FOXO-like Gene Is Involved in the Regulation of 20E Pathway through mTOR in Eriocheir sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crabs and Sample Preparation
2.2. Identification and Sequence Analysis of EsFOXO-like
2.3. FOXO Inhibitor and Rapamycin Treatment
2.4. RNA Isolation, cDNA Synthesis and Quantitative Real-Time PCR Analysis
2.5. Detection of 20-Hydroxyecdysone (20E) Concentration
2.6. RNA Interference Assay
2.7. Western Blotting Analysis
2.8. Statistical Analysis
3. Results
3.1. Sequence and Phylogenetic Analysis of EsFOXO-like Gene
3.2. The Distribution of EsFOXO-like Gene in Different Tissues
3.3. The EsFOXO-like mRNA and Protein Expression Characteristic in Hepatopancreas at Three Molting Stages
3.4. The EsFOXO-like mRNA and Protein Expression Levels after Inhibition of EsFOXO-like
3.5. The 20E Concentration and Molting-Related Genes mRNA Expression Levels after EsFOXO-like Inhibition
3.6. The mRNA Expression Level of EsmTOR after EsFOXO-like Inhibition
3.7. The EsmTOR mRNA Transcripts after AS1842856 and Rapamycin Injection
3.8. The 20E Concentration and EsEcR, EsRXR and EsMIH mRNA Expression Levels in AS1842856 + Rapamycin Group after Inhibiting mTOR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calissi, G.; Lam, E.W.; Link, W. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Discov. 2021, 20, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Jiramongkol, Y.; Lam, E.W. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 2020, 39, 681–709. [Google Scholar] [CrossRef]
- Li, C.; Hong, P.P.; Yang, M.C.; Zhao, X.F.; Wang, J.X. FOXO regulates the expression of antimicrobial peptides and promotes phagocytosis of hemocytes in shrimp antibacterial immunity. PLoS Pathog. 2021, 17, e1009479. [Google Scholar] [CrossRef] [PubMed]
- Arden, K.C. FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 2008, 27, 2345–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boura, E.; Silhan, J.; Herman, P.; Vecer, J.; Sulc, M.; Teisinger, J.; Obsilova, V.; Obsil, T. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J. Biol. Chem. 2007, 282, 8265–8275. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.L.; Halay, E.D.; Lai, E.; Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 1993, 364, 412–420. [Google Scholar] [CrossRef]
- Jacobs, F.M.; van der Heide, L.P.; Wijchers, P.J.; Burbach, J.P.; Hoekman, M.F.; Smidt, M.P. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J. Biol. Chem. 2003, 278, 35959–35967. [Google Scholar] [CrossRef] [Green Version]
- Arden, K.C.; Biggs, W.H. Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling. Arch. Biochem. Biophys. 2002, 403, 292–298. [Google Scholar] [CrossRef]
- van der Vos, K.E.; Coffer, P.J. The extending network of FOXO transcriptional target genes. Antioxid. Redox Signal. 2011, 14, 579–592. [Google Scholar] [CrossRef]
- Dong, X.; Zhai, Y.; Zhang, J.; Sun, Z.; Chen, J.; Chen, J.; Zhang, W. Fork head transcription factor is required for ovarian mature in the brown planthopper, Nilaparvata lugens (Stål). BMC Mol. Biol. 2011, 12, 53. [Google Scholar] [CrossRef] [Green Version]
- Zeng, B.; Huang, Y.; Xu, J.; Shiotsuki, T.; Bai, H.; Palli, S.R.; Huang, Y.; Tan, A. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori. J. Biol. Chem. 2017, 292, 11659–11669. [Google Scholar] [CrossRef] [Green Version]
- Giannakou, M.E.; Goss, M.; Jünger, M.A.; Hafen, E.; Leevers, S.J.; Partridge, L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004, 305, 361. [Google Scholar] [CrossRef]
