Challenges to Seagrass Restoration in the Indian River Lagoon, Florida
Abstract
:1. Introduction
- (i)
- H. wrightii restored in conjunction with M. mercenaria would show increased survival and growth compared to H. wrightii restored without M. mercenaria.
- (ii)
- H. wrightii contained within herbivore exclusion devices (HEDs) would show increased survival and growth compared to H. wrightii without herbivory exclusion.
- (iii)
- H. wrightii planted in the CIRL would show increased survival and growth compared to H. wrightii planted in the NIRL, due to spatial gradients in water quality.
2. Materials and Methods
2.1. Site Location
2.2. Experimental Design
- (a)
- seagrass only (SG, restoration),
- (b)
- seagrass and clams (SG + Clam, co-restoration),
- (c)
- sand only (C, control to monitor sediment characteristics).
2.3. Seagrass and Hard Clams
2.4. Sediment
2.5. Water Quality
2.6. Statistical Analyses
3. Results
3.1. Seagrass Restoration
3.2. Clam Introduction
3.3. Sediment and Water Quality
4. Discussion
4.1. Water Quality
4.2. Hard Clam Inclusion
4.3. Herbivore Exclusion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Short, F.T.; Polidoro, B.; Livingstone, S.R.; Carpenter, K.E.; Bandeira, S.; Bujang, J.S.; Calumpong, H.P.; Carruthers, T.J.B.; Coles, R.G.; Dennison, W.C.; et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 2011, 144, 1961–1971. [Google Scholar] [CrossRef]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck Jr, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A global crisis for seagrass ecosystems. Bio. Sci. Mag. 2006, 56, 987–996. [Google Scholar] [CrossRef]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef] [PubMed]
- Dunic, J.C.; Brown, C.J.; Connolly, R.M.; Turschwell, M.P.; Côté, I.M. Long-term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Change Biol. 2021, 27, 4096–4109. [Google Scholar] [CrossRef]
- Cunha, A.H.; Marbá, N.N.; van Katwijk, M.M.; Pickerell, C.; Henriques, M.; Bernard, G.; Ferreira, M.A.; Garcia, S.; Garmendia, J.M.; Manent, P. Changing paradigms in seagrass restoration. Restor. Ecol. 2012, 20, 427–430. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The cost and feasibility of marine coastal restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef]
- Duarte, C.M. The future of seagrass meadows. Environ. Conserv. 2002, 29, 192–206. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; Thorhaug, A.; Marbà, N.; Orth, R.J.; Duarte, C.M.; Kendrick, G.A.; Althuizen, I.H.J.; Balestri, E.; Bernard, G.; Cambridge, M.L.; et al. Global analysis of seagrass restoration: The importance of large-scale planting. J. Appl. Ecol. 2016, 53, 567–578. [Google Scholar] [CrossRef]
- Rezek, R.J.; Furman, B.T.; Jung, R.P.; Hall, M.O.; Bell, S.S. Long-term performance of seagrass restoration projects in Florida, USA. Sci. Rep. 2019, 9, 15514. [Google Scholar] [CrossRef]
- Valdez, S.R.; Zhang, Y.S.; van der Heide, T.; Vanderklift, M.A.; Tarquinio, F.; Orth, R.J.; Silliman, B.R. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 2020, 7, 91. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Gittman, R.K.; Donaher, S.E.; Trackenberg, S.N.; van der Heide, T.; Silliman, B.R. Inclusion of intra- and interspecific facilitation expands the theoretical framework for seagrass restoration. Front. Mar. Sci. 2021, 8, 645673. [Google Scholar] [CrossRef]
