A Multi-Spatial Scale Ocean Sound Speed Prediction Method Based on Deep Learning
Abstract
:1. Introduction
- To achieve enhanced prediction accuracy with few-shot data, we propose an interpolation method for ocean temperature and salinity data based on the KNN algorithm to improve dataset resolution.
- To address the inadequacies in accounting for multi-spatial coupling effects and spatiotemporal weights in ocean sound speed prediction, we introduce the STA-ConvLSTM framework along with a multi-spatial scale sound speed prediction method that integrates spatial structure coupling.
- To validate the efficacy of STA-ConvLSTM, we conducted experiments to assess the model’s accuracy in predicting ocean sound speed using the BOA_Argo dataset.
2. Related Work
3. Data and Methods
3.1. Data
3.2. KNN Regression Model
3.3. Sound Speed Prediction Model
3.3.1. ConvLSTM Model
3.3.2. Attention Mechanism
- Feature extraction from the input data: Initially, the model encodes the input data to derive a set of hidden representations. These representations may take the form of vectors, matrices, or tensors that encapsulate information regarding the characteristics of the input data.
- Computation of attention weights: The model calculates attention weights for each hidden representation in accordance with current task requirements. These weights reflect the degree of attention assigned by the model to each component during processing. The computation typically relies on the contextual information pertaining to both the input data and the target task.
- Weighted summation of the hidden representations: The model applies attention weights to these hidden representations to perform a weighted summation. This step can be viewed as aggregating the different components of the input data based on their significance.
- Output generation: The model produces output derived from the representation obtained through weighted summation. This result may manifest as a predicted value, vector, or complex data structure.
3.3.3. STA-ConvLSTM Framework
- Initially, the model receives the original sound speed sequence data through the input layer, which serves as input for subsequent layers. The input shape is defined as “samples, time, height, width, channels”, representing sequentially the number of samples, time step, height of the input 2D matrix, width of the input 2D matrix, and number of channels.
- Subsequently, two ConvLSTM layers are connected following the input layer. The first ConvLSTM layer utilizes 64 filters and 7 × 7 convolution kernels to capture local features and temporal correlations within the input data through convolution in both time and space. The ReLU activation function is employed to introduce nonlinearity into the model. Padding is set to ‘same’ to ensure that the output size matches the input size. ‘return_sequences’ is set to True to retain the output for all time steps. The second ConvLSTM layer mirrors the first one by also employing 64 filters and 7 × 7 convolutional kernels. This layer further extracts features from the input data, enhancing the model’s ability to capture temporal and spatial information.
- Then, the output of the ConvLSTM layer serves as the input of the temporal attention module, which can focus on assessing the significance of different time steps. A spatial attention module is then connected following the temporal attention module, enhancing its ability to capture information from key spatial locations.
- After extracting spatiotemporal features, a Concatenate layer is introduced. This layer concatenates the output from both the original ConvLSTM layer and the spatial attention module along the channel dimension. The objective is to merge original features with those weighted by attention, allowing the model to retain essential information while also capturing critical insights through this mechanism.
- Finally, the concatenated feature map is mapped to a sonic profile or sonic profile prediction using a two-dimensional convolutional layer (including 1 filter and 7 × 7 convolutional kernel) as the output layer. The activation function of this output layer defaults to linear, with its value directly representing the prediction. Padding is set to ‘same’ in order to maintain an output size consistent with that of the input size. Additionally, ‘data_format’ is configured as ‘channels_last’ to preserve channel order in alignment with the input data.
