Influence of New Parameterization Schemes on Arctic Sea Ice Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.1.1. The CAS-ESM2-0 Earth System Model
2.1.2. The NESM3 Earth System Model
2.2. Observation Data Used for the Evaluation
2.2.1. NSIDC Sea Ice Concentration
2.2.2. PIOMAS Sea Ice Thickness
2.3. Taylor Score
2.4. Data Processing
3. Results
3.1. Spatial Patterns of SIC and SIT
3.2. Taylor Score of the 1980–2014 Mean SIC and SIT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Bulk Formula Scheme
Appendix A.2. Maximum Entropy Production (MEP) Scheme
Appendix A.3. Delta-Eddington (dEdd) Scheme
Appendix A.4. Inherent Optical Properties (IOP) Scheme
Appendix A.5. Level Ice (LVL) Scheme
Appendix A.6. Melt Pond Size Distribution (MPSD) Scheme
Appendix A.7. Two-Equation (2EQ) Scheme
Appendix A.8. Three-Equation (3EQ) Scheme
References
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Notz, D.; Jahn, A.; Holland, M.; Hunke, E.; Massonnet, F.; Stroeve, J.; Tremblay, B.; Vancoppenolle, M. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geosci. Model Dev. 2016, 9, 3427–3446. [Google Scholar] [CrossRef]
- Chen, L.; Wu, R.; Shu, Q.; Min, C.; Yang, Q.; Han, B. The Arctic Sea Ice Thickness Change in CMIP6’s Historical Simulations. Adv. Atmos. Sci. 2023, 40, 2331–2343. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Wang, Z.; Zhao, L.; Wang, J. Evaluation of Arctic sea ice simulation of CMIP6 models from China. Adv. Polar Sci. 2022, 33, 220–234. [Google Scholar] [CrossRef]
- Watts, M.; Maslowski, W.; Lee, Y.J.; Kinney, J.C.; Osinski, R. A Spatial Evaluation of Arctic Sea Ice and Regional Limitations in CMIP6 Historical Simulations. J. Clim. 2021, 34, 6399–6420. [Google Scholar] [CrossRef]
- Shen, Z.; Duan, A.; Li, D.; Li, J. Assessment and Ranking of Climate Models in Arctic Sea Ice Cover Simulation: From CMIP5 to CMIP6. J. Clim. 2021, 34, 3609–3627. [Google Scholar] [CrossRef]
- Long, M.; Zhang, L.; Hu, S.; Qian, S. Multi-Aspect Assessment of CMIP6 Models for Arctic Sea Ice Simulation. J. Clim. 2021, 34, 1515–1529. [Google Scholar] [CrossRef]
- Shu, Q.; Wang, Q.; Song, Z.; Qiao, F.; Zhao, J.; Chu, M.; Li, X. Assessment of Sea Ice Extent in CMIP6 With Comparison to Observations and CMIP5. Geophys. Res. Lett. 2020, 47, e87965. [Google Scholar] [CrossRef]
- Roach, L.A.; Dörr, J.; Holmes, C.R.; Massonnet, F.; Blockley, E.W.; Notz, D.; Rackow, T.; Raphael, M.N.; O’Farrell, S.P.; Bailey, D.A.; et al. Antarctic Sea Ice Area in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086729. [Google Scholar] [CrossRef]
- Notz, D.; Community, S. Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086749. [Google Scholar] [CrossRef]
- Hunke, E.; Allard, R.; Bailey, D.; Blain, P.; Craig, A.; Damsgaard, A.; DuVivier, A.; Grumbine, R.; Hebert, D.; Holland, M.; et al. CICE-Consortium/CICE: CICE Version 6.0.0; Los Alamos National Laboratory: Los Alamos, NM, USA, 2018. [Google Scholar] [CrossRef]
- Kauffman, B.G.; Large, W.G. The CCSM Coupler. Version 5.0.1: Combined User’s Guide, Source code Reference, and Scientific Description; National Center for Atmospheric Research: Boulder, CO, USA, 2002; pp. 1–46. [Google Scholar]
- Briegleb, B.P.; Light, B. A Delta-Eddington Multiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model (No. NCAR/TN-472+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2007; 100p. [Google Scholar] [CrossRef]
- Holland, M.M.; Bailey, D.A.; Briegleb, B.P.; Light, B.; Hunke, E. Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt Ponds and Aerosols on Arctic Sea Ice. J. Clim. 2011, 25, 1413–1430. [Google Scholar] [CrossRef]
- Flocco, D.; Feltham, D.L.; Turner, A.K. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Ocean. 2010, 115, C08012. [Google Scholar] [CrossRef]
- Hunke, E.C.; Hebert, D.A.; Lecomte, O. Level-ice melt ponds in the Los Alamos sea ice model, CICE. Ocean Model. 2013, 71, 26–42. [Google Scholar] [CrossRef]
- McPhee, M.G. Turbulent heat flux in the upper ocean under sea ice. J. Geophys. Res. Ocean. 1992, 97, 5365–5379. [Google Scholar] [CrossRef]
