Data-Driven Analysis of Ocean Fronts’ Impact on Acoustic Propagation: Process Understanding and Machine Learning Applications, Focusing on the Kuroshio Extension Front
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Marine Environmental Data
2.1.2. Etopo2022 Bathymetric Data
2.2. Methodology
2.2.1. Ocean Front Identification and Section Extraction Method
2.2.2. Underwater Acoustic Features and Calculation Methods
2.2.3. Feature Importance Evaluation Method
3. Detailed Investigation of the Impact of Oceanic Fronts on Acoustic Structure and Propagation
3.1. Quantitative Assessment of the Impact of the KEF on Acoustic Structure Features
3.2. Impact of Changed Sound Speed Structure on Acoustic Propagation
3.3. Understanding the Process of the KEF’s Impact on Underwater Acoustic Propagation Based on Artificial Intelligence
- (1)
- Warm-Water Side
- (2)
- Cold-Water Side
4. Exploring the Application Scenarios of Quantitative Analysis of Oceanic Front Effects on Underwater Acoustics
4.1. Typical Acoustic Propagation Features in the KEF Environment
4.2. Analysis of Potential Application Scenarios Based on Multivariate Nonlinear Regression
4.2.1. Research on the Predictability of Acoustic Propagation Features in the KEF Environment
4.2.2. Serving Ocean Front Reconstruction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kida, S.; Mitsudera, H.; Aoki, S.; Guo, X.; Ito, S.i.; Kobashi, F.; Komori, N.; Kubokawa, A.; Miyama, T.; Morie, R.; et al. Oceanic fronts and jets around Japan: A review. J. Oceanogr. 2015, 71, 469–497. [Google Scholar] [CrossRef]
- Woods, B.L.; Van de Putte, A.P.; Hindell, M.A.; Raymond, B.; Saunders, R.A.; Walters, A.; Trebilco, R. Species distribution models describe spatial variability in mesopelagic fish abundance in the Southern Ocean. Front. Mar. Sci. 2023, 9, 981434. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Z.; Chen, W.; Liang, Y.; Chen, W.; Chen, Y. Ocean Fronts and Their Acoustic Effects: A Review. J. Mar. Sci. Eng. 2022, 10, 2021. [Google Scholar] [CrossRef]
- Burnett, W.; Harper, S.; Preller, R.; Jacobs, G.; LaCroix, K. Overview of operational ocean forecasting in the US Navy: Past, present, and future. Oceanography 2014, 27, 24–31. [Google Scholar] [CrossRef]
- Shihe, R.; Hui, W.; Na, L. Review of ocean front in Chinese marginal seas and frontal forecasting. Adv. Earth Sci. 2015, 30, 552–563. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Li, X. Effect of Bellhop-based mesoscale ocean front and topography on deep-sea communication and detection. In Proceedings of the International Conference on Signal Processing and Communication Technology (SPCT 2022), Harbin, China, 23–25 December 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Piao, S.; Zhang, M.; Zhang, S.; Guo, J.; Gong, L. Characteristics of Three-Dimensional Sound Propagation in Western North Pacific Fronts. J. Mar. Sci. Eng. 2021, 9, 1035. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Reconstruction of ocean front model based on sound speed clustering and its effectiveness in ocean acoustic forecasting. Appl. Sci. 2021, 11, 8461. [Google Scholar] [CrossRef]
- Erbe, C.; Duncan, A.; Vigness-Raposa, K.J. Introduction to Sound Propagation Under Water. In Exploring Animal Behavior Through Sound: Volume 1; Methods; Erbe, C., Thomas, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 185–216. [Google Scholar]
- Etter, P.C. Underwater Acoustic Modeling and Simulation, 4th ed.; CRC Press: Boca Raton, FL, USA, 2013; p. 554. [Google Scholar]
