculated in the TVCZ section is 5.957 My, in good agreement with previous literature.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasiliev, I.; Karakitsios, V.; Bouloubassi, I.; Agiadi, K.; Kontakiotis, G.; Antonarakou, A.; Triantaphyllou, M.; Gogou, A.; Kafousia, N.; Rafélis, M.; et al. Large Sea Surface Temperature, Salinity, and Productivity-Preservation Changes Preceding the Onset of the Messinian Salinity Crisis in the Eastern Mediterranean Sea. Paleoceanogr. Paleoclimatol. 2019, 34, 182–202. [Google Scholar] [CrossRef]
- Antonarakou, A.; Kontakiotis, G.; Vasilatos, C.; Besiou, E.; Zarkogiannis, S.; Drinia, H.; Mortyn, P.G.; Tsaparas, N.; Makri, P.; Karakitsios, V. Evaluating the effect of marine diagenesis on Late Miocene pre-evaporitic sedimentary successions of eastern Mediterranean Sea. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012051. [Google Scholar] [CrossRef]
- Pellegrino, L.; Dela Pierre, F.; Natalicchio, M.; Carnevale, G. The Messinian diatomite deposition in the Mediterranean region and its relationships to the global silica cycle. Earth-Sci. Rev. 2018, 178, 154–176. [Google Scholar] [CrossRef]
- Zachariasse, W.J.; Kontakiotis, G.; Lourens, L.J.; Antonarakou, A. The Messinian of Agios Myron (Crete, Greece): A key to better understanding diatomite formation south of Crete, on Gavdos Island. Palaeogeogr. Palaeoclim. Palaeoecol. 2021, 581, 110633. [Google Scholar] [CrossRef]
- Hilgen, F.J.; Krijgsman, W. Cyclostratigraphy and astrochronology of the Tripoli diatomite formation (pre-evaporite Messinian, Sicily, Italy). Terra Nova 1999, 11, 16–22. [Google Scholar] [CrossRef]
- Bellanca, A.; Caruso, A.; Ferruzza, G.; Neri, R.; Rouchy, J.M.; Sprovieri, M.; Blanc-Valleron, M.M. Transition from marine to hypersaline conditions in the Messinian Tripoli Formation from the marginal areas of the central Sicilian Basin. Sediment. Geol. 2001, 140, 87–105. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Forzese, M.; Maniscalco, R.; Di Stefano, A.; Misz-Kennan, M.; Marynowski, L.; Krzykawski, T.; Simoneit, B.R.T. The transition toward the Messinian evaporites identified by biomarker records in the organic-rich shales of the Tripoli Formation (Sicily, Italy). Int. J. Coal Geol. 2022, 260, 104053. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Besiou, E.; Antonarakou, A.; Zarkogiannis, S.D.; Kostis, A.; Mortyn, P.G.; Moissette, P.; Cornée, J.-J.; Schulbert, C.; Drinia, H.; et al. Decoding Sea surface and paleoclimate conditions in the eastern Mediterranean over the Tortonian-Messinian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 534, 109312. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Butiseaca, G.-A.; Karakitsios, V.; Antonarakou, A.; Zarkogiannis, S.; Agiadi, K.; Krsnik, E.; Besiou, E.; Zachariasse, J.-W.; Lourens, L.; et al. Hypersalinity accompanies tectonic restriction in the eastern Mediterranean prior to the Messinian Salinity Crisis. Palaeogeogr. Palaeoclim. Palaeoecol. 2022, 592, 110903. [Google Scholar] [CrossRef]
- Butiseaca, G.A.; van der Meer, M.T.J.; Kontakiotis, G.; Agiadi, K.; Thivaiou, D.; Besiou, E.; Antonarakou, A.; Mulch, A.; Vasiliev, I. Multiple crises preceded the Mediterranean Salinity Crisis: Aridification and vegetation changes revealed by biomarkers and stable isotopes. Glob. Planet. Chang. 2022, 217, 103951. [Google Scholar] [CrossRef]