- Wu, Y.B.; Yang, W.J.; Xie, Y.F.; Xu, K.K.; Tian, Y.; Yuan, G.R.; Wang, J.J. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Gene 2016, 578, 219–224. [Google Scholar] [CrossRef]
- Süren-Castillo, S.; Abrisqueta, M.; Maestro, J.L. FoxO inhibits juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem. Mol. Biol. 2012, 42, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Sim, C.; Denlinger, D.L. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl. Acad. Sci. USA 2008, 105, 6777–6781. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.J.; Zhao, W.L.; Jing, Y.P.; Song, Q.; Zhang, X.Q.; Wang, J.X.; Zhao, X.F. 20-Hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting. Development 2016, 143, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Yu, N.; Smagghe, G. FoxO mediates the timing of pupation through regulating ecdysteroid biosynthesis in the red flour beetle, Tribolium castaneum. Gen. Comp. Endocrinol. 2018, 258, 149–156. [Google Scholar] [CrossRef]
- Hossain, M.S.; Liu, Y.; Zhou, S.; Li, K.; Tian, L.; Li, S. 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis in Bombyx fat body. Insect Biochem. Mol. Biol. 2013, 43, 829–838. [Google Scholar] [CrossRef]
- Zhao, Y.; Nie, X.; Han, Z.; Liu, P.; Xu, H.; Huang, X.; Ren, Q. The forkhead box O transcription factor regulates lipase and anti-microbial peptide expressions to promote lipid catabolism and improve innate immunity in the Eriocheir sinensis with hepatopancreatic necrosis disease. Fish Shellfish Immunol. 2022, 124, 107–117. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Ma, W.M.; Yang, W.J.; Yang, J.S. The complete mitogenome of the lined shore crab Pachygrapsus crassipes Randall 1840 (Crustacea: Decapoda: Grapsidae). Mitochondrial DNA 2014, 25, 263–264. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Wei, J.; Sun, X.; Yuan, J.; Li, F.; Xiang, J. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei. PLoS ONE 2015, 10, e0144350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Wang, J.; Yue, W.; Chen, J.; Gaughan, S.; Lu, W.; Lu, G.; Wang, C. Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Sci. Rep. 2015, 5, 14015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, E.S.; Mykles, D.L. Regulation of crustacean molting: A review and our perspectives. Gen. Comp. Endocrinol. 2011, 172, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Aranda, A.; Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 2001, 81, 1269–1304. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Henrich, V.C. Arthropod nuclear receptors and their role in molting. FEBS J. 2009, 276, 6128–6157. [Google Scholar] [CrossRef] [Green Version]
- Techa, S.; Chung, J.S. Ecdysone and retinoid-X receptors of the blue crab, Callinectes sapidus: Cloning and their expression patterns in eyestalks and Y-organs during the molt cycle. Gene 2013, 527, 139–153. [Google Scholar] [CrossRef]
- Techa, S.; Chung, J.S. Ecdysteroids regulate the levels of Molt-Inhibiting Hormone (MIH) expression in the blue crab, Callinectes sapidus. PLoS ONE 2015, 10, e0117278. [Google Scholar] [CrossRef]
- Mykles, D.L.; Chang, E.S. Hormonal control of the crustacean molting gland: Insights from transcriptomics and proteomics. Gen. Comp. Endocrinol. 2020, 294, 113493. [Google Scholar] [CrossRef]
- Shyamal, S.; Das, S.; Guruacharya, A.; Mykles, D.L.; Durica, D.S. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci. Rep. 2018, 8, 7307. [Google Scholar] [CrossRef] [Green Version]