4. Experiments and Results
4.1. Interpolation Experiments of Temperature and Salinity
4.1.1. Dataset Preprocessing
4.1.2. Temperature Interpolation Results and Analysis
4.1.3. Salinity Interpolation Results and Analysis
4.2. Prediction Experiments of Sound Speed
4.2.1. Dataset and Model Preprocessing
4.2.2. Sound Speed Profile Prediction
4.2.3. Sound Speed Section Prediction
4.2.4. Sound Speed Structure Prediction
5. Discussion
5.1. Interpolation of Temperature and Salinity
5.2. Prediction of Sound Speed
5.2.1. Error Comparison and Analysis
5.2.2. Multi-Space Coupling Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, X.; Chen, L.; Zhou, H.; Cao, H. A Survey of Underwater Acoustic Target Recognition Methods Based on Machine Learning. J. Mar. Sci. Eng. 2023, 11, 384. [Google Scholar] [CrossRef]
- Lei, Z.; Lei, X.; Wang, N.; Zhang, Q. Present Status and Challenges of Underwater Acoustic Target Recognition Technology: A review. Front. Phys. 2022, 18, 1044890. [Google Scholar] [CrossRef]
- Sun, K.; Cui, W.; Chen, C. Review of Underwater Sensing Technologies and Applications. Sensors 2021, 21, 7849. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yang, C. Ocean Observation Technologies: A Review. Chin. J. Mech. Eng. 2020, 33, 32. [Google Scholar] [CrossRef]
- Sonnewald, M.; Lguensat, R.; Jones, D.C.; Dueben, P.D.; Brajard, J.; Balaji, V. Bridging Observations, Theory and Numerical Simulation of The Ocean Using Machine Learning. Environ. Res. Lett. 2021, 16, 073008. [Google Scholar] [CrossRef]
- Fennel, K.; Mattern, J.P.; Doney, S.C.; Bopp, L.; Moore, A.M.; Wang, B.; Yu, L. Ocean Biogeochemical Modelling. Nat. Rev. Method Prime 2020, 2, 76. [Google Scholar] [CrossRef]
- Januschowski, T.; Gasthaus, J.; Wang, Y.; Salinas, D.; Flunkert, V.; Bohlke-Schneider, M.; Callot, L. Criteria for Classifying Forecasting Methods. Int. J. Forecast. 2020, 36, 167–177. [Google Scholar] [CrossRef]
- Vanem, E.; Zhu, T.Y.; Babanin, A. Statistical Modelling of The Ocean Environment-A Review of Recent Developments in Theory and Applications. Mar. Struct. 2022, 86, 103297. [Google Scholar] [CrossRef]
- Xu, X.F.; Hu, S.T.; Shi, P.M.; Shao, H.S. Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm. Energy 2022, 262, 125342. [Google Scholar] [CrossRef]
- Yuan, H.X.; Liu, Y.; Tang, Q.H.; Li, J.; Chen, G.X.; Cai, W.X. ST-LSTM-SA: A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning. Adv. Atmos. Sci. 2024, 41, 1364–1378. [Google Scholar] [CrossRef]
- Huang, W.; Li, D.S.; Zhang, H.; Xu, T.H.; Yin, F. A meta-deep-learning framework for spatio-temporal underwater SSP inversion. Front. Mar. Sci. 2023, 10, 1146333. [Google Scholar] [CrossRef]
- Tolstoy, A.; Diachok, O.; Frazer, L. Acoustic tomography via matched field processing. J. Acoust. Soc. Am. 1991, 89, 1119–1127. [Google Scholar] [CrossRef]
- Taroudakis, M.I.; Markaki, M.G. On the use of matched-field processing and hybrid algorithms for vertical slice tomography. J. Acoust. Soc. Am. 1997, 102, 885–895. [Google Scholar] [CrossRef]
- Yu, Y.X.; Li, Z.L.; He, L. Matched-field inversion of sound speed profile in shallow water using a parallel genetic algorithm. Chin. J. Oceanol. Limnol. 2010, 28, 1080–1085. [Google Scholar] [CrossRef]