- Sierro, F.J.; Hilgen, F.J.; Krijgsman, W.; Flores, J.A. The Abad composite (SE Spain): A Messinian reference section for the Mediterranean and the APTS. Palaeogeogr. Palaeoclim. Palaeoecol. 2001, 168, 141–169. [Google Scholar] [CrossRef]
- Flores, J.A.; Sierro, F.J.; Filippelli, G.M.; Bárcena, M.A.; Pérez-Folgado, M.; Vázquez, A.; Utrilla, R. Surface water dynamics and phytoplankton communities during deposition of cyclic late Messinian sapropels sequences in the western Mediterranean. Mar. Micropaleontol. 2005, 56, 50–79. [Google Scholar] [CrossRef]
- Rossignol-Strick, M. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeogr. Palaeoclim. Palaeoecol 1985, 49, 237–263. [Google Scholar] [CrossRef]
- Hilgen, F.J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale. Earth Planet. Sci. Lett. 1991, 104, 226–244. [Google Scholar] [CrossRef]
- Sierro, F.J.; Flores, J.A.; Zamarreño, I.; Vázquez, A.; Utrilla, R.; Francés, G.; Hilgen, F.J.; Krijgsman, W. Messinian pre-evaporite sapropels and precession-induced oscillations in western Mediterranean climate. Mar. Geol. 1999, 153, 137–146. [Google Scholar] [CrossRef]
- Hilgen, F.J.; Krijgsman, W.; Langereis, C.G.; Lourens, L.J.; Santarelli, A.; Zachariasse, W.J. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 1995, 136, 495–500. [Google Scholar] [CrossRef]
- Sprovieri, R.; Di Stefano, E.; Sprovieri, M. High resolution chronology for late Miocene Mediterranean stratigraphic events. Riv. Ital. Paleontol. Stratigr. 1996, 102, 77–104. [Google Scholar]
- Sprovieri, R.; Di Stefano, E.; Caruso, A.; Bonomo, S. High resolution stratigraphy in the Messinian Tripoli Formation in Sicily. Paleopelagos 1996, 6, 415–435. [Google Scholar]
- Krijgsman, W.; Hilgen, F.J.; Langereis, C.G.; Santarelli, A.; Zachariasse, W.J. Late Miocene magnetostratigraphy, biostratigraphy and cyclostratigraphy in the Mediterranean. Earth Planet. Sci. Lett. 1995, 136, 475–494. [Google Scholar] [CrossRef]
- Schenau, S.J.; Antonarakou, A.; Hilgen, F.J.; Lourens, L.J.; Nijenhuis, I.A.; Van der Weijden, C.H.; Zachariasse, W.J. Organic-rich layers in the Metochia section (Gavdos, Greece): Evidence for a single mechanism of sapropel formation during the past 10 My. Mar. Geol. 1999, 153, 117–135. [Google Scholar] [CrossRef]
- Pérez-Folgado, M.; Sierro, F.J.; Bàrcena, M.A.; Flores, J.A.; Vàsquez, A.; Utrilla, R.; Hilgen, F.J.; Krijgsman, W.; Filippelli, G.M. Western versus eastern Mediterranean paleoceanographic response to astronomical forcing: A high-resolution microplankton study of precession-controlled sedimentary cycles during the Messinian. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 190, 317–334. [Google Scholar] [CrossRef]
- Sierro, F.J.; Flores, J.A.; Francés, G.; Vazquez, A.; Utrilla, R.; Zamarreno, I.; Erlenkeuser, H.; Barcena, M.A. Orbitally controlled oscillations in planktic communities and cyclic changes in western Mediterranean hydrography during the Messinian. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 190, 289–316. [Google Scholar] [CrossRef]
- Pedley, H.M.; Grasso, M. Controls on faunal and sediment cyclicity within the Tripoli and Calcare di Base basins (Late Miocene) of central Sicily. Palaeogeogr. Palaeoclim. Palaeoecol. 1993, 105, 337–360. [Google Scholar] [CrossRef]
- Pedley, H.M.; Grasso, M. A model for the Late Miocene reef-Tripolaceous associations of Sicily and its relevance to aberrant coral growth-forms and reduced biological diversity within the Palaeomediterranean. Géologie Méditerranéenne 1994, 21, 109–121. [Google Scholar] [CrossRef]