- Mykles, D.L. Signaling Pathways That Regulate the Crustacean Molting Gland. Front. Endocrinol. 2021, 12, 674711. [Google Scholar] [CrossRef]
- Gu, S.H.; Young, S.C.; Lin, J.L.; Lin, P.L. Involvement of PI3K/Akt signaling in PTTH-stimulated ecdysteroidogenesis by prothoracic glands of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2011, 41, 197–202. [Google Scholar] [CrossRef]
- Gu, S.H.; Yeh, W.L.; Young, S.C.; Lin, P.L.; Li, S. TOR signaling is involved in PTTH-stimulated ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2012, 42, 296–303. [Google Scholar] [CrossRef]
- Lin, A.; Yao, J.; Zhuang, L.; Wang, D.; Han, J.; Lam, E.W.; Gan, B. The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene 2014, 33, 3183–3194. [Google Scholar] [CrossRef] [Green Version]
- Teleman, A.A. Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem. J. 2009, 425, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Mirth, C.K.; Shingleton, A.W. Integrating body and organ size in Drosophila: Recent advances and outstanding problems. Front. Endocrinol. 2012, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Rewitz, K.F.; Yamanaka, N.; O’Connor, M.B. Developmental checkpoints and feedback circuits time insect maturation. Curr. Top. Dev. Biol. 2013, 103, 1–33. [Google Scholar]
- He, J.; Wu, X.; Li, J.Y.; Huang, Q.; Huang, Z.H.; Cheng, Y.X. Comparison of the culture performance and profitability of wild-caught and captive pond-reared Chinese mitten crab (Eriocheir sinensis) juveniles reared in grow-out ponds: Implications for seed selection and genetic selection programs. Aquaculture 2014, 434, 48–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Liu, Y.; Geng, X.; Wang, X.; Wang, Y.; Sun, J.; Yang, W. Molt-inhibiting hormone from Chinese mitten crab (Eriocheir sinensis): Cloning, tissue expression and effects of recombinant peptide on ecdysteroid secretion of YOs. Gen. Comp. Endocrinol. 2011, 173, 467–474. [Google Scholar] [CrossRef]
- Chen, H.; Gu, X.; Zeng, Q.; Mao, Z.; Liang, X.; Martyniuk, C.J. Carbamazepine disrupts molting hormone signaling and inhibits molting and growth of Eriocheir sinensis at environmentally relevant concentrations. Aquat. Toxicol. 2019, 208, 138–145. [Google Scholar] [CrossRef]
- Li, C.; Huang, L.; Zhang, Y.; Guo, X.; Cao, N.; Yao, C.; Duan, L.; Li, X.; Pang, S. Effects of triazole plant growth regulators on molting mechanism in Chinese mitten crab (Eriocheir sinensis). Fish Shellfish Immunol. 2022, 131, 646–653. [Google Scholar] [CrossRef]
- Söderhäll, K.; Smith, V.J. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev. Comp. Immunol. 1983, 7, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yi, Q.; Lian, X.; Xu, S.; Yang, C.; Sun, J.; Wang, L.; Song, L. The involvement of ecdysone and ecdysone receptor in regulating the expression of antimicrobial peptides in Chinese mitten crab, Eriocheir sinensis. Dev. Comp. Immunol. 2020, 111, 103757. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, C.; Xu, Q.; Qu, C.; Sun, J.; Huang, S.; Kong, N.; Lv, X.; Liu, Z.; Wang, L.; et al. Beclin-1 is involved in the regulation of antimicrobial peptides expression in Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immunol. 