- Donaher, S.E.; Baillie, C.J.; Smith, C.S.; Zhang, Y.S.; Albright, A.; Trackenberg, S.N.; Wellman, E.H.; Woodard, N.; Gittman, R.K. Bivalve facilitation mediates seagrass recovery from physical disturbance in a temperate estuary. Ecosphere 2021, 12, e03804. [Google Scholar] [CrossRef]
- Peterson, B.J.; Heck, K.L. Positive interactions between suspension-feeding bivalves and seagrass—A facultative mutualism. Mar. Ecol. Prog. Ser. 2001, 213, 143–155. [Google Scholar] [CrossRef]
- Wall, C.C.; Peterson, B.J.; Gobler, C.J. Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves. Mar Ecol. Prog. Ser. 2008, 357, 165–174. [Google Scholar] [CrossRef]
- Gobler, C.J.; Doall, M.H.; Peterson, B.J.; Young, C.S.; DeLaney, F.; Wallace, R.B.; Tomasetti, S.J.; Curtin, T.P.; Morrell, B.K.; Lamoureux, E.M.; et al. Rebuilding a collapsed bivalve population, restoring seagrass meadows, and eradicating harmful algal blooms in a temperate lagoon using spawner sanctuaries. Front. Mar. Sci. 2022, 9, 911731. [Google Scholar] [CrossRef]
- Unsworth, R.F.K.; Cullen-Unsworth, L.C. Biodiversity, ecosystem services, and the conservation of seagrass meadows. Coast. Conserv. 2014, 19, 95. [Google Scholar]
- Suykerbuyk, W.; Govers, L.L.; Bouma, T.J.; Giesen, W.B.J.T.; de Jong, D.J.; van de Voort, R.; Giesen, K.; Giesen, P.T.; van Katwijk, M.M. Unpredictability in seagrass restoration: Analysing the role of positive feedback and environmental stress on Zostera noltii transplants. J. Appl. Ecol. 2016, 53, 774–784. [Google Scholar] [CrossRef]
- Eklöf, J.S.; de la Torre-Castro, M.; Gullström, M.; Uku, J.; Muthiga, N.; Lyimo, T.; Bandeira, S.O. Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management. Estuar. Coast. Shelf Sci. 2008, 79, 569–580. [Google Scholar] [CrossRef]
- Bourque, A.S.; Kenworthy, W.J.; Fourqurean, J.W. Impacts of physical disturbance on ecosystem structure in subtropical seagrass meadows. Mar. Ecol. Prog. Ser. 2015, 540, 27–41. [Google Scholar] [CrossRef]
- Lefebvre, L.W.; Reid, J.P.; Kenworthy, W.J.; Powell, J.A. Characterizing Manatee habitat use and seagrass grazing in Florida and Puerto Rico: Implications for conservation and management. Pac. Conserv. Biol. 1999, 5, 289–298. [Google Scholar] [CrossRef]
- Christianen, M.J.A.; Herman, P.M.J.; Bouma, T.J.; Lamers, L.P.M.; van Katwijk, M.M.; van der Heide, T.; Mumby, P.J.; Silliman, B.R.; Engelhard, S.L.; van de Kerk, M.; et al. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132890. [Google Scholar] [CrossRef] [PubMed]
- Fourqurean, J.W.; Manuel, S.; Coates, K.A.; Kenworthy, W.J.; Smith, S.R. Effects of excluding sea turtle herbivores from a seagrass bed: Overgrazing may have led to loss of seagrass meadows in Bermuda. Mar. Ecol. Prog. Ser. 2010, 419, 223–232. [Google Scholar] [CrossRef]
- Lefebvre, L.W.; Provancha, J.A.; Slone, D.H.; Kenworthy, W.J. Manatee grazing impacts on a mixed species seagrass bed. Mar. Ecol. Prog. Ser. 2017, 564, 29–45. [Google Scholar] [CrossRef]
- Kjerfve, B.; Magill, K.E. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol. 1989, 88, 187–199. [Google Scholar] [CrossRef]