- Pedley, H.M.; Maniscalco, R. Lithofacies and faunal succession (faunal phase analysis) as a tool in unravelling climatic and tectonic signals in marginal basins; Messinian (Miocene), Sicily. J. Geol. Soc. 1999, 156, 855–863. [Google Scholar] [CrossRef]
- Suc, J.P.; Violanti, D.; Londeix, L.; Poumot, C.; Robert, C.; Clauzon, G.; Gautier, F.; Turon, J.L.; Ferrier, J.; Chikhi, H.; et al. Evolution of the Messinian Mediterranean environments: The Tripoli Formation at Capodarso (Sicily, Italy). Rev. Palaeobot. Palynol. 1995, 87, 51–79. [Google Scholar] [CrossRef]
- Di Stefano, A.; Verducci, M.; Lirer, F.; Ferraro, L.; Iaccarino, S.M.; Hüsing, S.K.; Hilgen, F.J. Paleoenvironmental conditions preceding the Messinian Salinity Crisis in the Central Mediterranean: Integrated data from the Upper Miocene Trave section (Italy). Palaeogeogr. Palaeoclim. Palaeoecol. 2010, 297, 37–53. [Google Scholar] [CrossRef]
- Riforgiato, F.; Foresi, L.M.; Aldinucci, M.; Mazzei, R.; Donia, F.; Gennari, R.; Salvatorini, G.; Sandrelli, F. Foraminiferal record and astronomical cycles: An example from the Messinian pre-evaporitic Gello Composite Section (Tuscany, Italy). Stratigraphy 2008, 5, 265–280. [Google Scholar]
- Mancini, A.M.; Gennari, R.; Natalicchio, M.; Dela Pierre, F.; Carnevale, G.; Pastero, L.; Pellegrino, L.; Pilade, F.; Lozar, F. Taphonomic bias on calcareous micro and nannofossils and paleoenvironmental evolution across the Messinian Salinity Crisis onset: Insights from the Sorbas Basin (SE Spain). Palaeogeogr. Palaeoclim. Palaeoecol. 2022, 599, 111056. [Google Scholar] [CrossRef]
- Moissette, P.; Cornee, J.-J.; Antonarakou, A.; Kontakiotis, G.; Drinia, H.; Koskeridou, E.; Tsourou, T.; Agiadi, K.; Karakitsios, V. Palaeoenvironmental changes at the Tortonian/Messinian boundary: A deep-sea sedimentary record of the eastern Mediterranean Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 2018, 505, 217–233. [Google Scholar] [CrossRef]
- Karakitsios, V.; Roveri, M.; Lugli, S.; Manzi, V.; Gennari, R.; Antonarakou, A.; Triantaphyllou, M.; Agiadi, K.; Kontakiotis, G.; Kafousia, N.; et al. A Record of the Messinian Salinity Crisis in the Eastern Ionian Tectonically Active Domain (Greece, Eastern Mediterranean). Basin Res. 2017, 29, 203–233. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Grasso, M. Tectonic controls on base-level variations and depositional sequences within thrust-top and foredeep basins: Examples from the Neogene thrust belt of central Sicily. Basin Res. 1993, 5, 137–151. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Lickorish, W.H.; Grasso, M.; Pedley, H.M.; Ramberti, L. Tectonics and sequence stratigraphy in Messinian basins, Sicily: Constraints on the initiation and termination of the Mediterranean salinity crisis. GSA Bull. 1995, 107, 425–439. [Google Scholar] [CrossRef]
- Grasso, M. The Apenninic-Maghrebian orogen in southern Italy, Sicily and adjacent areas. Anat. Orogen Apennines Adjac. Mediterr. Basins 2001, 343, 255–286. [Google Scholar] [CrossRef]
- Elter, P.; Grasso, M.; Parotto, M.; Vezzani, L. Structural setting of the Apennine-Maghrebian thrust belt. Epis. J. Int. Geosci. 2003, 26, 205–211. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Maniscalco, R.; Sturiale, G.; Grasso, M. Stratigraphic variations control deformation patterns in evaporite basins: Messinian examples, onshore and offshore Sicily (Italy). J. Geol. Soc. Lond. 2015, 172, 113–124. [Google Scholar] [CrossRef]