2019, 89, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Liu, H.; Wang, H.S.; Cao, M.T.; Meng, X.J.; Xiang, Y.L.; Zhang, Y.Q.; Shu, F.; Zhang, Q.G.; Shan, H.; et al. Histone deacetylase inhibitors promote epithelial-mesenchymal transition in Hepatocellular Carcinoma via AMPK-FOXO1-ULK1 signaling axis-mediated autophagy. Theranostics 2020, 10, 10245–10261. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Fan, S.; Wang, D.; Huyan, T.; Chen, J.; Chen, J.; Su, J.; Li, X.; Wang, Z.; Xie, S.; et al. FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2481–2494. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Qin, Y.; Song, Y.; Zhao, K.; Pan, W.; Nan, X.; Wang, Y.; Wang, Q.; Li, W. A novel Ig domain-containing C-type lectin triggers the intestine-hemocyte axis to regulate antibacterial immunity in crab. J. Immunol. 2022, 208, 2343–2362. [Google Scholar] [CrossRef]
- Bulut-Karslioglu, A.; Biechele, S.; Jin, H.; Macrae, T.A.; Hejna, M.; Gertsenstein, M.; Song, J.S.; Ramalho-Santos, M. Inhibition of mTOR induces a paused pluripotent state. Nature 2016, 540, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Abuhagr, A.M.; MacLea, K.S.; Mudron, M.R.; Chang, S.A.; Chang, E.S.; Mykles, D.L. Roles of mechanistic target of rapamycin and transforming growth factor-β signaling in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 198, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Peng, C.; Wang, P.; Yan, L.; Fan, S.; Qiu, L. Identification of a Shrimp E3 Ubiquitin Ligase TRIM50-like involved in restricting White Spot Syndrome virus proliferation by its mediated autophagy and ubiquitination. Front. Immunol. 2021, 12, 682562. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Yue, W.; Huang, S.; Chen, J.; Chen, Y.; Wang, C. Structure and function of the alternatively spliced isoforms of the ecdysone receptor gene in the Chinese mitten crab, Eriocheir sinensis. Sci. Rep. 2017, 7, 12993. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Lin, S.; Zhang, M.; Gong, Y.; Ma, H.; Tran, N.T.; Zhang, Y.; Li, S. SpRab11a-regulated exosomes inhibit bacterial infection through the activation of antilipopolysaccharide factors in crustaceans. J. Immunol. 2022, 209, 710–722. [Google Scholar] [CrossRef]
- Wang, F.; Yang, Z.; Li, J.; Ma, Y.; Tu, Y.; Zeng, X.; Wang, Q.; Jiang, Y.; Huang, S.; Yi, Q. The involvement of hypoxia inducible factor-1α on the proportion of three types of haemocytes in Chinese mitten crab under hypoxia stress. Dev. Comp. Immunol. 2023, 140, 104598. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Su, S.; Tang, Y.; Xu, G.; Li, J.; Yu, F.; Li, H.; Song, C.; Liang, M.; et al. Comparative transcriptome analysis on the regulatory mechanism of thoracic ganglia in Eriocheir sinensis at post-molt and inter-molt Stages. Life 2022, 12, 1181. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- van der Vos, K.E.; Coffer, P.J. FOXO-binding partners: It takes two to tango. Oncogene 2008, 27, 2289–2299. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xia, P.; Huang, G.; Zhu, P.; Liu, J.; Ye, B.; Du, Y.; Fan, Z. FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat. Commun. 2016, 7, 11023. [Google Scholar] [CrossRef]
- Iyer, S.; Ambrogini, E.; Bartell, S.M.; Han, L.; Roberson, P.K.; de Cabo, R.; Jilka, R.L.; Weinstein, R.S.; O’Brien, C.A.; Manolagas, S.C.; et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J. Clin. Investig. 2013, 123, 3409–3419. [Google Scholar] [CrossRef]