- Kamerosky, A.; Cho, H.J.; Morris, L. Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL, USA, Using MERIS. Remote Sens. 2015, 7, 1441–1460. [Google Scholar] [CrossRef]
- Phlips, E.J.; Badylak, S.; Youn, S.; Kelley, K. The occurrence of potentially toxic dinoflagellates and diatoms in a subtropical lagoon, the Indian River Lagoon, Florida, USA. Harmful Algae 2004, 3, 39–49. [Google Scholar] [CrossRef]
- Smith, N.P. Tidal and nontidal flushing of Florida’s Indian River Lagoon. Estuaries 1993, 16, 739–746. [Google Scholar] [CrossRef]
- Morris, L.; Hall, L.; Miller, J.; Lasi, M.; Chamberlain, R.; Virnstein, R.; Jacoby, C. Diversity and distribution of seagrasses as related to salinity, temperature, and availability of light in the Indian River Lagoon, Florida. Seagrass Ecosyst. Anal. 2021, 84, 119–137. [Google Scholar]
- Morris, L.J.; Hall, L.M.; Jacoby, C.A.; Chamberlain, R.H.; Hanisak, M.D.; Miller, J.D.; Virnstein, R.W. Seagrass in a Changing Estuary, the Indian River Lagoon, Florida, United States. Front. Mar. Sci. 2022, 8, 789818. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Herren, L.W.; Brewton, R.A.; Alderman, P.K. Nutrient over-enrichment and light limitation of seagrass communities in the Indian River Lagoon, an urbanized subtropical estuary. Sci. Total Environ. 2020, 699, 134068. [Google Scholar] [CrossRef] [PubMed]
- Phlips, E.J.; Badylak, S.; Nelson, N.G.; Hall, L.M.; Jacoby, C.A.; Lasi, M.A.; Lockwood, J.C.; Miller, J.D. Cyclical Patterns and a Regime Shift in the Character of Phytoplankton Blooms in a Restricted Sub-Tropical Lagoon, Indian River Lagoon, Florida, United States. Front. Mar. Sci. 2021, 8, 730934. [Google Scholar] [CrossRef]
- Bertelli, C.M.; Creed, J.C.; Nuuttila, H.K.; Unsworth, R.K.F. The response of the seagrass Halodule wrightii Ascherson to environmental stressors. Estuar. Coast. Shelf Sci. 2020, 238, 106693. [Google Scholar] [CrossRef]
- Biber, P. Prolonged low salinity tolerance in Halodule wrightii Asch. Aquat. Bot. 2022, 178, 103498. [Google Scholar] [CrossRef]
- Arnold, W.; Marelli, D.; Parker, M.; Hoffman, P.; Frischer, M.; Scarpa, J. Enhancing hard clam (Mercenaria spp.) population density in the Indian River Lagoon, Florida: A comparison of strategies to maintain the commercial fishery. J. Shellfish Res. 2002, 21, 659–672. [Google Scholar]
- Osborne, T.Z.; Martindale, M.Q.; Nunez, J.M. Restoration of Clam Populations in the Indian River Lagoon for Water Quality Improvement 2019–2020; Final Report; Indian River Lagoon National Estuary Program; 2020; 22p, Available online: https://irlcouncil.sharepoint.com/:b:/s/IRLNEPPublic/Eanr94TqEMxIrA7xMt-AXR0BNKPzYaoiSonDOt8aRbxXwQ?e=DkQRzA (accessed on 10 October 2024).
- St Johns River Water Management District (SJRWMD) OpenData_Wetlands_Seagrass. Available online: https://data-floridaswater.opendata.arcgis.com/ (accessed on 11 August 2023).
- NOAA Hurricane Ian’s Path of Destruction. National Environmental Satellite, Data, and Information Service. 2022. Available online: https://www.nesdis.noaa.gov/news/hurricane-ians-path-of-destruction (accessed on 11 August 2023).
- National Weather Service Rainfall Totals from Ian Across East Central Florida; NOAA: Washington, DC, USA, 2022.