- Ogniben, L. Sedimenti halitico-calcitici a struttura grumosa nel Calcare di Base Messiniano in Sicilia. G. Geol. 1963, 31, 509–542. [Google Scholar]
- Roveri, M.; Bertini, A.; Cosentino, D.; Di Stefano, A.; Gennari, R.; Gliozzi, E.; Grossi, F.; Iaccarino, S.M.; Lugli, S.; Manzi, V.; et al. A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy 2008, 5, 327–345. [Google Scholar]
- Perri, E.; Gindre-Chanu, L.; Caruso, A.; Cefalà, M.; Scopelliti, G.; Tucker, M. Microbial-mediated pre-salt carbonate deposition during the Messinian salinity crisis (Calcare di Base fm., Southern Italy). Mar. Pet. Geol. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Natalicchio, M.; Dela Pierre, F.; Birgel, D.; Brumsack, H.; Carnevale, G.; Gennari, R.; Gier, S.; Lozar, F.; Pellegrino, L.; Sabino, M.; et al. Paleoenvironmental change in a precession-paced succession across the onset of the Messinian salinity crisis: Insight from element geochemistry and molecular fossils. Palaeogeogr. Palaeoclim. Palaeoecol. 2019, 518, 45–61. [Google Scholar] [CrossRef]
- Rouchy, J.M.; Caruso, A. The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sediment. Geol. 2006, 188, 35–67. [Google Scholar] [CrossRef]
- Caruso, A.; Pierre, C.; Blanc-Valleron, M.-M.; Rouchy, J.M. Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur-bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria. Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 429, 136–162. [Google Scholar] [CrossRef]
- Roveri, M.; Manzi, V.; Lugli, S.; Schreiber, B.C.; Caruso, A.; Rouchy, J.M.; Iaccarino, S.M.; Gennari, R.; Vitale, F.P. Clastic vs. primary precipitated evaporites in the messinian sicilian basins. R.C.M.N.S. International Congress “The Messinian salinity crisis revisited II”, Parma. Post-congress Field-trip. Acta Nat. De L’ateneo Parm. 2006, 42, 125–199. [Google Scholar]
- Roveri, M.; Flecker, R.; Krijgsman, W.; Lofi, J.; Lugli, S.; Manzi, V.; Sierro, F.J.; Bertini, A.; Camerlenghi, A.; De Lange, G.; et al. The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Mar. Geol. 2014, 352, 25–58. [Google Scholar] [CrossRef]
- Manzi, V.; Lugli, S.; Lucchi, F.R.; Roveri, M. Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): Did the Mediterranean ever dry out? Sedimentology 2005, 52, 875–902. [Google Scholar] [CrossRef]
- Manzi, V.; Lugli, S.; Roveri, M.; Schreiber, B.C.; Gennari, R. The Messinian ‘Calcare di Base’ (Sicily, Italy) revisited. GSA Bull. 2011, 123, 347–370. [Google Scholar] [CrossRef]
- Ryan, W.B.F.; Cita, M.B. The nature and distribution of Messinian erosional surfaces—Indicators of a several-kilometer-deep Mediterranean in the Miocene. Mar. Geol. 1978, 27, 193–230. [Google Scholar] [CrossRef]
- Manzi, V.; Lugli, S.; Roveri, M.; Schreiber, B.C. A new facies model for the Upper Gypsum of Sicily (Italy): Chronological and palaeontological constraints for the Messinian salinity crisis in the Mediterranean. Sedimentology 2009, 56, 1937–1960. [Google Scholar] [CrossRef]
- Decima, D.; Wezel, F.C. Late Miocene evaporites of the central Sicilian Basin, Italy. Initial. Rep. Deep. Sea Drill. Proj. 1973, 13, 1234–1241. [Google Scholar] [CrossRef]