- Barbieri, M.; Bonafè, M.; Franceschi, C.; Paolisso, G. Insulin/IGF-I-signaling pathway: An evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E1064–E1071. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Hahm, J.H.; Park, S.; Ha, G.; Chang, G.E.; Jeong, H.; Kim, H.; Kim, S.; Cheong, E.; Paik, Y.K. A conserved neuronal DAF-16/FoxO plays an important role in conveying pheromone signals to elicit repulsion behavior in Caenorhabditis elegans. Sci. Rep. 2017, 7, 7260. [Google Scholar] [CrossRef] [Green Version]
- Obsil, T.; Obsilova, V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 2008, 27, 2263–2275. [Google Scholar] [CrossRef] [Green Version]
- Mazet, F.; Yu, J.K.; Liberles, D.A.; Holland, L.Z.; Shimeld, S.M. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene 2003, 316, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Marshall, C.B.; Yamamoto, K.; Li, G.Y.; Plevin, M.J.; You, H.; Mak, T.W.; Ikura, M. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J. Mol. Biol. 2008, 384, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Rőszer, T. The invertebrate midintestinal gland (“hepatopancreas”) is an evolutionary forerunner in the integration of immunity and metabolism. Cell Tissue Res. 2014, 358, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, A.; Li, S.; Wang, G.; Ye, H. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain. Sci. Rep. 2020, 10, 13102. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ni, H.; Zhang, X.; Sun, Q.; Wu, X.; He, J. Comparative transcriptomics reveals the immune dynamics during the molting cycle of swimming crab Portunus trituberculatus. Front. Immunol. 2022, 13, 1037739. [Google Scholar] [CrossRef]
- Hosaka, T.; Biggs, W.H.; Tieu, D.; Boyer, A.D.; Varki, N.M.; Cavenee, W.K.; Arden, K.C. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl. Acad. Sci. USA 2004, 101, 2975–2980. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Hron, J.D.; Peng, S.L. Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 2004, 21, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Cao, Q.; Peng, Y.; Zhang, Q.J.; Castrillon, D.H.; DePinho, R.A.; Liu, Z.P. FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology 2009, 137, 1403–1414. [Google Scholar] [CrossRef] [Green Version]
- Salih, D.A.M.; Rashid, A.J.; Colas, D.; de la Torre-Ubieta, L.; Zhu, R.P.; Morgan, A.A.; Santo, E.E.; Ucar, D.; Devarajan, K.; Cole, C.J.; et al. FoxO6 regulates memory consolidation and synaptic function. Genes Dev. 2012, 26, 2780–2801. [Google Scholar] [CrossRef] [Green Version]
- Panganiban, G.; Sebring, A.; Nagy, L.; Carroll, S. The development of crustacean limbs and the evolution of arthropods. Science 1995, 270, 1363–1366. [Google Scholar] [CrossRef]
- Hopkins, P.M.; Chung, A.C.-K.; Durica, D.S. Limb Regeneration in the Fiddler Crab, Uca pugilator: Hormonal and Growth Factor Control. Am. Zool. 2001, 41, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.; Postel, U.; Mrinalini; Turner, L.M.; Palmer, J.; Webster, S.G. The adaptive significance of crustacean hyperglycaemic hormone (CHH) in daily and seasonal migratory activities of the Christmas Island red crab Gecarcoidea natalis. J. Exp. Biol. 2010, 213 Pt 17, 3062–3073. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Lyons, R.E.; Hurwood, D.A.; Mather, P.B. Genes and growth performance in crustacean species: A review of relevant genomic studies in crustaceans and other taxa. Rev. Aquacult. 2013, 5, 77–110. [Google Scholar] [CrossRef]