- MacDonnell, C.; Tiling, K.; Encomio, V.; van der Heide, T.; Teunis, M.; Lengkeek, W.; Didderen, K.; Bouma, T.J.; Inglett, P.W. Evaluating a novel biodegradable lattice structure for subtropical seagrass restoration. Aquat. Bot. 2022, 176, 103463. [Google Scholar] [CrossRef]
- Lucas, A.; Beninger, P.G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 1985, 44, 187–200. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, H. Review of molluscan bivalve condition index calculations and application in Northern Quahogs Mercenaria mercenaria. Aquac. Res. 2021, 52, 23–36. [Google Scholar] [CrossRef]
- Hall, L.M.; Morris, L. Indian River Lagoon Seagrass Monitoring Standard Operating Procedures Modified for Brevard County. Available online: https://www.brevardfl.gov/docs/default-source/soirl/indian-river-lagoon-seagrass-monitoring-standard-operating-procedures.pdf?sfvrsn=985f238_1 (accessed on 10 October 2024).
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Pub. Co.: Austin, TX, USA, 1980; ISBN 0-914696-14-9. [Google Scholar]
- IRLON (No Date). Irlon.org. Available online: https://irlon.org/ (accessed on 11 August 2023).
- APHA 2540 SOLIDS; Standard Methods for the Examination of Water and Wastewater. American Public Health Association: Washington, DC, USA, 2017.
- Dennison, W.C. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot. 1987, 27, 15–26. [Google Scholar] [CrossRef]
- Sigua, G.C.; Steward, J.S.; Tweedale, W.A. Water-Quality Monitoring and Biological Integrity Assessment in the Indian River Lagoon, Florida: Status, Trends, and Loadings (1988–1994). Environ. Manag. 2000, 25, 199–209. [Google Scholar] [CrossRef]
- Phlips, E.J.; Badylak, S.; Grosskopf, T. Factors Affecting the Abundance of Phytoplankton in a Restricted Subtropical Lagoon, the Indian River Lagoon, Florida, USA. Estuar. Coast. Shelf Sci. 2002, 55, 385–402. [Google Scholar] [CrossRef]
- Lirman, D.; Cropper, W.P. The influence of salinity on seagrass growth, survivorship, and distribution within Biscayne Bay, Florida: Field, experimental, and modeling studies. Estuaries 2003, 26, 131–141. [Google Scholar] [CrossRef]
- Mazzotti, F.J.; Pearlstine, L.G.; Chamberlain, R.; Barnes, T.; Chartier, K.; DeAngelis, D. Stressor Response Models for Seagrasses, Halodule wrightii and Thalassia testudinum; Final Report to the South Florida Water Management District and the U.S. Geological Survey; University of Florida, Florida Lauderdale Research and Education Center: Fort Lauderdale, FL, USA, 2007; p. 19. [Google Scholar]
- Li, W.-T.; Kim, Y.K.; Park, J.-I.; Zhang, X.; Du, G.-Y.; Lee, K.-S. Comparison of seasonal growth responses of Zostera marina transplants to determine the optimal transplant season for habitat restoration. Ecol. Eng. 2014, 71, 56–65. [Google Scholar] [CrossRef]
- Kahn, A.E.; Durako, M.J. Photophysiological responses of Halophila johnsonii to experimental hyposaline and hyper-CDOM conditions. J. Exp. Mar. Biol. Ecol. 2008, 367, 230–235. [Google Scholar] [CrossRef]
- Adams, M.P.; Hovey, R.K.; Hipsey, M.R.; Bruce, L.C.; Ghisalberti, M.; Lowe, R.J.; Gruber, R.K.; Ruiz-Montoya, L.; Maxwell, P.S.; Callaghan, D.P.; et al. Feedback between sediment and light for seagrass: Where is it important? Limnol. Oceanogr. 2016, 61, 1937–1955. [Google Scholar] [CrossRef]