- Maniscalco, R.; Casciano, C.I.; Distefano, S.; Grossi, F.; Di Stefano, A. Facies Analysis in the Second Cycle Messinian Evaporites Predating the Early Pliocene Reflooding: The Balza Soletta Section (Corvillo Basin, Central Sicily). Ital. J. Geosci. 2019, 138, 301–316. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Grasso, M.; Gardiner, W.; Sedgeley, D. Depositional patterns and their tectonic controls within the Plio-Quaternary carbonate sands and muds of onshore and offshore SE Sicily (Italy). Mar. Pet. Geol. 1997, 14, 879–892. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Lickorish, W.H. Using high-resolution stratigraphy to date fold and thrust activity: Examples from the Neogene of south-central Sicily. J. Geol. Soc. 1997, 154, 633–643. [Google Scholar] [CrossRef]
- Zecchin, M.; Catuneanu, O. High-resolution sequence stratigraphy of clastic shelves VI: Mixed siliciclastic-carbonate systems. Mar. Pet. Geol. 2017, 88, 712–723. [Google Scholar] [CrossRef]
- Sturiale, G.; Maniscalco, R.; De Guidi, G.; Pedley, H.M.; Grasso, M. Carta geologica dei Bacini di Corvillo e Mandre (Sicilia centrale). Scala 1:50.000. Ital. J. Geosci. 2010, 129, 316–326. [Google Scholar] [CrossRef]
- Grasso, M.; Pedley, H.M.; Romeo, M. The Messinian Tripoli Formation of northcentral Sicily: Palaeoenvironmental interpretations based on sedimentological, micropalaeontological and tectonic studies. Paleobiol. Cont. Montp. 1990, 17, 189–204. [Google Scholar]
- Blanc-Valleron, M.M.; Pierre, C.; Caulet, J.P.; Caruso, A.; Rouchy, J.M.; Cespuglio, G.; Sprovieri, R.; Pestrea, S.; Di Stefano, E. Sedimentary, stable isotope and micropaleontological records of paleoceanographic change in the Messinian Tripoli Formation (Sicily, Italy). Palaeogeogr. Palaeoclim. Palaeoecol. 2002, 185, 255–286. [Google Scholar] [CrossRef]
- Bown, P.R.; Young, J. Calcareous Nannofossil Biostratigraphy. In British Micropaleontological Society Publication Series; Bown, P.R., Ed.; Springer Science+ Business Media, LLC: New York, NY, USA, 1998; pp. 1–15. [Google Scholar]
- Di Stefano, A.; Baldassini, N.; Raffi, I.; Fornaciari, E.; Incarbona, A.; Negri, A.; Bonomo, S.; Villa, G.; Di Stefano, E.; Rio, D. Neogene-Quaternary Mediterranean Calcareous Nannofossil Biozonation and Biochronology. Stratigraphy 2023. submitted. [Google Scholar]
- Lirer, F.; Foresi, L.M.; Iaccarino, S.M.; Salvatorini, G.; Turco, E.; Cosentino, C.; Sierro, F.J.; Caruso, A. Mediterranean Neogene planktonic foraminifer biozonation and biochronology. Earth-Sci. Rev. 2019, 196, 102869. [Google Scholar] [CrossRef]
- Negri, A.; Giunta, S.; Hilgen, F.; Krijgsman, W.; Vai, G.B. Calcareous nannofossil biostratigraphy of the M. del Casino section (northern Apennines, Italy) and paleoceanographic conditions at times of Late Miocene sapropel formation. Mar. Micropaleontol. 1999, 36, 13–30. [Google Scholar] [CrossRef]
- Negri, A.; Villa, G. Calcareous nannofossil biostratigraphy, biochronology and paleoecology at the Tortonian/Messinian boundary of the Faneromeni section (Crete). Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 156, 195–209. [Google Scholar] [CrossRef]
- Raffi, I.; Mozzato, C.A.; Fornaciari, E.; Hilgen, F.J.; Rio, D. Late Miocene calcareous nannofossil biostratigrapy and astrobiochronology for the Mediterranean region. Micropaleontology 2003, 49, 1–26. [Google Scholar] [CrossRef]