- Li, K.; Jia, Q.Q.; Li, S. Juvenile hormone signaling—A mini review. Insect. Sci. 2019, 26, 600–606. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, N.; Jiang, H.; Meng, X.; Ge, H.; Yang, X.; Xu, X.; Qian, K.; Park, Y.; Zheng, Y.; et al. 20-hydroxyecdysone regulates expression of methioninesulfoxide reductases through transcription factor FOXO in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 2021, 131, 103546. [Google Scholar] [CrossRef]
- Yu, F.; Wei, R.; Yang, J.; Liu, J.; Yang, K.; Wang, H.; Mu, Y.; Hong, T. FoxO1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp. Cell Res. 2018, 362, 227–234. [Google Scholar] [CrossRef]
- Zou, P.; Liu, L.; Zheng, L.; Liu, L.; Stoneman, R.E.; Cho, A.; Emery, A.; Gilbert, E.R.; Cheng, Z. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle 2014, 13, 3759–3767. [Google Scholar] [CrossRef] [Green Version]
- Durica, D.S.; Arthur, C.-K.C.; Hopkins, P.M. Characterization of EcR and RXR gene homologs and receptor expression during the molt cycle in the crab, Uca pugilator. Am. Zool. 1999, 39, 758–773. [Google Scholar] [CrossRef] [Green Version]
- Riddiford, L.M.; Hiruma, K.; Zhou, X.; Nelson, C.A. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 2003, 33, 1327–1338. [Google Scholar] [CrossRef]
- Koyama, T.; Rodrigues, M.A.; Athanasiadis, A.; Shingleton, A.W.; Mirth, C.K. Nutritional control of body size through FoxO-Ultraspiracle mediated ecdysone biosynthesis. eLife 2014, 3, e03091. [Google Scholar] [CrossRef] [Green Version]
- Mirth, C.K.; Tang, H.Y.; Makohon-Moore, S.C.; Salhadar, S.; Gokhale, R.H.; Warner, R.D.; Koyama, T.; Riddiford, L.M.; Shingleton, A.W. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc. Natl. Acad. Sci. USA 2014, 111, 7018–7023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuhagr, A.M.; Maclea, K.S.; Chang, E.S.; Mykles, D.L. Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: Cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2014, 168, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Goldbraikh, D.; Neufeld, D.; Eid-Mutlak, Y.; Lasry, I.; Gilda, J.E.; Parnis, A.; Cohen, S. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep. 2020, 21, e48791. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Gupta, A.; Stocker, H. FoxO restricts growth and differentiation of cells with elevated TORC1 activity under nutrient restriction. PLoS Genet. 2018, 14, e1007347. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M.N. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10, 868–880. [Google Scholar] [CrossRef]
- Kemirembe, K.; Liebmann, K.; Bootes, A.; Smith, W.A.; Suzuki, Y. Amino acids and TOR signaling promote prothoracic gland growth and the initiation of larval molts in the tobacco hornworm Manduca sexta. PLoS ONE 2012, 7, e44429. [Google Scholar] [CrossRef] [Green Version]
- Deng, P.; Xu, Q.Y.; Fu, K.Y.; Guo, W.C.; Li, G.Q. RNA interference against the putative insulin receptor substrate gene chico affects metamorphosis in Leptinotarsa decemlineata. Insect. Biochem. Mol. Biol. 2018, 103, 1–11. [Google Scholar] [CrossRef]
Primer Name | Sequences (5′–3′) | Tm (°C) | Size (bp) | Efficiency (%) |
---|---|---|---|---|
Cloning primers | ||||
EsFOXO-F | ATGACAAGTTTCTTCTCGCT | 52.5 | 852 | |
EsFOXO-R | CTAGAGCAGGGGCAGGGG | 62.3 | ||
qRT-PCR primers | ||||
EsFOXO-like-F | GGCTACGTGGAGAGCGAGGA | 60.6 | 142 | 99% |
EsFOXO-like-R | CCTGGGCGATCAGGTCTGC | 60.0 | ||
EsEcR-F | GAGAGAACAGAAAAAGGCACGA | 57.3 | 105 | 102% |
EsEcR-R | ATGGCTGACATTGGACTAATGG | 58.8 | ||
EsMIH-F | TGAAGACTGCGCCAACATCT | 56.2 | 90 | 103% |
