A Simulation Model of the Influence of LNG Ships on Traffic Efficiency at Tianjin Port
Abstract
:1. Introduction
2. Literature Review
3. The Traffic Simulation Model
3.1. Navigation Restrictions and the Formulation of Regulations
- (1)
- Tide restrictions
- (2)
- Weather condition restrictions for all ships
3.2. Waterway Restrictions
3.3. Ship Operation Time
3.4. Ship Scheduling Regulation
4. Simulation Formulation Using Arena Software
5. Simulations Results and Analysis
5.1. Results and Analysis
5.2. Simulation with Increased Number of Other Ships
- (1)
- Case I: The existing traffic regulations
- (2)
- Case II: Modified traffic regulations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Yu, H.; Li, H.; Peng, L.; Zhou, T. Safety or Efficiency an ECSO Framework of Traffic Organization Optimization for LNG Carriers Entering and Leaving Port. Math. Probl. Eng. 2021, 2021, e8804219. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, L.; Huang, Z.; Shi, F.; Xie, C. Hazard Analysis by Leakage and Diffusion in Liquefied Natural Gas Ships during Emergency Transfer Operations on Coastal Waters. Ocean Coast. Manag. 2022, 220, 106100. [Google Scholar] [CrossRef]
- Chen, L.J.; Yan, X.P.; Huang, L.W.; Yang, Z.L.; Wang, J. A systematic simulation methodology for lng ship operations in port waters: A case study in meizhou bay. J. Mar. Eng. Technol. 2018, 17, 12–23. [Google Scholar] [CrossRef]
- Gkonis, K.; Psaraftis, H. Investment rules and competition patterns in LNG shipping: A Game Theory approach. In Proceedings of the IAME 2007 Annual Conference, Athens, Greece, 4–6 June 2022. [Google Scholar]
- IGU. World LNG Report, 2017th ed.; International Gas Union: Barcelona, Spain, 2017. [Google Scholar]
- Miller, G.; Zeng, X. Chinese LNG import prospects brighten. Fairplay 2017, 388, 1–24. [Google Scholar]
- Sun, B.; Guo, K. LNG accident dynamic simulation: Application for hazardous consequence reduction. J. Loss Prev. Process Ind. 2013, 26, 1246–1256. [Google Scholar] [CrossRef]
- Lv, P.; Zhuang, Y.; Deng, J.; Su, W. Study on lockage safety of LNG-fueled ships based on FSA. PLoS ONE 2017, 12, e0174448. [Google Scholar] [CrossRef]
- Koopman, R.P.; Ermak, D.L. Lessons learned from LNG safety research. J. Hazard. Mater. 2007, 140, 412–428. [Google Scholar] [CrossRef]
- Elsayed, T.; Leheta, H.; Shehadeh, M. Multi-attribute risk assessment of LNG carriers during loading/offloading at terminals. Ships Offshore Struct. 2009, 4, 127–131. [Google Scholar] [CrossRef]
- Li, M.; Mou, J.M.; Xinsheng, Z.; Gong, S. The impact of LNG carrier transit on fairway capacity. Sci. J. Marit. Univ. Szczec. 2018, 56, 63–70. [Google Scholar] [CrossRef]
- Gu, M. Design Code of General Layout for Sea Port (JTS165-2013); China Communications Press: Beijing, China, 2013. [Google Scholar]
- Wang, W.; Peng, Y.; Tian, Q.; Song, X. Key influencing factors on improving the channel capacity of coastal ports. Ocean Eng. 2017, 137, 382–393. [Google Scholar] [CrossRef]
- Gucma, L. LNG Terminals Design and Operation: Navigational Safety Aspects; Marine Traffic Engineering: Szczecin, Poland, 2013. [Google Scholar]
- Liu, J.; Liu, Y.; Qi, L. Modelling liquefied natural gas ship traffic in port based on cellular automaton and multi-agent system. J. Navig. 2021, 74, 533–548. [Google Scholar] [CrossRef]