- Manzi, V.; Roveri, M.; Gennari, R.; Bertini, A.; Biffi, U.; Giunta, S.; Iaccarino, S.M.; Lanci, L.; Lugli, S.; Negri, A.; et al. The deep-water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: The Fanantello section (Northern Apennines, Italy). Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 251, 470–499. [Google Scholar] [CrossRef]
- Morigi, C.; Negri, A.; Giunta, S.; Kouwenhoven, T.; Krijgsman, W.; Blanc-Valleron, M.M.; Orszag-Sperber, F.; Rouchy, J.M. Integrated quantitative biostratigraphy of the latest Tortonian-early Messinian Pissouri section (Cyprus): An evaluation of calcareous plankton bioevents. Geobios 2007, 40, 267–279. [Google Scholar] [CrossRef]
- Iaccarino, S.M.; Bertini, A.; Di Stefano, A.; Ferraro, L.; Gennari, R.; Grossi, F.; Lirer, F.; Manzi, V.; Menichetti, E.; Ricci Lucchi, M.; et al. The Trave section (Monte dei Corvi, Ancona, Central Italy): An integrated paleontological study of the Messinian deposits. Stratigraphy 2008, 5, 283–308. [Google Scholar]
- Lozar, F.; Violanti, D.; Bernardi, E.; Dela Pierre, F.; Natalicchio, M. Identifying the onset of the Messinian salinity crisis: A reassessment of the biochronostratigraphic tools (Piedmont Basin, NW Italy). Newsl. Stratigr. 2018, 51, 11–31. [Google Scholar] [CrossRef]
- Lozar, F.; Negri, A. A review of basin-wide calcareous nannofossil bioevents in the Mediterranean at the onset of the Messinian salinity crisis. Mar. Micropaleontol. 2019, 151, 101752. [Google Scholar] [CrossRef]
- Mancini, A.M.; Gennari, R.; Ziveri, P.; Mortyn, P.G.; Stolwijk, D.J.; Lozar, F. Calcareous nannofossil and foraminiferal trace element records in the Sorbas Basin: A new piece of the Messinian Salinity Crisis onset puzzle. Palaeogeogr. Palaeoclim. Palaeoecol 2020, 554, 109796. [Google Scholar] [CrossRef]
- Hüsing, S.K.; Kuiper, K.F.; Link, W.; Hilgen, F.J.; Krijgsman, W. The upper Tortonian–lower Messinian at Monte dei Corvi (Northern Apennines, Italy): Completing a Mediterranean reference section for the Tortonian Stage. Earth Planet. Sci. Lett. 2009, 282, 140–157. [Google Scholar] [CrossRef]
- Drinia, H.; Antonarakou, A.; Tsaparas, N.; Kontakiotis, G. Palaeoenvironmental conditions preceding the Messinian Salinity Crisis: A case study from Gavdos Island. Geobios 2007, 40, 251–265. [Google Scholar] [CrossRef]
- Foresi, L.M.; Baldassini, N.; Sagnotti, L.; Lirer, F.; Di Stefano, A.; Caricchi, C.; Verducci, M.; Salvatorini, G.; Mazzei, R. Integrated stratigraphy of the St. Thomas section (Malta Island): A reference section for the lower Burdigalian of the Mediterranean Region. Mar. Micropaleontol. 2014, 111, 66–89. [Google Scholar] [CrossRef]
- Fabbrini, A.; Baldassini, N.; Caricchi, C.; Foresi, L.M.; Sagnotti, L.; Dinarès-Turell, J.; Di Stefano, A.; Lirer, F.; Menichetti, M.; Winkler, A.; et al. In search of the Burdigalian GSSP: New evidence from the Contessa Section (Italy). Ital. J. Geosci. 2019, 138, 274–295. [Google Scholar] [CrossRef]
- Distefano, S.; Gamberi, F.; Baldassini, N.; Di Stefano, A. Neogene stratigraphic evolution of a tectonically controlled continental shelf: The example of the Lampedusa Island. Ital. J. Geosci. 2021, 138, 418–431. [Google Scholar] [CrossRef]
- Manzi, V.; Gennari, R.; Lugli, S.; Persico, D.; Reghizzi, M.; Roveri, M.B.; Charlotte Schreiber, B.C.; Calvo, R.; Gavrieli, I.; Gvirtzman, Z. The onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin. Terra Nova 2018, 30, 189–198. [Google Scholar] [CrossRef]
