Optimal Design and Performance Analysis of a Hybrid System Combining a Semi-Submersible Wind Platform and Point Absorbers
Abstract
:1. Introduction
2. Configuration of the Hybrid System
2.1. Floating Wind Platform and WECs
2.2. Mooring System
2.3. Wave Environments
3. Mathematical Model
3.1. Coupled Motion Equation of the Hybrid System
3.2. Power Generated by WECs
3.3. Validation
4. Numerical Results and Discussion
4.1. Geometric Configurations of WECs
4.2. Layout Selection of WECs
4.3. Wave Power of WECs
4.3.1. Wave Power with Different 2r/d
4.3.2. Relative Heave at Different Positions
4.4. Platform Motion and Mooring Force
4.4.1. Platform Motion
4.4.2. Mooring Force
4.5. Hydrodynamic Optimization Analysis of the Distance between WECs and the Platform
4.5.1. Wave Power
4.5.2. Platform Motion
5. Conclusions
- (1)
- The annual power generation of a PAWEC can be improved by 30% by using a 90° conical or hemispherical bottom instead of a flat bottom. To all of the three kinds of PAWECs using a flat, 90° conical, or hemispherical bottom, the hydrodynamic coupling changes the added mass of the PAWECs, hence their heaving natural period;
- (2)
- Similar to the situation where the wind platform is fixed, the platform's motion does not influence the selection result of the size of the PAWECs. The larger the diameter and the diameter-to-draft ratio, the more wave power is generated;
- (3)
- The resonant heave and pitch motion of the platform can be reduced by the power take-off damping force exerted by the PAWECs. On the other hand, the surge motion changes a little;
- (4)
- Variation of the mooring loads (horizontal force, vertical force, and pitch moment) is similar to that of the motion responses (in the surge, heave, and pitch) of the platform;
- (5)
- Different protruding distances L3 similarly change the surge and heave motion responses of the platform. However, the larger the protruding distance causes, the larger the pitch motion response. There exists an optimal protruding distance where the maximum power can be achieved. In this study, this optimal power generation occurs while L3 is 1.5 times the PAWEC radius, which is 18.2% higher than that while the PAWECs are installed on the sides of the triangular frame of the platform. This finding could be generalized to similar hybrid systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mørk, G.; Barstow, S.; Kabuth, A.; Pontes, M.T. Assessing the global wave energy potential. In Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010. [Google Scholar]
- Guo, B.Y.; Ringwood, J.V. Geometric optimisation of wave energy conversion devices: A survey. Appl. Energy 2021, 297, 117100. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, D.Z.; Shi, W.; Johanning, L.; Liang, D.F. Hydrodynamic investigation on an OWC wave energy converter integrated into an offshore wind turbine monopile. Coast. Eng. 2020, 162, 103731. [Google Scholar] [CrossRef]
- Perez-Collazo, C.; Pemberton, R.; Greaves, D.; Iglesias, G. Monopile-mounted wave energy converter for a hybrid wind-wave system. Energy Convers. Manag. 2019, 199, 111971. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, D.Z.; Chen, L.F.; Iglesias, G. Nonlinear hydrodynamic modeling of an offshore stationary multi-oscillating water column platform. Ocean Eng. 2021, 227, 108919. [Google Scholar] [CrossRef]
- Guo, B.Y.; Patton, R.; Jin, S.Y.; Gilbert, J.; Parsons, D. Nonlinear modeling and verification of a heaving point absorber for wave energy conversion. IEEE Trans. Sustain. Energy 2018, 9, 453–461. [Google Scholar] [CrossRef]
- Jang, H.K.; Park, S.; Kim, M.H.; Kim, K.H.; Hong, K.Y. Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine. Renew. Energy 2019, 134, 526–537. [Google Scholar] [CrossRef]
- Cheng, Y.; Du, W.M.; Dai, S.S.; Ji, C.Y.; Collu, M.; Cocard, M.; Cui, L.; Yuan, Z.M. Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater. Renew. Sustain. Energy Rev. 2022, 161, 112299. [Google Scholar] [CrossRef]