- Li, Q.Q.; Shi, J.; Li, Z.L.; Luo, Y.; Yang, F.L.; Zhang, K. Acoustic sound speed profile inversion based on orthogonal matching pursuit. Acta Oceanol. Sin. 2019, 38, 149–157. [Google Scholar] [CrossRef]
- Bianco, M.J.; Gerstoft, P.; Traer, J.; Ozanich, E.; Roch, M.A.; Gannot, S.; Deledalle, C.A. Machine learning in acoustics: Theory and applications. J. Acoust. Soc. Am. 2019, 146, 3590–3628. [Google Scholar] [CrossRef]
- Gao, Z.K.; Jin, N.D. Complex network from time series based on phase space reconstruction. Chaos 2009, 19, 033137. [Google Scholar] [CrossRef]
- Jiang, Y.; Bao, X.; Hao, S.n.; Zhao, H.T.; Li, X.Y.; Wu, X.N. Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction. Water Resour. Manag. 2020, 34, 3515–3531. [Google Scholar] [CrossRef]
- Du, S.S.; Song, S.B.; Wang, H.M.; Guo, T.L. A novel method of nonuniform phase space reconstruction for multivariate prediction of daily runoff. J. Hydrol. 2024, 638, 131510. [Google Scholar] [CrossRef]
- Karimov, A.I.; Kopets, E.; Nepomuceno, E.G.; Butusov, D. Integrate-and-Differentiate Approach to Nonlinear System Identification. Mathematics 2021, 9, 2999. [Google Scholar] [CrossRef]
- Ding, F.; Xu, L.; Zhang, X.; Zhou, Y.H. Filtered auxiliary model recursive generalized extended parameter estimation methods for Box–Jenkins systems by means of the filtering identification idea. Int. J. Robust Nonlinear Control 2023, 33, 5510–5535. [Google Scholar] [CrossRef]
- Yu, X.K.; Xu, T.H.; Wang, J.T. Sound Velocity Profile Prediction Method Based on RBF Neural Network. In Proceedings of the China Satellite Navigation Conference (CSNC) 2020 Proceedings, Chengdu, China, 22–25 November 2020; Volume III, pp. 475–487. [Google Scholar]
- Zhang, Q.; Wang, H.; Dong, J.Y.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Ali, A.; Fathalla, A.; Salah, A.; Bekhit, M.; Eldesouky, E. Marine Data Prediction: An Evaluation of Machine Learning, Deep Learning, and Statistical Predictive Models. Comput. Intell. Neurosci. 2021, 27, 8551167. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Y.; Zhai, J.S. A Novel Sound Speed Profile Prediction Method Based on the Convolutional Long-Short Term Memory Network. J. Mar. Sci. Eng. 2022, 10, 572. [Google Scholar] [CrossRef]
- Ou, Z.Y.; Qu, K.; Liu, C. Estimation of sound speed profiles using a random forest model with satellite surface observations. Shock Vib. 2022, 2022, 2653791. [Google Scholar] [CrossRef]
- Ou, Z.Y.; Qu, K.; Shi, M.; Wang, Y.F.; Zhou, J.B. Estimation of sound speed profiles based on remote sensing parameters using a scalable end-to-end tree boosting model. Front. Mar. Sci. 2022, 9, 1051820. [Google Scholar] [CrossRef]
- Piao, S.C.; Yan, X.; Li, Q.Q.; Li, Z.L.; Wang, Z.W.; Zhu, J.L. Time series prediction of shallow water sound speed profile in the presence of internal solitary wave trains. Ocean Eng. 2023, 283, 115058. [Google Scholar] [CrossRef]
- Wu, P.F.; Zhang, H.; Shi, Y.J.; Lu, J.J.; Li, S.J.; Huang, W.; Tang, N.; Wang, S.J. Real-time estimation of underwater sound speed profiles with a data fusion convolutional neural network model. Appl. Ocean Res. 2024, 150, 104088. [Google Scholar] [CrossRef]