- Aneziris, O.; Koromila, I.; Nivolianitou, Z. A systematic literature review on LNG safety at ports. Saf. Sci. 2020, 124, 104595. [Google Scholar] [CrossRef]
- Park, N.K.; Park, S.K. A study on the estimation of facilities in LNG bunkering terminal by simulation—Busan Port case. J. Mar. Sci. Eng. 2019, 7, 354. [Google Scholar] [CrossRef]
- Park, N.K.; An, Y. Estimation of LNG Dolphin Capacity: Dolphins of Different Size in Republic of Korea. J. Mar. Sci. Eng. 2022, 10, 2031. [Google Scholar] [CrossRef]
- Durlik, I.; Gucma, L.; Miller, T. Statistical Model of Ship Delays on the Fairway in Terms of Restrictions Resulting from the Port Regulations: Case Study of Świnoujście-Szczecin Fairway. Appl. Sci. 2023, 13, 5271. [Google Scholar] [CrossRef]
- Chen, L.; Hopman, H.; Negenborn, R. Distributed model predictive control for vessel train formations of cooperative multi-vessel systems. Transp. Res. Part C Emerg. Technol. 2018, 92, 101–118. [Google Scholar] [CrossRef]
- Eldemir, F.; Camci, F.; Uysal, O. Analysis and simulation of Istanbul Strait marine traffic management strategies (No. 13-1024). In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Jiang, L.; Huang, G.; Huang, C.; Wang, W. Data mining and optimization of a port vessel behavior behavioral model under the internet of things. IEEE Access 2019, 7, 139970–139983. [Google Scholar] [CrossRef]
- Qi, L.; Zheng, Z.; Gang, L. A cellular automaton model for ship traffic flow in waterways. Phys. Stat. Mech. Its Appl. 2017, 471, 705–717. [Google Scholar] [CrossRef]
- Mavrakis, D.; Kontinakis, N. A queueing model of maritime traffic in Bosporus Straits. Simul. Model. Pract. Theory 2007, 16, 315–328. [Google Scholar] [CrossRef]
- Ramin, A.; Mustaffa, M.; Ahmad, S. Prediction of marine traffic density using different time series model from AIS data of Port Klang and Straits of Malacca. Trans. Marit. Sci. 2020, 9, 217–223. [Google Scholar] [CrossRef]
- Liong, C.Y.; Loo, C.S. A simulation study of warehouse loading and unloading systems using Arena. J. Qual. Meas. Anal. 2009, 5, 45–56. [Google Scholar]
- Wang, T.; Guinet, A.; Belaidi, A.; Besombes, B. Modelling and simulation of emergency services with ARIS and Arena. Case study: The emergency department of Saint Joseph and Saint Luc Hospital. Prod. Plan. Control 2009, 20, 484–495. [Google Scholar] [CrossRef]
- Oljira, D.G.; Abeya, T.G.; Ofgera, G.; Gopal, M. Manufacturing system modeling and performance analysis of mineral water production line using ARENA simulation. Int. J. Eng. Adv. Technol. 2020, 9, 312–317. [Google Scholar] [CrossRef]
- Guneri, A.F.; Seker, S. The use of arena simulation programming for decision making in a workshop study. Comp. App. Eng. Educ. 2008, 16, 1–11. [Google Scholar] [CrossRef]
- Rasib, A.A. Production Smoothness Improvement through ARENA Application in the Food Manufacturing Industry. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 3516–3526. [Google Scholar]
- Wang, H.; Liu, J.; Zhang, J.; Liu, K.; Yang, X.; Yu, Q. Self-organizing cooperation model for ships navigating in restricted one-way waterway. Brodogradnja 2018, 69, 1–23. [Google Scholar] [CrossRef]
- Wang, H.; Tian, W.; Zhang, J.; Li, Y. A hybrid self-organizing scheduling method for ships in restricted two-way waterways. Brodogradnja 2020, 71, 15–30. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Liu, K.; Zhang, J.; Wang, Z. Sensitivity analysis of traffic efficiency in restricted channel influenced by the variance of ship speed. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2018, 232, 212–224. [Google Scholar] [CrossRef]
