B-FLOWS: Biofouling Focused Learning and Observation for Wide-Area Surveillance in Tidal Stream Turbines
Abstract
:1. Introduction
2. Related Works
2.1. Advances in Object Detection Networks
2.2. Evolution of Biofouling Detection Techniques
2.3. Biofouling Detection in Tidal Stream Turbines
3. Necessary Background
3.1. Biofouling in Images
3.2. YOLO
3.3. Evaluation Metrics
4. Proposed Methodology
4.1. Dataset Presentation
4.2. Proposed Model Evaluation
- Fouled turbines detected as clean.
- Clean turbines detected as fouled.
- Background detected as either clean or fouled.
4.3. Proposed Model Comparison
4.4. Data Augmentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashid, H.; Benbouzid, M.; Titah-Benbouzid, H.; Amirat, Y.; Mamoune, A. Tidal stream turbine biofouling detection and estimation: A review-based roadmap. J. Mar. Sci. Eng. 2023, 11, 908. [Google Scholar] [CrossRef]
- Hopkins, G.; Davidson, I.; Georgiades, E.; Floerl, O.; Morrisey, D.; Cahill, P. Managing biofouling on submerged static artificial structures in the marine environment–Assessment of current and emerging approaches. Front. Marine Sci. 2021, 8, 759194. [Google Scholar] [CrossRef]
- Thanthirige, T.R.M.; Goggins, J.; Flanagan, M.; Finnegan, W. A state-of-the-art review of structural testing of tidal turbine blades. Energies 2023, 16, 4061. [Google Scholar] [CrossRef]
- Titah-Benbouzid, H.; Benbouzid, M.E.H. Biofouling issue on marine renewable energy converters: A state of the art review on impacts and prevention. Int. J. Energy Convers. 2017, 5, 67–78. [Google Scholar] [CrossRef]
- Huisman, K.T.; Blankert, B.; Horn, H.; Wagner, M.; Vrouwenvelder, J.S.; Bucs, S.; Fortunato, L. Noninvasive monitoring of fouling in membrane processes by optical coherence tomography: A review. J. Membr. Sci. 2023, 692, 122291. [Google Scholar] [CrossRef]
- Rashid, H.; Benbouzid, M.; Titah-Benbouzid, H.; Amirat, Y.; Berghout, T.; Mamoune, A. Mapping a Machine Learning Path Forward for Tidal Stream Turbines Biofouling Detection and Estimation. In Proceedings of the IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Ancha, V.K.; Sibai, F.N.; Gonuguntla, V.; Vaddi, R. Utilizing YOLO Models for Real-World Scenarios: Assessing Novel Mixed Defect Detection Dataset in PCBs. IEEE Access 2024, 12, 100983–100990. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, M.; Yang, Q.; Yao, H.; Wang, H. Underwater-YCC: Underwater target detection optimization algorithm based on YOLOv7. J. Mar. Sci. Eng. 2023, 11, 995. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Wang, D.; Hu, F.; Yu, H.; Fan, J. A Defect Detection Method for Substation Equipment Based on Image Data Generation and Deep Learning. IEEE Access 2024, 12, 105042–105054. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Wang, Y.-Q. An analysis of the Viola-Jones face detection algorithm. Image Process. Line 2014, 4, 128–148. [Google Scholar] [CrossRef]
- Lei, J.; Luo, X.; Fang, L.; Wang, M.; Gu, Y. Region-enhanced convolutional neural network for object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5693–5702. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack detection and comparison study based on faster R-CNN and mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef]
- Magalhães, S.A.; Castro, L.; Moreira, G.; Santos, F.N.D.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the single-shot multibox detector and YOLO deep learning models for the detection of tomatoes in a greenhouse. Sensors 2021, 21, 3569. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Xu, X.; Liang, A.; Yun, Y.; Li, L.; Hao, F.; Bai, J.; Ma, D. Research on a lightweight method for maize seed quality detection based on improved YOLOv8. IEEE Access 2024, 12, 32927–32937. [Google Scholar] [CrossRef]
- Qin, X.; Yu, C.; Liu, B.; Zhang, Z. YOLO8-FASG: A high-accuracy fish identification method for underwater robotic system. IEEE Access 2024, 12, 73354–73362. [Google Scholar] [CrossRef]