- Steward, J.S.; Virnstein, R.W.; Lasi, M.A.; Morris, L.J.; Miller, J.D.; Hall, L.M.; Tweedale, W.A. The impacts of the 2004 hurricanes on hydrology, water quality, and seagrass in the Central Indian River Lagoon, Florida. Estuaries Coasts 2006, 29, 954–965. [Google Scholar] [CrossRef]
- Shao, T.; Wang, T. Effects of land use on the characteristics and composition of fluvial chromophoric dissolved organic matter (CDOM) in the Yiluo River Watershed, China. Ecol. Indic. 2020, 114, 106332. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Herren, L.W.; Debortoli, D.D.; Vogel, M.A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 2015, 43, 82–102. [Google Scholar] [CrossRef]
- Herren, L.W.; Brewton, R.A.; Wilking, L.E.; Tarnowski, M.E.; Vogel, M.A.; Lapointe, B.E. Septic systems drive nutrient enrichment of groundwaters and eutrophication in the urbanized Indian River Lagoon, Florida. Mar. Pollut. Bull. 2021, 172, 112928. [Google Scholar] [CrossRef]
- Koch, M.S.; Schopmeyer, S.; Kyhn-Hansen, C.; Madden, C.J. Synergistic effects of high temperature and sulfide on tropical seagrass. J. Exp. Mar. Biol. Ecol. 2007, 341, 91–101. [Google Scholar] [CrossRef]
- Phlips, E.; Badylak, S.; Quinlan, E.; Cichra, M. Factors affecting the distribution of Pyrodinium bahamense var. bahamense in coastal waters of Florida. Mar. Ecol. Prog. Ser. 2006, 322, 99–115. [Google Scholar] [CrossRef]
- Schmidt, A.L.; Wysmyk, J.K.C.; Craig, S.E.; Lotze, H.K. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnol. Oceanogr. 2012, 57, 1389–1402. [Google Scholar] [CrossRef]
- Fonseca, M.S. Addy Revisited: What Has Changed with Seagrass Restoration in 64 Years? Ecol. Restor. 2011, 29, 73–81. [Google Scholar] [CrossRef]
- Campbell, M. Getting the foundation right: A scientifically based management framework to aid in the planning and implementation of seagrass transplant efforts. Bull. Mar. Sci. 2002, 71, 1405–1414. [Google Scholar]
- van Katwijk, M.M.; Bos, A.R.; de Jonge, V.N.; Hanssen, L.S.A.M.; Hermus, D.C.R.; de Jong, D.J. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar. Pollut. Bull. 2009, 58, 179–188. [Google Scholar] [CrossRef]
- Hotaling-Hagan, A.; Swett, R.; Ellis, L.R.; Frazer, T.K. A spatial model to improve site selection for seagrass restoration in shallow boating environments. J. Environ. Manag. 2017, 186, 42–54. [Google Scholar] [CrossRef]
- Whetstone, J.M.; Sturmer, L.M.; Oesterling, M.J. Biology and culture of the hard clam (Mercenaria mercenaria); USDA, Southern Regional Aquaculture Center (SRAC) Publication No. 433; SRAC: Stoneville, MS, USA, 2005; p. 6. [Google Scholar]
- Galimany, E.; Lunt, J.; Freeman, C.J.; Reed, S.; Segura-García, I.; Paul, V.J. Feeding behavior of eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria in shallow estuaries. Mar. Ecol. Prog. Ser. 2017, 567, 125–137. [Google Scholar] [CrossRef]
- Judge, M.; Coen, L.; Heck, K. Does Mercenaria mercenaria encounter elevated food levels in seagrass beds? Results from a novel technique to collect suspended food resources. Mar. Ecol. Prog. Ser. 1993, 92, 141–150. [Google Scholar] [CrossRef]