- Mellberg, L.E.; Johannessen, O.M.; Connors, D.N.; Botseas, G.; Browning, D.G. Acoustic propagation in the western Greenland Sea frontal zone. J. Acoust. Soc. Am. 1991, 89, 2144–2156. [Google Scholar] [CrossRef]
- Shapiro, G.; Chen, F.; Thain, R. The effect of ocean fronts on acoustic wave propagation in the Celtic Sea. J. Mar. Syst. 2014, 139, 217–226. [Google Scholar] [CrossRef]
- Chen, C.; Yang, K.; Duan, R.; Ma, Y. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension. Appl. Ocean Res. 2017, 68, 1–10. [Google Scholar] [CrossRef]
- DeCourcy, B.J.; Lin, Y.-T.; Siegmann, W.L. Effects of front width on acoustic ducting by a continuous curved front over a sloping bottom. J. Acoust. Soc. Am. 2019, 146, 1923–1933. [Google Scholar] [CrossRef]
- Shafiee Sarvestani, R. Acoustic propagation analysis in the front of saline water mass in the Gulf of Aden. J. Oceanogr. 2022, 13, 45–58. [Google Scholar] [CrossRef]
- Colosi, J.A.; Rudnick, D.L. Observations of upper ocean sound-speed structures in the North Pacific and their effects on long-range acoustic propagation at low and mid-frequencies. J. Acoust. Soc. Am. 2020, 148, 2040–2060. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, H.; Chai, Z.; Chen, C.; Cui, Z. Influence of shallow ocean front on propagation characteristics of low frequency sound energy flow. In Proceedings of the 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China, 22–24 April 2022; pp. 878–881. [Google Scholar] [CrossRef]
- Ozanich, E.; Gawarkiewicz, G.G.; Lin, Y.-T. Study of acoustic propagation across an oceanic front at the edge of the New England shelf. J. Acoust. Soc. Am. 2022, 152, 3756–3767. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Ocean front model based on sound speed profile and its influence on sound propagation. In Proceedings of the 2021 OES China Ocean Acoustics (COA), Harbin, China, 14–17 July 2021; pp. 172–177. [Google Scholar]
- Li, M.; Liu, K.; Li, H.; Sun, Y.; Chen, X.; Mao, K. Quantitative Analysis on the Influence of the Oceanic Front on Underwater Acoustic Detection with Investigated Marine Data. J. Mar. Sci. Eng. 2023, 11, 1574. [Google Scholar] [CrossRef]
- Bai, X.; Li, B.; Xu, X.; Xiao, Y. A review of current research and advances in unmanned surface vehicles. J. Mar. Sci. Appl. 2022, 21, 47–58. [Google Scholar] [CrossRef]
- Zhu, R.; Li, Y.; Chen, Z.; Du, T.; Zhang, Y.; Li, Z.; Jing, Z.; Yang, H.; Jing, Z.; Wu, L. Deep learning improves reconstruction of ocean vertical velocity. Geophys. Res. Lett. 2023, 50, e2023GL104889. [Google Scholar] [CrossRef]
- He, J.; Mahadevan, A. Vertical velocity diagnosed from surface data with Machine learning. Geophys. Res. Lett. 2024, 51, e2023GL104835. [Google Scholar] [CrossRef]
- Han, G.; Qi, X.; Peng, Y.; Lin, C.; Zhang, Y.; Lu, Q. Early Warning Obstacle Avoidance-Enabled Path Planning for Multi-AUV-Based Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2656–2667. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, H.; Akyildiz, I.F. High-data-rate long-range underwater communications via acoustic reconfigurable intelligent surfaces. IEEE Commun. Mag. 2022, 60, 96–102. [Google Scholar] [CrossRef]
- Mallik, W.; Jaiman, R.K.; Jelovica, J. Predicting transmission loss in underwater acoustics using convolutional recurrent autoencoder network. J. Acoust. Soc. Am. 2022, 152, 1627–1638. [Google Scholar] [CrossRef]
- McCarthy, R.A.; Sarkar, J.; Merrifield, S.; Bednar, R.; Ung, D.; Nager, A.; Brooks, C.; Terrill, E. Machine learning transmission loss simulations in complex undersea environments with range-dependent bathymetry. J. Acoust. Soc. Am. 2023, 154 (Suppl. 4), A308. [Google Scholar] [CrossRef]