- Gai, R.; Liu, Y.; Xu, G. TL-YOLOv8: A blueberry fruit detection algorithm based on improved YOLOv8 and transfer learning. IEEE Access 2024, 12, 86378–86390. [Google Scholar] [CrossRef]
- Diwan, T.; G, A.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2023, 82, 9243–9275. [Google Scholar] [CrossRef]
- Ragab, M.G.; Abdulkader, S.J.; Muneer, A.; Alqushaibi, A.; Sumiea, E.H.; Qureshi, R.; Al-Selwi, S.M.; Alhussian, H. A comprehensive systematic review of YOLO for medical object detection (2018 to 2023). IEEE Access 2024, 12, 57815–57836. [Google Scholar] [CrossRef]
- Liu, Y.; An, D.; Ren, Y.; Zhao, J.; Zhang, C.; Cheng, J.; Liu, J.; Wei, Y. DP-FishNet: Dual-path pyramid vision transformer-based underwater fish detection network. Expert Syst. Appl. 2024, 238, 122018. [Google Scholar] [CrossRef]
- Habbouche, H.; Rashid, H.; Amirat, Y.; Banerjee, A.; Benbouzid, M. A 2D VMD video image processing-based transfer learning approach for the detection and estimation of biofouling in tidal stream turbines. Ocean Eng. 2024, 312, 119283. [Google Scholar] [CrossRef]
- Xia, Z.; Gu, J.; Wen, Y.; Cao, X.; Gao, Y.; Li, S.; Haffner, G.D.; MacIsaac, H.J.; Zhan, A. eDNA-based detection reveals invasion risks of a biofouling bivalve in the world’s largest water diversion project. Ecol. Appl. 2024, 34, e2826. [Google Scholar] [CrossRef] [PubMed]
- Cesaria, M.; Alfinito, E.; Arima, V.; Bianco, M.; Cataldo, R. MEED: A novel robust contrast enhancement procedure yielding highly-convergent thresholding of biofilm images. Comput. Biol. Med. 2022, 151, 106217. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.; Halvorsen, K.T.; Jiao, L.; Knausgård, K.M.; Martin, A.H.; Moyano, M.; Oomen, R.A.; Rasmussen, J.H.; Sørdalen, T.K.; Thorbjørnsen, S.H. Unlocking the potential of deep learning for marine ecology: Overview, applications, and outlook. ICES J. Mar. Sci. 2022, 79, 319–336. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, S. A comprehensive review of object detection with deep learning. Digit. Signal Process. 2023, 132, 103812. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Zeng, X.; Shao, Y.; Feng, X.; Xu, K.; Jin, R.; Li, H. Nonlinear hydrodynamics of floating offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2024, 191, 114092. [Google Scholar] [CrossRef]
- Titah-Benbouzid, H.; Rashid, H.; Benbouzid, M. Biofouling issue in tidal stream turbines. In Design, Control and Monitoring of Tidal Stream Turbine Systems; IET: London, UK, 2023; pp. 181–204. [Google Scholar]
- Song, D.; Liu, R.; Zhang, Z.; Yang, D.; Wang, T. IRNLGD: An Edge Detection Algorithm with Comprehensive Gradient Directions for Tidal Stream Turbine. J. Mar. Sci. Eng. 2024, 12, 498. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Luo, W.; Luo, Z.; Xie, J.; Yuan, J.; Tan, A.C.C. A deep learning-based optimization framework of two-dimensional hydrofoils for tidal turbine rotor design. Energy 2022, 253, 124130. [Google Scholar] [CrossRef]
- Mo, C.; Zhu, W.; Lu, B.; Zu, S.; Zhang, F.; Chen, J.; Zhang, X.; Wu, B.; Zhang, X.; Huang, J. Recognition method of turbine pollutant adhesion in tidal stream energy generation systems based on deep learning. Energy 2024, 302, 131799. [Google Scholar] [CrossRef]
- Chen, L.; Peng, H.; Yang, D.; Wang, T. An attachment recognition method based on semi-supervised video segmentation for tidal stream turbines. Ocean Eng. 2024, 293, 116466. [Google Scholar] [CrossRef]
- Rashid, H.; Benbouzid, M.; Amirat, Y.; Berghout, T.; Titah-Benbouzid, H.; Mamoune, A. Biofouling detection and classification in tidal stream turbines through soft voting ensemble transfer learning of video images. Eng. Appl. Artif. Intell. 2024, 138, 109316. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, T.; Diallo, D.; Amirat, Y. A confidence-guided DS fault diagnosis method for tidal stream turbines blade. Ocean Eng. 2024, 311, 118807. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO, Version 8.0.0. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 1 July 2024).