- Rielly-Carroll, E.; Freestone, A.L. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system. Oecologia 2017, 183, 899–908. [Google Scholar] [CrossRef]
- Irlandi, E.A.; Peterson, C.H. Modification of animal habitat by large plants: Mechanisms by which seagrasses influence clam growth. Oecologia 1991, 87, 307–318. [Google Scholar] [CrossRef]
- Polyakov, O.; Kraeuter, J.N.; Hofmann, E.E.; Buckner, S.C.; Bricelj, V.M.; Powell, E.N.; Klinck, J.M. Benthic predators and northern quahog (=hard clam) (Mercenaria mercenaria Linnaeus, 1758) populations. J. Shellfish Res. 2007, 26, 995–1010. [Google Scholar] [CrossRef]
- Cahill, B.V.; McCulloch, K.L.; DeGroot, B.C.; Bassos-Hull, K.; Ajemian, M.J. Breaking bags and crunching clams: Assessing whitespotted eagle ray interactions with hard clam aquaculture gear. Aquacult. Environ. Interact. 2023, 15, 59–71. [Google Scholar] [CrossRef]
- Arnold, W.S.; Marelli, D.C.; Bert, T.M.; Jones, D.S.; Quitmyer, I.R. Habitat-specific growth of hard clams Mercenaria mercenaria (L.) from the Indian River, Florida. J. Exp. Mar. Biol. Ecol. 1991, 147, 245–265. [Google Scholar] [CrossRef]
- Nakaoka, M. Nonlethal Effects of Predators on Prey Populations: Predator-Mediated Change in Bivalve Growth. Ecology 2000, 81, 1031–1045. [Google Scholar] [CrossRef]
- Tomiyama, T. Lethal and non-lethal effects of an invasive naticid gastropod on the production of a native clam. Biol. Invasions 2018, 20, 2005–2014. [Google Scholar] [CrossRef]
- Gagnon, K.; Rinde, E.; Bengil, E.G.T.; Carugati, L.; Christianen, M.J.A.; Danovaro, R.; Gambi, C.; Govers, L.L.; Kipson, S.; Meysick, L.; et al. Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. J. Appl. Ecol. 2020, 57, 1161–1179. [Google Scholar] [CrossRef]
- Arnold, W.S.; Geiger, S.P.; Peters Stephenson, S. Mercenaria mercenaria introductions into Florida, USA, waters: Duration, not size of introduction, influences genetic outcomes. Aquat. Biol. 2009, 5, 49–62. [Google Scholar] [CrossRef]
- Bourque, A.S.; Fourqurean, J.W. Variability in herbivory in subtropical seagrass ecosystems and implications for seagrass transplanting. J. Exp. Mar. Biol. Ecol. 2013, 445, 29–37. [Google Scholar] [CrossRef]
- Burkholder, D.A.; Heithaus, M.R.; Fourqurean, J.W.; Wirsing, A.; Dill, L.M. Patterns of top-down control in a seagrass ecosystem: Could a roving apex predator induce a behaviour-mediated trophic cascade? J. Anim. Ecol. 2013, 82, 1192–1202. [Google Scholar] [CrossRef]
- Samper-Villarreal, J.; Moya-Ramírez, J.; Cortés, J. Megaherbivore exclusion led to more complex seagrass canopies and increased biomass and sediment Corg pools in a tropical meadow. Front. Mar. Sci. 2022, 9, 945783. [Google Scholar] [CrossRef]
- Wendländer, N.S.; Lange, T.; Connolly, R.M.; Kristensen, E.; Pearson, R.M.; Valdemarsen, T.; Flindt, M.R. Assessing methods for restoring seagrass (Zostera muelleri) in Australia’s subtropical waters. Mar. Freshw. Res. 2020, 71, 996–1005. [Google Scholar] [CrossRef]
- Veenstra, J.; Southwell, M.; Dix, N.; Marcum, P.; Jackson, J.; Burns, C.; Herbert, C.; Kemper, A. High carbon accumulation rates in sediment adjacent to constructed oyster reefs, Northeast Florida, USA. J. Coast. Conserv. 2021, 25, 40. [Google Scholar] [CrossRef]