- Ning, D.Z.; Zhao, X.L.; Zhao, M.; Hann, M.; Kang, H.G. Analytical investigation of hydrodynamic performance of a dual pontoon WEC-type breakwater. Appl. Ocean Res. 2017, 65, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.Z.; Zheng, Z.; Zhang, Q.; Jin, P.; Wang, L.; Ning, D.Z. Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters. Energy 2023, 271, 127077. [Google Scholar] [CrossRef]
- Cheng, Z.S.; Wang, K.; Gao, Z.; Moan, T. A comparative study on dynamic responses of spar-type floating horizontal and vertical axis wind turbines. Wind Energy 2017, 20, 305–323. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.E.; Miller, A.; DuPont, B. An analytical cost model for co-located floating wind-wave energy arrays. Renew. Energy 2019, 132, 885–897. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Ding, K.L.X.; Wang, J.H.; Wang, L.; Jin, P.; Tang, T.N. Experimental study on the interactions between wave groups in double-wave-group focusing. Phys. Fluids 2023, 35, 037118. [Google Scholar] [CrossRef]
- Oliveira-Pinto, S.; Rosa-Santos, P.; Taveira-Pinto, F. Assessment of the potential of combining wave and solar energy resources to power supply worldwide offshore oil and gas platforms. Energy Convers. Manag. 2020, 223, 113299. [Google Scholar] [CrossRef]
- Pérez-Collazo, C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Dai, S.Q.; Dai, S.S.; Ji, C.Y.; Collu, M.; Yuan, Z.M.; Incecik, A. Energy conversion and hydrodynamic analysis of multi-degree-of-freedom wave energy converters integrated into a semi-submersible platform. Energy Convers. Manag. 2022, 252, 115075. [Google Scholar] [CrossRef]
- Marina Platform. European Union Seventh Framework Programme (EU FP7) Marine Renewable Integrated Application Platform MARINA Platform. Available online: https://cordis.europa.eu/project/rcn/93425_en.html (accessed on 9 May 2023).
- M’zoughi, F.; Aboutalebi, P.; Garrido, I.; Garrido, A.J.; De La Sen, M. Complementary airflow control of oscillating water columns for floating offshore wind turbine stabilization. Mathematics 2021, 9, 1364. [Google Scholar] [CrossRef]
- Aboutalebi, P.; M’zoughi, F.; Garrido, I.; Garrido, A.J. Performance analysis on the use of oscillating water Column in Barge-based floating offshore wind turbines. Mathematics 2021, 9, 475. [Google Scholar] [CrossRef]
- Michailides, C.; Gao, Z.; Moan, T. Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type Wave Energy Converters. Renew. Energy 2016, 93, 675–690. [Google Scholar] [CrossRef]
- Michailides, C.; Gao, Z.; Moan, T. Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions. Mar. Struct. 2016, 50, 35–54. [Google Scholar] [CrossRef]
- Muliawan, M.J.; Karimirad, M.; Moan, T. Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter. Renew. Energy 2013, 50, 47–57. [Google Scholar] [CrossRef]
- Ghafari, H.R.; Ghassemi, H.; He, G.H. Numerical study of the Wavestar wave energy converter with multi-point-absorber around DeepCwind semisubmersible floating platform. Ocean Eng. 2021, 232, 109177. [Google Scholar] [CrossRef]
- Karimirad, M.; Michailides, C. Effects of misaligned wave and wind action on the response of the combined concept windWEC. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018. [Google Scholar]
- Cheng, Z.S.; Wen, T.R.; Ong, M.C.; Wang, K. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept. Energy 2019, 171, 190–204. [Google Scholar] [CrossRef]
- Ren, N.X.; Ma, Z.; Shan, B.; Ning, D.Z.; Ou, J.P. Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions. Renew. Energy 2020, 151, 966–974. [Google Scholar] [CrossRef]
- Wang, Y.P.; Zhang, L.X.; Michailides, C.; Wan, L.; Shi, W. Hydrodynamic response of a combined wind–wave marine energy structure. J. Mar. Sci. Eng. 2020, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.P.; Shi, W.; Michailides, C.; Wan, L.; Kim, H.; Li, X. WEC shape effect on the motion response and power performance of a combined wind-wave energy converter. Ocean Eng. 2022, 250, 111038. [Google Scholar] [CrossRef]