- Manzi, V.; Gennari, R.; Hilgen, F.; Krijgsman, W.; Lugli, S.; Roveri, M.; Sierro, F.J. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 2013, 25, 315–322. [Google Scholar] [CrossRef]
- Gennari, R.; Lozar, F.; Natalicchio, M.; Zanella, E.; Carnevale, G.; Pierre, F.D. Chronology of the Messinian events in the northernmost part of the Mediterranean: The Govone section (Piedmont basin, NW Italy). Riv. Ital. Paleontol. Stratigr. 2020, 126, 2. [Google Scholar] [CrossRef]
- Zachariasse, W.J.; Lourens, L.J. The Messinian on Gavdos (Greece) and the status of currently used ages for the onset of the MSC and gypsum precipitation. Newsl. Stratigr. 2022, 55, 3. [Google Scholar] [CrossRef]
- Bé, A.W.H.; Tolderlund, D.S. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. In Micropaleontology of the Oceans; Funnell, B.M., Riedel, W.R., Eds.; Cambridge University Press: London, UK, 1971; pp. 105–149. [Google Scholar]
- Spero, H.J. Modern Planktonic Foraminifera; Hemleben, C., Spindler, M., Anderson, O.R., Eds.; Springer: New York, NY, USA, 1989; p. 363. [Google Scholar]
- Bijma, J.; Faber, W.W.; Hemleben, C. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J. Foraminifer. Res. 1990, 20, 95–116. [Google Scholar] [CrossRef]
- Pujol, C.; Grazzini, C. Distribution patterns of live planktic foraminifers as related to regional hydrology and productive systems of the Mediterranean Sea. Mar. Micropaleontol. 1995, 25, 187–217. [Google Scholar] [CrossRef]
- Zarkogiannis, S.; Kontakiotis, G.; Antonarakou, A. Recent planktonic foraminifera population and size response to Eastern Mediterranean hydrography. Rev. De Micropaléontologie 2020, 69, 100450. [Google Scholar] [CrossRef]
- Kouwenhoven, T.J.; Morigi, C.; Negri, A.; Giunta, S.; Krijgsman, W.; Rouchy, J.M. Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: Constraints from integrated microfossil data of the Pissouri Basin (Cyprus). Mar. Micropaleontol. 2006, 60, 17–44. [Google Scholar] [CrossRef]
- Violanti, D.; Lozar, F.; Natalicchio, M.; Dela Pierre, F.; Bernardi, E.; Clari, P.; Cavagna, S. Stress-tolerant microfossils of a Messinian succession from the Northern Mediterranean basin (Pollenzo section, Piedmont, northwestern Italy). Boll. Della Soc. Paleontol. Ital. 2013, 52, 45–54. [Google Scholar] [CrossRef]
- Brachert, T.C.; Bornemann, A.; Reuter, M.; Galer, S.J.; Grimm, K.I.; Fassoulas, C. Upwelling history of the Mediterranean Sea revealed by stunted growth in the planktic foraminifera Orbulina universa (early Messinian, Crete, Greece). Int. J. Earth Sci. (Geol. Rundsch.) 2015, 104, 263–276. [Google Scholar] [CrossRef]
- Sprovieri, M.; Bellanca, A.; Neri, R.; Mazzola, S.; Bonanno, A.; Bernardo, P.; Sorgent, R. Astronomical calibration of Late Miocene stratigraphic events and analysis of precessionally driven paleoceanographic changes in the Mediterranean Basin. Soc. Geol. Ital. Mem. 1999, 54, 7–24. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 1 March 2023).
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Krijgsman, W.; Gaboardi, S.; Hilgen, F.J.; Iaccarino, S.; Kaenel, E.; van der Laan, E. Revised astrochronology for Ain el Beida sectin (Atlantic Morocco): No glacio-eustatic control for the onset of the Messinian Salinity Crisis. Stratigraphy 2004, 1, 87–101. Available online: http://hdl.handle.net/11381/1844339 (accessed on 1 March 2023).