- Moksnes, P.-O.; Gullström, M.; Tryman, K.; Baden, S. Trophic cascades in a temperate seagrass community. Oikos 2008, 117, 763–777. [Google Scholar] [CrossRef]
- Hanisak, M.D.; Virnstein, R.W. Evaluating the Feasibility of Transplanting to Promote Seagrass Recovery in the Indian River Lagoon; Harbor Branch Oceanographic Institute at Florida Atlantic University: Fort Pierce, FL, USA, 2015. [Google Scholar]
- Cheng, B.S.; Ruiz, G.M.; Altieri, A.H.; Torchin, M.E. The biogeography of invasion in tropical and temperate seagrass beds: Testing interactive effects of predation and propagule pressure. Divers. Distrib. 2019, 25, 285–297. [Google Scholar] [CrossRef]
- Campbell, J.E.; Altieri, A.H.; Johnston, L.N.; Kuempel, C.D.; Paperno, R.; Paul, V.J.; Duffy, J.E. Herbivore community determines the magnitude and mechanism of nutrient effects on subtropical and tropical seagrasses. J. Ecol. 2018, 106, 401–412. [Google Scholar] [CrossRef]
- Rodriguez, A.R.; Marco-Méndez, C.; Campbell, J.; Heck, K.L. Effects of varying types and amounts of herbivory and nutrient enrichment on a tropicalizing seagrass meadow. Front. Mar. Sci. 2022, 9, 892219. [Google Scholar] [CrossRef]
- Bessey, C.; Heithaus, M.R.; Fourqurean, J.W.; Gastrich, K.R.; Burkholder, D.A. Importance of teleost macrograzers to seagrass composition in a subtropical ecosystem with abundant populations of megagrazers and predators. Mar. Ecol. Prog. Ser. 2016, 553, 81–92. [Google Scholar] [CrossRef]
IRL Sub-Lagoon | Site | Location (Decimal Degrees) | Beginning | Ending | Sampling Events Undertaken |
---|---|---|---|---|---|
North (NIRL) | N1 | 28.605383, −80.805083 | 6 June 2022 | 15 August 2022 | 1 |
N2 | 28.490233, −80.773200 | 29 June 2022 | 15 August 2022 | 1 | |
N3 | 28.463771, −80.761621 | 30 June 2022 | 16 August 2022 | 1 | |
N4 | 28.605383, −80.805083 | 8 June 2022 | 15 August 2022 | 1 | |
Central (CIRL) | C1 | 28.064207, −80.564405 | 28 June 2022 | 19 October 2022 | 3 |
C2 | 28.058471, −80.565031 | 8 June 2022 | 17 October 2022 | 2 | |
C3 | 28.024883, −80.541500 | 9 June 2022 | 17 October 2022 | 2 | |
C4 | 28.015683, −80.566533 | 7 June 2022 | 17 October 2022 | 2 | |
C5 | 27.864933, −80.492683 | 27 June 2022 | 17 November 2022 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Main, V.A.; Gilligan, M.K.; Cole, S.M.; Osborne, T.Z.; Smyth, A.R.; Simpson, L.T. Challenges to Seagrass Restoration in the Indian River Lagoon, Florida. J. Mar. Sci. Eng. 2024, 12, 1847. https://doi.org/10.3390/jmse12101847
Main VA, Gilligan MK, Cole SM, Osborne TZ, Smyth AR, Simpson LT. Challenges to Seagrass Restoration in the Indian River Lagoon, Florida. Journal of Marine Science and Engineering. 2024; 12(10):1847. https://doi.org/10.3390/jmse12101847
Chicago/Turabian StyleMain, Vivienne A., Morgan K. Gilligan, Sarah M. Cole, Todd Z. Osborne, Ashley R. Smyth, and Loraé T. Simpson. 2024. "Challenges to Seagrass Restoration in the Indian River Lagoon, Florida" Journal of Marine Science and Engineering 12, no. 10: 1847. https://doi.org/10.3390/jmse12101847
APA StyleMain, V. A., Gilligan, M. K., Cole, S. M., Osborne, T. Z., Smyth, A. R., & Simpson, L. T. (2024). Challenges to Seagrass Restoration in the Indian River Lagoon, Florida. Journal of Marine Science and Engineering, 12(10), 1847. https://doi.org/10.3390/jmse12101847