- Gao, C.; Cheng, L.; Zhang, T.; Li, J.L. Long-term Forecasting of Ocean Sound Speeds At Any Time Via Neural Ordinary Differential Equations. In Proceedings of the OCEANS 2024—Singapore, Singapore, 15–18 April 2024; pp. 1–6. [Google Scholar]
- Xu, Y.H.; Hou, J.Y.; Zhu, X.J.; Wang, C.; Shi, H.D.; Wang, J.Y. Hyperspectral Image Super-Resolution With ConvLSTM Skip-Connections. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Abbass, M.J.; Lis, R.; Awais, M.; Nguyen, T.X. Convolutional Long Short-Term Memory (ConvLSTM)-Based Prediction of Voltage Stability in a Microgrid. Energies 2024, 17, 1999. [Google Scholar] [CrossRef]
- Zheng, L.; Lu, W.S.; Zhou, Q.Y. Weather image-based short-term dense wind speed forecast with a ConvLSTM-LSTM deep learning model. Build. Environ. 2023, 239, 110446. [Google Scholar] [CrossRef]
- He, R.; Liu, Y.B.; Xiao, Y.P.; Lu, X.Y.; Zhang, S. Deep spatio-temporal 3D densenet with multiscale ConvLSTM-Resnet network for citywide traffic flow forecasting. Knowl.-Based Syst. 2022, 250, 109054. [Google Scholar] [CrossRef]
- Lv, Z.Q.; Ma, Z.B.; Xia, F.Q.; Li, J.B. A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism. Adv. Eng. Inform. 2024, 61, 102519. [Google Scholar] [CrossRef]
- Xu, C.Y.; Xu, C.Q. Local spatial and temporal relation discovery model based on attention mechanism for traffic forecasting. Neural Netw. 2024, 176, 106365. [Google Scholar] [CrossRef]
- Song, T.; Wei, W.; Meng, F.; Wang, J.; Han, R.; Xu, D. Inversion of Ocean Subsurface Temperature and Salinity Fields Based on Spatio-Temporal Correlation. Remote Sens. 2022, 14, 2587. [Google Scholar] [CrossRef]
- Valdes, P.J.; Scotese, C.R.; Lunt, D.J. Deep Ocean Temperatures Through Time. Clim. Past 2021, 17, 1483–1506. [Google Scholar] [CrossRef]
- Pan, S.Y.; Tian, S.Q.; Wang, X.F.; Dai, L. Comparing Different Spatial Interpolation Methods to Predict the Distribution of Fishes: A Case Study of Coilia Nasus in The Changjiang River Estuary. Acta Oceanol. Sin. 2021, 40, 119–132. [Google Scholar] [CrossRef]
- Uddin, S.; Haque, I.; Lu, H.H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef]
- Zhang, S.C. Challenges in KNN Classification. IEEE Trans. Knowl. Data Eng. 2022, 34, 4663–4675. [Google Scholar] [CrossRef]
- Zhang, S.C.; Li, J.Y. KNN Classification With One-Step Computation. IEEE Trans. Knowl. Data Eng. 2023, 35, 2711–2723. [Google Scholar] [CrossRef]
- Pan, Z.B.; Wang, Y.K.; Pan, Y.W. A New Locally Adaptive K-Nearest Neighbor Algorithm Based on Discrimination Class. Knowl.-Based Syst. 2020, 204, 106185. [Google Scholar] [CrossRef]
- Wang, H.Y.; Xu, P.D.; Zhao, J.H. Improved KNN Algorithm Based on Preprocessing of Center in Smart Cities. Complexity 2021, 2021, 5524388. [Google Scholar] [CrossRef]
- Abbasimehr, H.; Shabani, M.; Yousefi, M. An Optimized Model Using LSTM Network for Demand Forecasting. Comput. Ind. Eng. 2020, 143, 106435. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Huang, F.Q.; Lv, J.; Duan, Y.; Qin, Z.; Li, G.; Tian, G. Do RNN and LSTM have long memory? In Proceedings of the 37th International Conference on Machine Learning (ICML’20), Vienna, Austria, 12–18 July 2020; Volume 119, Article 1054. pp. 11365–11375. [Google Scholar]