- Hu, J.J.; Zhou, B.Z.; Vogel, C.; Liu, P.; Willden, R.; Sun, K.; Zang, J.; Geng, J.; Jin, P.; Cui, L.; et al. Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters. Appl. Energy 2020, 269, 114998. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Hu, J.J.; Sun, K.; Liu, Y.Y.; Collu, M. Motion response and energy conversion performance of a heaving point absorber wave energy converter. Front. Energy Res. 2020, 8, 553295. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Hu, J.J.; Jin, P.; Sun, K.; Li, Y.Y.; Ning, D.Z. Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system. Energy 2023, 265, 126314. [Google Scholar] [CrossRef]
- Robertson, A.; Jonkman, J.; Masciola, M.; Song, H. Definition of the Semisubmersible Floating System for Phase II of OC4; Technical Report NREL/TP 5000-60601; National Renewable Energy Laboratory: Golden, CO, USA, 2014. [Google Scholar]
- Masciola, M.; Jonkman, J.; Robertson, A. Extending the capabilities of the mooring analysis program: A survey of dynamic mooring line theories for integration into FAST. In Proceedings of the 33rd International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, San Francisco, CA, USA, 8–13 June 2014. [Google Scholar]
- Ruehl, K.; Michelen, C.; Kanner, S. Preliminary verification and validation of WEC-Sim, An open-source wave energy conversion design tool. In Proceedings of the 33rd International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, San Francisco, CA, USA, 8–13 June 2014. [Google Scholar]
- Zhang, H.M.; Zhou, B.Z.; Vogel, C.; Willden, R.; Zang, J.; Geng, J. Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter. Appl. Energy 2020, 259, 114212. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhou, B.Z.; Vogel, C.; Willden, R.; Zang, J.; Zhang, L. Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter. Appl. Energy 2020, 257, 113996. [Google Scholar] [CrossRef]
Parameter | Symbol | |
---|---|---|
Diameter of main column | R0 | 6.5 m |
Diameter of offset (upper) columns | R1 | 12 m |
Diameter of base columns | R2 | 24 m |
Diameter of pontoons and cross braces | R3 | 1.6 m |
Spacing between offset columns | L0 | 50 m |
Total draft | D0 | 20 m |
Height of upper columns | D1 | 26 m |
Height of base columns | D2 | 6 m |
Elevation of main column above SWL | H0 | 10 m |
Elevation of offset columns above SWL | H1 | 12 m |
Height of tower | Hwind | 77.6m |
Total platform mass | M0 | 1.3473 × 107 kg |
Position of mass center below water surface | CM0 | 13.46 m |
Total roll moment of inertia (about mass center) | I22 + I33 | 6.827 × 109 kg·m2 |
Total pitch moment of inertia (about mass center) | I11 + I33 | 6.827 × 109 kg·m2 |
Total yaw moment of inertia (about mass center) | I11 + I22 | 1.2236E × 1010 kg·m2 |
Resonance period in surge direction | Tsurge | 104.7 s |
Resonance period in heave direction | Theave | 17.5 s |
Resonance period in pitch direction | Tpitch | 20.6 s |
Surge | Sway | Heave | Unit | Roll | Pitch | Yaw | Unit | |
---|---|---|---|---|---|---|---|---|
Surge | 6.08 × 104 | −2.51 × 10−2 | −2.84 × 10−2 | kg·s−2 | 4.72 × 101 | −1.05 × 105 | 6.25 × 10−1 | kg·m·s−2·rad−1 |
Sway | 2.40 × 10−1 | 6.08 × 104 | −1.21 × 10−2 | kg·s−2 | 1.05 × 105 | 4.66 × 101 | 1.46 × 100 | kg·m·s−2·rad−1 |
Heave | −2.40 × 10−2 | 2.61 × 10−1 | 1.83 × 104 | kg·s−2 | 2.76 × 10−1 | 1.44 × 10−1 | 9.40 × 101 | kg·m·s−2·rad−1 |
Roll | 4.71 × 101 | 1.06 × 105 | −2.63 × 10−2 | kg·m·s−2 | 8.38 × 107 | 3.00 × 103 | 1.96 × 101 | kg·m2·s−2·rad−1 |
Pitch | −1.06 × 105 | 4.70 × 101 | 1.04 × 10−1 | kg·m·s−2 | −2.93 × 10−3 | 8.38 × 107 | 1.27 × 101 | kg·m2·s−2·rad−1 |
Yaw | 5.19 × 10−1 | 1.47 × 100 | −9.38 × 101 | kg·m·s−2 | 2.58 × 101 | 1.55 × 101 | 1.12 × 108 | kg·m2·s−2·rad−1 |
Sij | Tj(s) | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 | Sum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hi(m) | |||||||||||||||
0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | ||
0.3 | 0.1 | 2.4 | 3.2 | 1.5 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6 | ||
0.4 | 0.2 | 10.3 | 15.8 | 5.4 | 1.5 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33.8 | ||