- Storto, A.; Falchetti, S.; Oddo, P.; Jiang, Y.M.; Tesei, A. Assessing the impact of different ocean analysis schemes on oceanic and underwater acoustic predictions. J. Geophys. Res. Ocean. 2020, 125, e2019JC015636. [Google Scholar] [CrossRef]
- Yasuda, I. Hydrographic Structure and Variability in the Kuroshio-Oyashio Transition Area. J. Oceanogr. 2003, 59, 389–402. [Google Scholar] [CrossRef]
- Chen, S. The Kuroshio Extension Front From Satellite Sea Surface Temperature Measurements. J. Oceanogr. 2008, 64, 891–897. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Kuwano-Yoshida, A.; Nishikawa, H.; Narazaki, T.; Fukuoka, T.; Sato, K. Temperature profiling measurements by sea turtles improve ocean state estimation in the Kuroshio-Oyashio Confluence region. Ocean Dyn. 2019, 69, 267–282. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Varlamov, S.M.; Miyama, T.; Guo, X.; Hihara, T.; Kiyomatsu, K.; Kachi, M.; Kurihara, Y.; Murakami, H. Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three-dimensional variational scheme. Ocean Dyn. 2017, 67, 713–728. [Google Scholar] [CrossRef]
- Liu, Z.J.; Nakamura, H.; Zhu, X.H.; Nishina, A.; Guo, X.; Dong, M. Tempo-spatial variations of the Kuroshio current in the Tokara Strait based on long-term ferryboat ADCP data. J. Geophys. Res. Ocean. 2019, 124, 6030–6049. [Google Scholar] [CrossRef]
- Zheng, J.; Guo, X.; Miyazawa, Y.; Yang, H.; Yang, M.; Mao, X.; Jiang, W. Diagnostic Analysis of the Response of Volume Transport through the Tsushima Strait to the Eddy-Induced Variations in the Kuroshio Region. J. Phys. Oceanogr. 2023, 53, 2597–2617. [Google Scholar] [CrossRef]
- Chang, Y.-L.K.; McIntosh, I.M.; Miyama, T.; Miyazawa, Y. Projection of August 2021 pumice dispersion from the Fukutoku-Oka-no-Ba eruption in the western North Pacific. Sci. Rep. 2023, 13, 3945. [Google Scholar] [CrossRef]
- Donohue, K.A.; Watts, D.R.; Tracey, K.L.; Wimbush, M.H.; Park, J.-H.; Bond, N.A.; Cronin, M.F.; Chen, S.; Qiu, B.; Hacker, P.; et al. Program Studies the Kuroshio Extension. Eos Trans. Am. Geophys. Union 2008, 89, 161–162. [Google Scholar] [CrossRef]
- MacFerrin, M.; Amante, C.; Stroker, K.; Carignan, K.; Love, M.; Lim, E. Etopo 2022: An updated NOAA global relief model. In Proceedings of the AGU Fall Meeting Abstracts, Chicago, IL, USA, 12–16 December 2022; p. NH25B-0560. [Google Scholar]
- Yu, P.; Zhang, L.; Liu, M.; Zhong, Q.; Zhang, Y.; Li, X. A comparison of the strength and position variability of the Kuroshio Extension SST front. Acta Oceanol. Sin. 2020, 39, 26–34. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, L.; Wang, H. The Influential Factors and Prediction of Kuroshio Extension Front on Acoustic Propagation-Tracked. Arch. Acoust. 2024, 49, 95–106. [Google Scholar] [CrossRef]
- Mahpeykar, O.; Larki, A.A.; Nasab, M.A. The Effect of Cold Eddy on Acoustic Propagation (Case Study: Eddy in the Persian Gulf). Arch. Acoust. 2022, 47, 413–423. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Lv, T.; Huang, W.; Duan, Y.; Gao, Y. A simplified decision feedback Chebyshev function link neural network with intelligent initialization for underwater acoustic channel equalization. Front. Mar. Sci. 2023, 10, 1331635. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Chen, C.; Liu, C. Unified Underwater Acoustic Localization and Sound Speed Estimation for an Isogradient Sound Speed Profile. IEEE Sens. J. 2023, 24, 3317–3327. [Google Scholar] [CrossRef]
- Yang, K.; Lu, Y.; Xue, R.; Sun, Q. Transmission characteristics of convergence zone in deep-sea slope. Appl. Acoust. 2018, 139, 222–228. [Google Scholar] [CrossRef]