Bioevents | Present Study | Other Mediterranean Sections | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Sorbas Basin | Falconara/Gibliscemi | Fanantello | Trave | M. dei Corvi | M. del Casino | Metochia | Pissouri | Piedmont Basin | Kalamaki (Ionian Sea) | ||
E.(*) | Sphenolithus + Helicophaera peak I = “MSC onset event” | TVCZ-49 | (*)5.99 [68] | 5.97 [63] | 5.99 [64] | 5.98 [66,67] | ||||||
D. | Last influx T. multiloba | TVCZ-36 | 6.07 [11,59] | 6.07 [17,18,59] | ||||||||
C. | N. acostaensis sx/dx coil. change | TVCZ-17 | 6.36 [11] | 6.337 [5] 6.35 [6] 6.34 [56] | 6.342 [64] | |||||||
Neogloboquadrinids sx/dx coil. change | 6.37 [69] | |||||||||||
FCO N. acostaensis dx | 6.44 [17,18] | |||||||||||
B. | Influx H. selli | TVCZ-14 | 6.49 [27] | |||||||||
FCO H. selli | 6.50 [65] | 6.96 [63] | 6.53 [64] | |||||||||
FCO cf. H. selli | 6.48 [62] | |||||||||||
A.(*) | “FAI T. multiloba” | TVCZ-14 | (*)6.412 [11] | |||||||||
FCO T. multiloba | 6.40 [6] 6.41 [17,18] 6.415 [56] | 6.415 [70] | 6.415 [31] |
Sample (cm) | Events in the TVCZ Section | Age * (My) | Age ** (My) |
---|---|---|---|
TVCZ-53 (1875) | MSC onset | --- | 5.957 |
TVCZ-53 (1875) | Top CN_MSC_OE | --- | 5.957 |
TVCZ-49 (1750) | Base CN_MSC_OE | 5.99 (TP) | 5.997 |
TVCZ-46 (1650) | Disappearance of planktonic foraminifers | 6.024 | 6.030 |
TVCZ-36 (1240) | Last local influx T. multiloba | 6.165 | 6.161 |
TVCZ-31 (1095) | IV local Influx T. multiloba | 6.214 | 6.209 |
TVCZ-26 (930) | III local Influx T. multiloba | 6.271 | 6.269 |
TVCZ-24 (855) | local Influx sx N. acostaensis | 6.297 | 6.297 |
TVCZ-19 (670) | II local Influx T. multiloba | 6.360 | 6.377 |
TVCZ-17 (640) | sx/dx coiling N. acostaensis | 6.370 | 6.389 |
TVCZ-16 (600) | Influx D. quinqueramus | 6.384 | 6.407 |
TVCZ-14 (495) | FAI T. multiloba | 6.41 (TP) | 6.429 |
TVCZ-14 (495) | Influx H. selli | 6.420 | 6.429 |
TVCZ-2 (45) | II Influx D. tamalis | 6.574 | 6.527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniscalco, R.; Forzese, M.; Barbagallo, V.; Borzì, L.; D’Andrea, N.M.; Distefano, S.; Giustolisi, C.; Nádudvari, Á.; Pellegrino, A.G.; Foresi, L.M.; et al. Toward an Astrochronology-Based Age-Model for a Messinian Pre-Evaporitic Succession: The Example of Torrente Vaccarizzo Section in Sicily (Italy). J. Mar. Sci. Eng. 2023, 11, 915. https://doi.org/10.3390/jmse11050915
Maniscalco R, Forzese M, Barbagallo V, Borzì L, D’Andrea NM, Distefano S, Giustolisi C, Nádudvari Á, Pellegrino AG, Foresi LM, et al. Toward an Astrochronology-Based Age-Model for a Messinian Pre-Evaporitic Succession: The Example of Torrente Vaccarizzo Section in Sicily (Italy). Journal of Marine Science and Engineering. 2023; 11(5):915. https://doi.org/10.3390/jmse11050915
Chicago/Turabian StyleManiscalco, Rosanna, Martina Forzese, Viviana Barbagallo, Laura Borzì, Natale Maria D’Andrea, Salvatore Distefano, Chiara Giustolisi, Ádam Nádudvari, Alessandra Giovanna Pellegrino, Luca Maria Foresi, and et al. 2023. "Toward an Astrochronology-Based Age-Model for a Messinian Pre-Evaporitic Succession: The Example of Torrente Vaccarizzo Section in Sicily (Italy)" Journal of Marine Science and Engineering 11, no. 5: 915. https://doi.org/10.3390/jmse11050915
APA StyleManiscalco, R., Forzese, M., Barbagallo, V., Borzì, L., D’Andrea, N. M., Distefano, S., Giustolisi, C., Nádudvari, Á., Pellegrino, A. G., Foresi, L. M., & Di Stefano, A. (2023). Toward an Astrochronology-Based Age-Model for a Messinian Pre-Evaporitic Succession: The Example of Torrente Vaccarizzo Section in Sicily (Italy). Journal of Marine Science and Engineering, 11(5), 915. https://doi.org/10.3390/jmse11050915