- Xiao, Y.; Wang, X.; Zhang, P.; Meng, F.; Shao, F. Object detection based on faster R-CNN algorithm with skip pooling and fusion of contextual information. Sensors 2020, 20, 5490. [Google Scholar] [CrossRef] [PubMed]
- Kyozuka, Y.; Ida, M.; Katsuyama, I.; Kobayashi, S.; Igawa, S. Study on marine biofouling effects on tidal power generator. In Proceedings of the 24th Ocean Engineering Symposium, Hiroshima, Japan, 3 March 2014; Volume 14, p. 2014. (In Japanese). [Google Scholar]
- Katsuyama, I.; Kobayashi, S.; Igawa, S.; Kyozuka, Y.; Ida, M. Biofouling of model turbines for tidal current power generation and the effect of anti-fouling paint. Sess. Org. (Sess. Org. Soc. Jpn.) 2014, 31, 1–5. [Google Scholar] [CrossRef]
- Habbouche, H.; Amirat, Y.; Benkedjouh, T.; Benbouzid, M. Bearing fault event-triggered diagnosis using a variational mode decomposition-based machine learning approach. IEEE Trans. Energy Convers. 2021, 37, 466–474. [Google Scholar] [CrossRef]
Options | Value |
---|---|
Optimizer | SGD |
Learning rate | 0.01 |
Mini batch size | 16 |
Epochs | 25 |
Test confidence threshold | 0.25 |
Class | Precision | Recall | mAP50 | mAP50-95 |
---|---|---|---|---|
Fouled | 0.993 | 1.0 | 0.995 | 0.792 |
Clean | 1.0 | 0.982 | 0.995 | 0.827 |
Metric | Fouled | Clean | |
---|---|---|---|
YOLOv3 | Precision | 1.0 | 0.656 |
Recall | 0.577 | 0.972 | |
mAP50 | 0.948 | 0.907 | |
mAP50-95 | 0.524 | 0.510 | |
YOLOv5 | Precision | 0.444 | 0.1 |
Recall | 0.286 | 1.0 | |
mAP50 | 0.397 | 0.385 | |
mAP50-95 | 0.186 | 0.13 | |
YOLOv8 | Precision | 0.993 | 1.0 |
Recall | 1.0 | 0.982 | |
mAP50 | 0.995 | 0.995 | |
mAP50-95 | 0.792 | 0.827 |
Class | Clean | Fouled | Clean | Fouled | |
---|---|---|---|---|---|
Before Augmentation | After Augmentation | ||||
YOLOv3 | Precision | 1.0 | 0.656 | 1.0 | 0.995 |
Recall | 0.577 | 0.972 | 1.0 | 1.0 | |
mAP50 | 0.948 | 0.907 | 0.995 | 0.995 | |
mAP50-95 | 0.524 | 0.510 | 0.749 | 0.733 | |
YOLOv5 | Precision | 0.444 | 0.1 | 0.755 | 0.616 |
Recall | 0.286 | 1.0 | 0.714 | 1.0 | |
mAP50 | 0.397 | 0.385 | 0.868 | 0.581 | |
mAP50-95 | 0.186 | 0.130 | 0.581 | 0.483 | |
YOLOv8 | Precision | 0.993 | 1.0 | 0.995 | 0.987 |
Recall | 1.0 | 0.982 | 1.0 | 1.0 | |
mAP50 | 0.995 | 0.995 | 0.995 | 0.995 | |
mAP50-95 | 0.792 | 0.827 | 0.814 | 0.837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, H.; Habbouche, H.; Amirat, Y.; Mamoune, A.; Titah-Benbouzid, H.; Benbouzid, M. B-FLOWS: Biofouling Focused Learning and Observation for Wide-Area Surveillance in Tidal Stream Turbines. J. Mar. Sci. Eng. 2024, 12, 1828. https://doi.org/10.3390/jmse12101828
Rashid H, Habbouche H, Amirat Y, Mamoune A, Titah-Benbouzid H, Benbouzid M. B-FLOWS: Biofouling Focused Learning and Observation for Wide-Area Surveillance in Tidal Stream Turbines. Journal of Marine Science and Engineering. 2024; 12(10):1828. https://doi.org/10.3390/jmse12101828
Chicago/Turabian StyleRashid, Haroon, Houssem Habbouche, Yassine Amirat, Abdeslam Mamoune, Hosna Titah-Benbouzid, and Mohamed Benbouzid. 2024. "B-FLOWS: Biofouling Focused Learning and Observation for Wide-Area Surveillance in Tidal Stream Turbines" Journal of Marine Science and Engineering 12, no. 10: 1828. https://doi.org/10.3390/jmse12101828
APA StyleRashid, H., Habbouche, H., Amirat, Y., Mamoune, A., Titah-Benbouzid, H., & Benbouzid, M. (2024). B-FLOWS: Biofouling Focused Learning and Observation for Wide-Area Surveillance in Tidal Stream Turbines. Journal of Marine Science and Engineering, 12(10), 1828. https://doi.org/10.3390/jmse12101828