0.5 | 0.0 | 3.6 | 7.5 | 5.3 | 2.2 | 0.9 | 0.5 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 20.3 | ||
0.6 | 0.0 | 1.8 | 3.8 | 3.3 | 2.1 | 0.4 | 0.4 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 12.1 | ||
0.7 | 0.0 | 0.6 | 2.6 | 2.2 | 0.9 | 0.1 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 7.0 | ||
0.8 | 0.0 | 0.2 | 2.2 | 1.4 | 0.9 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 5.0 | ||
0.9 | 0.0 | 0.1 | 1.1 | 1.0 | 0.8 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | ||
1.0 | 0.0 | 0.1 | 0.6 | 0.9 | 0.7 | 0.2 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 2.6 | ||
1.1 | 0.0 | 0.0 | 0.2 | 0.6 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 1.7 | ||
1.2 | 0.0 | 0.0 | 0.1 | 0.5 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 1.4 | ||
1.3 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ||
1.4 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ||
1.5 | 0.0 | 0.0 | 0.0 | 0.2 | 0.4 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.8 | ||
1.6 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | ||
1.7 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | ||
1.8 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | ||
1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | ||
2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | ||
2.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | ||
Sum | 0.3 | 19.1 | 37.3 | 23.3 | 12.0 | 3.4 | 2.1 | 1.0 | 0.9 | 0.3 | 0.3 | 0.2 | 100.0 |
2r/d | Bottom Shape | d1 * (m) | d2 * (m) | 2r (m) | n | Total Damping (kg·s−2) | Radiation Damping (kg·s−2) | fλ,vist |
---|---|---|---|---|---|---|---|---|
3.0 | flat | 3.779 | 0.000 | 11.338 | 6 | 1.7639 × 105 | 9.1514 × 104 | 1.93 |
90° conical | 1.890 | 5.669 | 11.338 | 1.2728 × 105 | 1.2470 × 105 | 1.02 | ||
hemispherical | 0.000 | 5.669 | 11.338 | 1.2448 × 105 | 1.2939 × 105 | 0.98 | ||
2.5 | flat | 4.016 | 0.000 | 10.040 | 6 | 1.2577 × 105 | 5.9640 × 104 | 2.11 |
90° conical | 2.343 | 5.020 | 10.040 | 8.3451 × 104 | 7.7353 × 104 | 1.08 | ||
hemispherical | 0.669 | 5.020 | 10.040 | 7.9106 × 104 | 7.7482 × 104 | 1.02 | ||
1.5 | flat | 4.758 | 0.000 | 7.137 | 9 | 5.8053 × 104 | 1.2687 × 104 | 4.58 |
90° conical | 3.568 | 3.568 | 7.137 | 3.7767 × 104 | 1.9031 × 104 | 1.98 | ||
hemispherical | 2.379 | 3.568 | 7.137 | 2.8194 × 104 | 1.9446 × 104 | 1.45 | ||
1.0 | flat | 5.216 | 0.000 | 5.216 | 12 | 3.4508 × 104 | 4.6660 × 103 | 7.40 |
90° concal | 4.346 | 2.608 | 5.216 | 2.2355 × 104 | 5.7253 × 103 | 3.91 | ||
hemispherical | 3.477 | 2.608 | 5.216 | 2.0443 × 104 | 5.7923 × 103 | 3.53 |
2r/d | d (m) | 2r (m) | n | L1 (m) | L2 (m) |
---|---|---|---|---|---|
3.00 | 3.779 | 11.338 | 6 | 22.676 | 13.662 |
2.50 | 4.016 | 10.040 | 6 | 20.080 | 14.960 |
1.50 | 4.758 | 7.137 | 9 | 14.274 | 10.726 |
1.00 | 5.216 | 5.216 | 12 | 10.432 | 9.353 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Hu, J.; Zhang, Q.; Wang, L.; Jing, F.; Collu, M. Optimal Design and Performance Analysis of a Hybrid System Combining a Semi-Submersible Wind Platform and Point Absorbers. J. Mar. Sci. Eng. 2023, 11, 1190. https://doi.org/10.3390/jmse11061190
Zhou B, Hu J, Zhang Q, Wang L, Jing F, Collu M. Optimal Design and Performance Analysis of a Hybrid System Combining a Semi-Submersible Wind Platform and Point Absorbers. Journal of Marine Science and Engineering. 2023; 11(6):1190. https://doi.org/10.3390/jmse11061190
Chicago/Turabian StyleZhou, Binzhen, Jianjian Hu, Qi Zhang, Lei Wang, Fengmei Jing, and Maurizio Collu. 2023. "Optimal Design and Performance Analysis of a Hybrid System Combining a Semi-Submersible Wind Platform and Point Absorbers" Journal of Marine Science and Engineering 11, no. 6: 1190. https://doi.org/10.3390/jmse11061190
APA StyleZhou, B., Hu, J., Zhang, Q., Wang, L., Jing, F., & Collu, M. (2023). Optimal Design and Performance Analysis of a Hybrid System Combining a Semi-Submersible Wind Platform and Point Absorbers. Journal of Marine Science and Engineering, 11(6), 1190. https://doi.org/10.3390/jmse11061190