- Lindemann, B.; Müller, T.; Vietz, H.; Jazdi, N.; Weyrich, M. A Survey on Long Short-Term Memory Networks for Time Series Prediction. Procedia CIRP 2021, 99, 650–655. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E. Short-Term Self Consumption PV Plant Power Production Forecasts Based on Hybrid CNN-LSTM, ConvLSTM Models. Renew. Energy 2021, 177, 101–112. [Google Scholar] [CrossRef]
- Moishin, M.; Deo, R.C.; Prasad, R.; Rai, N.; Abdulla, S. Designing Deep-Based Learning Flood Forecast Model With ConvLSTM Hybrid Algorithm. IEEE Access 2021, 9, 50982–50993. [Google Scholar] [CrossRef]
- Peng, Y.Q.; Tao, H.F.; Li, W.; Yuan, H.T.; Li, T.J. Dynamic Gesture Recognition Based on Feature Fusion Network and Variant ConvLSTM. IET Image Process. 2020, 14, 2480–2486. [Google Scholar] [CrossRef]
- Guo, F.; Yang, J.; Li, H.; Li, G.; Zhang, Z. A ConvLSTM Conjunction Model for Groundwater Level Forecasting in a Karst Aquifer Considering Connectivity Characteristics. Water 2021, 13, 2759. [Google Scholar] [CrossRef]
- Jalalifar, R.; Delavar, M.R.; Ghaderi, S.F. SAC-ConvLSTM: A Novel Spatio-Temporal Deep Learning-Based Approach for A Short Term Power Load Forecasting. Expert Syst. Appl. 2024, 237, 121487. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.Q.; Zhong, D.Y.; Xie, S.; Xu, J.J. ConvLSTM Network-Based Rainfall Nowcasting Method With Combined Reflectance and Radar-Retrieved Wind Field As Inputs. Atmosphere 2022, 13, 411. [Google Scholar] [CrossRef]
- Niu, Z.Y.; Zhong, G.Q.; Yu, H. A Review on The Attention Mechanism of Deep Learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Lai, Q.X.; Khan, S.; Nie, Y.W.; Sun, H.Q.; Shen, J.B.; Shao, L. Understanding More About Human and Machine Attention in Deep Neural Networks. IEEE Trans. Multimed. 2020, 23, 2086–2099. [Google Scholar] [CrossRef]
- Gangopadhyay, T.; Tan, S.Y.; Jiang, Z.H.; Meng, R.; Sarkar, S. Spatiotemporal Attention for Multivariate Time Series Prediction and Interpretation. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 3560–3564. [Google Scholar]
- Ding, Y.K.; Zhu, Y.L.; Feng, J.; Zhang, P.C.; Cheng, Z.R. Interpretable Spatio-Temporal Attention LSTM Model for Flood Forecasting. Neurocomputing 2020, 403, 348–359. [Google Scholar] [CrossRef]
- Li, B.; Tang, B.Q.; Deng, L.; Zhao, M.H. Self-Attention ConvLSTM and Its Application in RUL Prediction of Rolling Bearings. IEEE Trans. Instrum. Meas. 2021, 70, 3518811. [Google Scholar] [CrossRef]
- Zhou, G.X.; Chen, J.; Liu, M.; Ma, L.F. A Spatiotemporal Attention-Augmented ConvLSTM Model for Ocean Remote Sensing Reflectance Prediction. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103815. [Google Scholar] [CrossRef]
- Chen, C.; Qiu, A.; Chen, H.Y.; Chen, Y.J.; Liu, X.; Li, D. Prediction of Pollutant Concentration Based on Spatial-Temporal Attention, ResNet and ConvLSTM. Sensors 2023, 23, 8863. [Google Scholar] [CrossRef]
- Shi, J.L.; Xu, N.; Luo, N.N.; Li, S.J.; Xu, J.J.; He, X.D. Retrieval of Sound-Velocity Profile in Ocean by Employing Brillouin Scattering LiDAR. Opt. Express 2022, 30, 16419–16431. [Google Scholar] [CrossRef]
- Al-Shehhi, M.R. Uncertainty in Satellite Sea Surface Temperature With Respect to Air Temperature, Dust Level, Wind Speed and Solar Position. Reg. Stud. Mar. Sci. 2022, 53, 102385. [Google Scholar] [CrossRef]