- Porter, M.B. The Bellhop Manual and User’s Guide: Preliminary Draft; Technical Report for Heat, Light, and Sound Research, Inc.: La Jolla, CA, USA, 2011; p. 260. [Google Scholar]
- Hamilton, E.L. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 1980, 68, 1313–1340. [Google Scholar] [CrossRef]
- Wu, S.; Li, Z.; Qin, J.; Wang, M.; Li, W. The Effects of Sound Speed Profile to the Convergence Zone in Deep Water. J. Mar. Sci. Eng. 2022, 10, 424. [Google Scholar] [CrossRef]
- Musolf, A.M.; Holzinger, E.R.; Malley, J.D.; Bailey-Wilson, J.E. What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics. Hum. Genet. 2022, 141, 1515–1528. [Google Scholar] [CrossRef]
- Rengasamy, D.; Mase, J.M.; Kumar, A.; Rothwell, B.; Torres, M.T.; Alexander, M.R.; Winkler, D.A.; Figueredo, G.P. Feature importance in machine learning models: A fuzzy information fusion approach. Neurocomputing 2022, 511, 163–174. [Google Scholar] [CrossRef]
- Mitchell, M.W. Bias of the Random Forest Out-of-Bag (OOB) Error for Certain Input Parameters. Open J. Stat. 2011, 1, 205–211. [Google Scholar] [CrossRef]
- Winter, E. Chapter 53 The Shapley Value. In Handbook of Game Theory with Economic Applications; Eleviser: Amsterdam, The Netherlands, 2002; Volume 3, pp. 2025–2054. [Google Scholar] [CrossRef]
- Fan, A.; Wang, Y.; Yang, L.; Tu, X.; Yang, J.; Shu, Y. Comprehensive evaluation of machine learning models for predicting ship energy consumption based on onboard sensor data. Ocean Coast. Manag. 2024, 248, 106946. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, S.; Cai, G.; Li, L.; Pan, Q.; Yan, J.; Ning, G. Adjusted weight voting algorithm for random forests in handling missing values. Pattern Recognit. 2017, 69, 52–60. [Google Scholar] [CrossRef]
- Rahman, S.A.; Maynard, N.; Trudgill, N.; Crosby, T.; Park, M.; Wahedally, H.; Underwood, T.J.; Cromwell, D.A.; NOGCA Project Team; AUGIS. Prediction of long-term survival after gastrectomy using random survival forests. Br. J. Surg. 2021, 108, 1341–1350. [Google Scholar] [CrossRef]
- Marichal, J.-L. The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making. Discret. Appl. Math. 2000, 107, 139–164. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, Z.; Lu, J.; Huang, M.; Xiao, Z. Interpretable features for underwater acoustic target recognition. Measurement 2021, 173, 108586. [Google Scholar] [CrossRef]
- Niu, H.; Li, X.; Zhang, Y.; Xu, J. Advances and applications of machine learning in underwater acoustics. Intell. Mar. Technol. Syst. 2023, 1, 8. [Google Scholar] [CrossRef]
- Shields, M.D.; Zhang, J. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 2016, 148, 96–108. [Google Scholar] [CrossRef]
- Helber, R.W.; Barron, C.N.; Carnes, M.R.; Zingarelli, R.A. Evaluating the sonic layer depth relative to the mixed layer depth. J. Geophys. Res. Ocean. 2008, 113, C07033. [Google Scholar] [CrossRef]
- Chavent, M.; Lacaille, J.; Mourer, A.; Olteanu, M. Handling Correlations in Random Forests: Which Impacts on Variable Importance and Model Interpretability? In Proceedings of the 29th European Symposium on Artificial Neural Networks (ESANN 2021), Bruges, Belgium, 6–8 October 2021; pp. 569–574. [Google Scholar] [CrossRef]
- Zhang, H.; Zhikang, M.A.; Jinshan, F.U.; Shengchun, P. Analysis of horizontal migration characteristics of convergence zone and its critical frequency. Acta Acust. 2021, 46, 1093–1101. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, L.; Wang, H. Machine learning–based feature prediction of convergence zones in ocean front environments. Front. Mar. Sci. 2024, 11, 1337234. [Google Scholar] [CrossRef]