EsMIH-R | CGTGAGGTCGTCCTTCTGTG | 60.4 | ||
EsRXR-F | AGGCTTCAGGTTCCACTCGC | 58.3 | 131 | 98% |
EsRXR-R | GTGTACGCTGCCCTGGAGGA | 60.1 | ||
EsmTOR-F | CTTGAGGAGTTCTACCCTGCGT | 60.5 | 115 | 101% |
EsmTOR-R | GGACCACCTGGGCAAGGTAT | 56.9 | ||
Esβ-actin-F | GCATCCACGAGACCACTTACA | 56.4 | 223 | 102% |
Esβ-actin-R | CTCCTGCTTGCTGATCCACATC | 60.1 | ||
RNAi primers | ||||
EGFP-RNAi-F | TAATACGACTCACTATAGGGCGACGTAAACGGCCACAAGT | |||
EGFP-RNAi-R | TAATACGACTCACTATAGGGCTTGTACAGCTCGTCCATGC | |||
EsFOXO-RNAi-F | TAATACGACTCACTATAGGGATGACAAGTTTCTTCTCGCTGGTGA | |||
EsFOXO-RNAi-R | TAATACGACTCACTATAGGGATCAGGTCTGCATAGGACATGTTGC |
Species | Gene Name | Accession Number | Query Cover % | Identity % |
---|---|---|---|---|
Azumapecten farreri | FOXO-like protein | QFR 39803.1 | 43 | 53.66 |
Crassostrea gigas | forkhead box protein O | XM 011416057.3 | 43 | 60.16 |
Mytilus coruscus | FOXO3 | CAC 5392548.1 | 43 | 57.03 |
Sepia pharaonis | FOXO3 | CAE 1327826.1 | 39 | 60.53 |
Asterias rubens | forkhead box protein O3-like | XP 033635399.1 | 43 | 54.48 |
Strongylocentrotus purpuratus | forkhead transcription factor O | DQ 286746.2 | 43 | 49.30 |
Dendroctonus ponderosae | forkhead box protein O isoform X3 | XP 048524044.1 | 52 | 51.23 |
Sitophilus oryzae | forkhead box protein O isoform X2 | XP 030755757.1 | 50 | 59.17 |
Drosophila melanogaster | forkhead box, sub-group O isoform C | NP 996204.1 | 42 | 55.37 |
Spodoptera frugiperda | forkhead box protein O-like isoform X2 | XP 035439085.1 | 44 | 54.33 |
Colias croceus | forkhead box protein O isoform X1 | XP 045494104.1 | 54 | 47.67 |
Penaeus vannamei | forkhead box protein O-like isoform X2 | XP 027228067.1 | 40 | 75.00 |
Penaeus monodon | forkhead box protein O4-like | XP 037792098.1 | 40 | 88.37 |
Portunus trituberculatus | Forkhead box protein O | MPC 39137.1 | 42 | 88.55 |
Penaeus japonicus | Fork box protein O | MW080526.1 | 67 | 83.51 |
Clupea harengus | forkhead box protein O1-B-like | XP 031428678.1 | 30 | 83.33 |
Salvelinus alpinus | forkhead box protein O1 | XP 023824765.1 | 45 | 85.45 |
Orcinus orca | forkhead box protein O6 | XP 033277871.1 | 43 | 52.67 |
Oryx dammah | forkhead box protein O6 | XP 040087454.1 | 43 | 52.67 |
Homo sapiens | forkhead box protein O6 | NP 001278210.2 | 43 | 49.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ma, Y.; Yang, Z.; Wang, F.; Li, J.; Jiang, Y.; Yang, D.; Yi, Q.; Huang, S. FOXO-like Gene Is Involved in the Regulation of 20E Pathway through mTOR in Eriocheir sinensis. J. Mar. Sci. Eng. 2023, 11, 1225. https://doi.org/10.3390/jmse11061225
Li J, Ma Y, Yang Z, Wang F, Li J, Jiang Y, Yang D, Yi Q, Huang S. FOXO-like Gene Is Involved in the Regulation of 20E Pathway through mTOR in Eriocheir sinensis. Journal of Marine Science and Engineering. 2023; 11(6):1225. https://doi.org/10.3390/jmse11061225
Chicago/Turabian StyleLi, Jiaming, Yuhan Ma, Zhichao Yang, Fengchi Wang, Jialin Li, Yusheng Jiang, Dazuo Yang, Qilin Yi, and Shu Huang. 2023. "FOXO-like Gene Is Involved in the Regulation of 20E Pathway through mTOR in Eriocheir sinensis" Journal of Marine Science and Engineering 11, no. 6: 1225. https://doi.org/10.3390/jmse11061225
APA StyleLi, J., Ma, Y., Yang, Z., Wang, F., Li, J., Jiang, Y., Yang, D., Yi, Q., & Huang, S. (2023). FOXO-like Gene Is Involved in the Regulation of 20E Pathway through mTOR in Eriocheir sinensis. Journal of Marine Science and Engineering, 11(6), 1225. https://doi.org/10.3390/jmse11061225