- Liu, F.C.; Ji, T.; Zhang, Q.L. Sound Speed Profile Inversion Based on Mode Signal and Polynomial Fitting. Acta Armamentarii 2019, 40, 2283–2295. [Google Scholar] [CrossRef]
- Lu, J.J.; Zhang, H.; Li, S.J.; Wu, P.F.; Huang, W. Enhancing Few-Shot Prediction of Ocean Sound Speed Profiles through Hierarchical Long Short-Term Memory Transfer Learning. J. Mar. Sci. Eng. 2024, 12, 1041. [Google Scholar] [CrossRef]
- Xu, X.F.; Yu, K.F.; Chen, T.R.; Tao, S.C.; Yan, H.Q.; Chen, T.G. The Responses of Sr/Ca, δ18O, and δ13C in The Porites Coral Skeleton to Extreme Thermal Events in the Nansha Islands. Singap. J. Trop. Geogr. 2022, 42, 1771–1782. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.P.; Gao, S. In Situ Hydrodynamic Observations on Three Reef Flats in The Nansha Islands, South China Sea. Front. Mar. Sci. 2024, 11, 1375301. [Google Scholar] [CrossRef]
Method | Main Parameters | Advantage | Disadvantage |
---|---|---|---|
MFP | Source Location, Receiver Array Location, Environmental Parameters | High Accuracy, Environmental Change Sensitivity | Large Amount of Calculation, Large Demand for Prior Information |
CS | Measurement Matrix, Primary Function, Restructing Algorithm | Small Demands for Data, Low Computing Cost, High Flexibility | Poor Processing of Non-sparse Signals |
RF | Number of Decision Trees, Maximum Depth | Suitable for High-dimensional Data, Good Tolerance for Outliers and Noise | Less Explanatory, Long Training Time |
LSTM | Number of Neurons in Hidden Layer, Learning Rate, Batch Size | Suitable for Time Series and Long-term Dependencies | Complex Model Structure, Long Training Time |
STA-ConvLSTM (We Propose) | Convolution Kernel Size, Attention Weight | Strong Modeling Ability for Spatiotemporal Data, Automatically Pay Attention to Important Information | High Complexity for Model, Large Amount of Computation |
Year | Month | MSE (°C) | MAE (°C) |
---|---|---|---|
2020 | 3 | 0.2155 | 0.2861 |
2020 | 9 | 0.1752 | 0.2972 |
2021 | 6 | 0.2083 | 0.3069 |
2021 | 12 | 0.1947 | 0.2984 |
2004~2021 | 1~12 | 0.2003 | 0.2989 |
Year | Month | MSE (‰) | MAE (‰) |
---|---|---|---|
2020 | 3 | 0.0035 | 0.0217 |
2020 | 9 | 0.0021 | 0.0182 |
2021 | 6 | 0.0018 | 0.0184 |
2021 | 12 | 0.0049 | 0.0270 |
2004~2021 | 1~12 | 0.0039 | 0.0250 |
Key Parameters | Value |
---|---|
Batch Size | 16 |
Activation Function | ReLU |
Convolutional Kernel Size | (7, 7) |
Number of Filters | 32 |
Number of Stacked Layers | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ma, B.; Qin, Z.; Wang, C.; Guo, C.; Yang, S.; Zhao, J.; Cai, Y.; Li, M. A Multi-Spatial Scale Ocean Sound Speed Prediction Method Based on Deep Learning. J. Mar. Sci. Eng. 2024, 12, 1943. https://doi.org/10.3390/jmse12111943
Liu Y, Ma B, Qin Z, Wang C, Guo C, Yang S, Zhao J, Cai Y, Li M. A Multi-Spatial Scale Ocean Sound Speed Prediction Method Based on Deep Learning. Journal of Marine Science and Engineering. 2024; 12(11):1943. https://doi.org/10.3390/jmse12111943
Chicago/Turabian StyleLiu, Yu, Benjun Ma, Zhiliang Qin, Cheng Wang, Chao Guo, Siyu Yang, Jixiang Zhao, Yimeng Cai, and Mingzhe Li. 2024. "A Multi-Spatial Scale Ocean Sound Speed Prediction Method Based on Deep Learning" Journal of Marine Science and Engineering 12, no. 11: 1943. https://doi.org/10.3390/jmse12111943