- Li, S.; Cheng, L.; Zhang, T.; Zhao, H.; Li, J. Striking the right balance: Three-dimensional ocean sound speed field reconstruction using tensor neural networks. J. Acoust. Soc. Am. 2023, 154, 1106–1123. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Li, H.; Hu, D.; Chen, C.; He, Y. Impact of ocean fronts on the reconstruction of vertical temperature profiles from sea surface measurements. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 187, 103833. [Google Scholar] [CrossRef]
Features | Ocean Front Strength (m/s/km) | Coefficients of Curve Fitting (y = ax3 + bx2 + cx + d) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | a | b | c | d | MAE | |
SSS (m/s) | 8.42 | 9.60 | 8.80 | 7.50 | 7.33 | 3.96 | 2.02 | −11.96 | 20.00 | −0.22 | 1.10 |
SLD (m) | 27.41 | 29.04 | 19.47 | 16.27 | 11.87 | 12.00 | 9.25 | −48.65 | 68.98 | −1.15 | 2.66 |
BSLS (m/s) | 9.12 | 10.29 | 9.22 | 7.69 | 7.68 | 4.03 | 2.21 | −13.00 | 21.49 | −0.20 | 1.22 |
TLSS (m/s/m) | −0.02 | −0.06 | −0.10 | −0.15 | −0.16 | −0.17 | 0.00 | −0.01 | −0.06 | 0.01 | 0.01 |
SCAD (m) | 389.14 | 587.26 | 668.18 | 720.29 | 791.62 | 781.00 | 45.18 | −348.85 | 890.64 | −6.70 | 25.85 |
SCAS (m/s) | 6.01 | 12.44 | 17.32 | 24.75 | 26.91 | 29.63 | −0.67 | 1.17 | 12.29 | −0.40 | 0.54 |
CD (m) | 1849.78 | 2719.48 | 2915.50 | 2860.05 | 2958.94 | 3352.00 | 321.39 | −2181.10 | 4637.43 | −122.16 | 173.69 |
CDS (m/s) | 29.99 | 50.44 | 63.68 | 72.80 | 72.14 | 67.72 | 3.10 | −26.74 | 79.46 | −4.47 | 2.51 |
DE (m) | −1789.85 | −2656.08 | −2856.79 | −2779.06 | −2967.97 | −3224.82 | −313.92 | 2146.28 | −4570.81 | 145.01 | 185.31 |
Features | Direct Detection Distance (Warm) | Convergence Zone Distance (Warm) | Direct Detection Distance (Cold) | Convergence Zone Distance (Cold) | ||||
---|---|---|---|---|---|---|---|---|
Slope | Interval | Slope | Interval | Slope | Interval | Slope | Interval | |
SSS (m/s) | 8.64 | 1.8~3.4 | 0.68 | 40.0~55.0 | 4.36 | 2.3~3.6 | −0.49 | 45~60 |
SLD (m) | 164.27 | 2.8~3.4 | 5.72 | 50.0~65.0 | −20.63 | 2.6~3.6 | −4.77 | 52~59 |
TLSS (m/s/m) | 3.57 × 10−2 | 1.8~3.4 | 3.4 × 10−3 | 55.0~65.0 | 9.61 × 10−2 | 1.6~2.6 | 3.50 × 10−2 | 40~60 |
SCAD (m) | 589.73 | 1.8~2.5 | 30.51 | 47.0~57.5 | −175.19 | 1.6~2.6 | −20.66 | 40~60 |
CD (m) | 3.06 × 103 | 1.8~2.5 | 204.75 | 48.5~59.0 | −623.64 | 1.6~5.4 | −111.80 | 40~60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhang, L.; Li, M.; Ma, X.; Li, M. Data-Driven Analysis of Ocean Fronts’ Impact on Acoustic Propagation: Process Understanding and Machine Learning Applications, Focusing on the Kuroshio Extension Front. J. Mar. Sci. Eng. 2024, 12, 2010. https://doi.org/10.3390/jmse12112010
Xu W, Zhang L, Li M, Ma X, Li M. Data-Driven Analysis of Ocean Fronts’ Impact on Acoustic Propagation: Process Understanding and Machine Learning Applications, Focusing on the Kuroshio Extension Front. Journal of Marine Science and Engineering. 2024; 12(11):2010. https://doi.org/10.3390/jmse12112010
Chicago/Turabian StyleXu, Weishuai, Lei Zhang, Ming Li, Xiaodong Ma, and Maolin Li. 2024. "Data-Driven Analysis of Ocean Fronts’ Impact on Acoustic Propagation: Process Understanding and Machine Learning Applications, Focusing on the Kuroshio Extension Front" Journal of Marine Science and Engineering 12, no. 11: 2010. https://doi.org/10.3390/jmse12112010
APA StyleXu, W., Zhang, L., Li, M., Ma, X., & Li, M. (2024). Data-Driven Analysis of Ocean Fronts’ Impact on Acoustic Propagation: Process Understanding and Machine Learning Applications, Focusing on the Kuroshio Extension Front. Journal of Marine Science and Engineering, 12(11), 2010. https://doi.org/10.3390/jmse12112010