Parameter | Values or Distributions |
---|---|
Time interval between two LNG ships (h) | Exponential (60.62) [135 ships per year] |
Time interval between two other ships (h) | Exponential (7.21) [1135 ships per year] |
Navigation speed of LNG ships (kn) | 10 |
Navigation speed of other ships (kn) | Uniform (10, 13) |
Waterway length (n mile) | 24.83 |
Number of LNG berths | 2 |
Navigation speed of LNG ships (kn) | 10 |
Navigation speed of other ships (kn) | 8 |
Safety distance between LNG ships and other ships (n mile) | 2 |
Safety distance between other ships (m) | 500 |
Berthing time of LNG ships (h) | Normal (23.81, 1.17) |
Operating time of other ships (h) | Normal (47.71, 6.73) |
Waterway closing period due to severe weather conditions (h) | 576 |
Ship Volume | Simulation 1 | Simulation 2 | Simulation 3 | Simulation 4 | Simulation 5 | Real Data |
---|---|---|---|---|---|---|
Other ships | 1139 | 1125 | 1175 | 1202 | 1188 | 1135 |
LNG ships | 140 | 128 | 134 | 137 | 132 | 135 |
Waiting Time (h) | Average | Half Width | Minimum Average | Maximum Average | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|
Arriving LNG ships | 12.4519 | 1.64 | 10.8601 | 13.6142 | 0.0566 | 54.5461 |
Leaving LNG ships | 2.4274 | 0.27 | 2.2387 | 2.7580 | 0.0119 | 4.9655 |
Arriving other ships | 2.0467 | 0.29 | 1.8221 | 2.3230 | 0.0056 | 5.8633 |
Leaving other ships | 2.1689 | 0.35 | 1.8580 | 2.4754 | 0.0018 | 9.0862 |
Number Waiting | Average | Half Width | Minimum Average | Maximum Average | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|
Entering LNG ships | 0.1133 | 0.03 | 0.0930 | 0.1385 | 0.00 | 3.00 |
Leaving LNG ships | 0.0051 | 0.00 | 0.0033 | 0.0091 | 0.00 | 1.00 |
Entering other ships | 0.0235 | 0.00 | 0.0217 | 0.0249 | 0.00 | 4.00 |
Leaving other ships | 0.0251 | 0.01 | 0.0173 | 0.0344 | 0.00 | 5.00 |
Navigation Regulations | Case I | Case II |
---|---|---|
Two-way navigation for LNG ships | × | × |
Two-way navigation for other ships | √ | √ |
Other ships can follow LNG ships at a 1 n mile safety distance | √ | √ |
Other ships can navigate in front of LNG ships | × | √ |
Two-way navigation between LNG and other ships | × | × |
Two-way navigation between other ships | × | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tian, W.; Meng, B.; Zhang, J.; Zhou, R. A Simulation Model of the Influence of LNG Ships on Traffic Efficiency at Tianjin Port. J. Mar. Sci. Eng. 2024, 12, 405. https://doi.org/10.3390/jmse12030405
Li Y, Tian W, Meng B, Zhang J, Zhou R. A Simulation Model of the Influence of LNG Ships on Traffic Efficiency at Tianjin Port. Journal of Marine Science and Engineering. 2024; 12(3):405. https://doi.org/10.3390/jmse12030405
Chicago/Turabian StyleLi, Yanwei, Wuliu Tian, Beibei Meng, Jinfen Zhang, and Ruisai Zhou. 2024. "A Simulation Model of the Influence of LNG Ships on Traffic Efficiency at Tianjin Port" Journal of Marine Science and Engineering 12, no. 3: 405. https://doi.org/10.3390/jmse12030405
APA StyleLi, Y., Tian, W., Meng, B., Zhang, J., & Zhou, R. (2024). A Simulation Model of the Influence of LNG Ships on Traffic Efficiency at Tianjin Port. Journal of Marine Science and Engineering, 12(3), 405. https://doi.org/10.3390/jmse12030405