- Maykut, G.A.; McPhee, M.G. Solar heating of the Arctic mixed layer. J. Geophys. Res. Ocean. 1995, 100, 24691–24703. [Google Scholar] [CrossRef]
- Notz, D.; McPhee, M.G.; Worster, M.G.; Maykut, G.A.; Schlu¨nzen, K.H.; Eicken, H. Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res. 2003, 108, 3223. [Google Scholar] [CrossRef]
- McPhee, M.G.; Morison, J.H.; Nilsen, F. Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. J. Geophys. Res. Ocean. 2008, 113, C06014. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Jin, J.; Fei, K.; Ji, D.; Wu, C.; Zhu, J.; He, J.; Chai, Z.; Xie, J.; et al. Description and Climate Simulation Performance of CAS-ESM Version 2. J. Adv. Model. Earth. Syst. 2020, 12, e2020MS002210. [Google Scholar] [CrossRef]
- Cao, J.; Ma, L.; Liu, F.; Chai, J.; Zhao, H.; He, Q.; Wang, B.; Bao, Y.; Li, J.; Yang, Y.; et al. NUIST ESM v3 Data Submission to CMIP6. Adv. Atmos. Sci. 2021, 38, 268–284. [Google Scholar] [CrossRef]
- Wang, J.; Bras, R.L.; Nieves, V.; Deng, Y. A model of energy budgets over water, snow, and ice surfaces. J. Geophys. Res. Atmos. 2014, 119, 6034–6051. [Google Scholar] [CrossRef]
- Yu, M.; Lu, P.; Cheng, B.; Leppäranta, M.; Li, Z. Impact of Microstructure on Solar Radiation Transfer within Sea Ice During Summer in the Arctic: A Model Sensitivity Study. Front. Mar. Sci. 2022, 9, 861994. [Google Scholar] [CrossRef]
- Popović, P.; Cael, B.B.; Silber, M.; Abbot, D.S. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds. Phys. Rev. Lett. 2018, 120, 148701. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Notz, D.; Liu, J.; Yang, H.; Lohmann, G. Sensitivity of Northern Hemisphere climate to ice–ocean interface heat flux parameterizations. Geosci. Model Dev. 2021, 14, 4891–4908. [Google Scholar] [CrossRef]
- Craig, A.P.; Vertenstein, M.; Jacob, R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High. Perform. Comput. Appl. 2012, 26, 31–42. [Google Scholar] [CrossRef]
- Thorndike, A.S.; Rothrock, D.A.; Maykut, G.A.; Colony, R. The thickness distribution of sea ice. J. Geophys. Res. 1975, 80, 4501–4513. [Google Scholar] [CrossRef]
- Hunke, E.C.; Dukowicz, J.K. An Elastic Viscous Plastic Model for Sea Ice Dynamics. J. Phys. Oceanogr. 1997, 27, 1849–1867. [Google Scholar] [CrossRef]
- Lipscomb, W.H.; Hunke, E.C.; Maslowski, W.; Jakacki, J. Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res. Ocean. 2007, 112, C03S91. [Google Scholar] [CrossRef]
- Dong, X.; Jin, J.; Liu, H.; Zhang, H.; Zhang, M.; Lin, P.; Zeng, Q.; Zhou, G.; Yu, Y.; Song, M.; et al. CAS-ESM2.0 Model Datasets for the CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1). Adv. Atmos. Sci. 2021, 38, 307–316. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Y.; Lin, P.; Liu, H.; He, B.; Bao, Q.; Zhao, S.; Wang, X. Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L. Adv. Atmos. Sci. 2020, 37, 1057–1066. [Google Scholar] [CrossRef]
- Valcke, S.; Craig, T.; Coquart, L. OASIS3-MCT User Guide, OASIS3-MCT 3.0; CERFACS Technical Report, CERFACS TR/CMGC/15/38; CERFACS: Toulouse, France, 2015. [Google Scholar]
- Giorgetta, M.A.; Roeckner, E.; Mauritsen, T.; Bader, J.; Crueger, T.; Esch, M.; Rast, S.; Kornblueh, L.; Schmidt, H.; Kinne, S.; et al. The Atmospheric General Circulation Model ECHAM6: Model Description; Max Planck Institute for Meteorology: Hamburg, Germany, 2013; 135p. [Google Scholar]
- Gurvan, M.; Bourdallé-Badie, R.; Bouttier, P.-A.; Bricaud, C.; Bruciaferri, D.; Calvert, D.; Chanut, J.; Clementi, E.; Coward, A.; Delrosso, D.; et al. NEMO Ocean Engine; Note du pole de modélisation de l’Institut Pierre-Simon Laplace. No 27; Institut Pierre-Simon Laplace (IPSL): Guyancourt, France, 2017. [Google Scholar] [CrossRef]
- Hunke, E.C.; Lipscomb, W.H. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.0; Los Alamos National Laboratory: Los Alamos, NM, USA, 2010. [Google Scholar]
- Cao, J.; Wang, B.; Yang, Y.-M.; Ma, L.; Li, J.; Sun, B.; Bao, Y.; He, J.; Zhou, X.; Wu, L. The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geosci. Model Dev. 2018, 11, 2975–2993. [Google Scholar] [CrossRef]
- Meier, W.N.; Peng, G.; Scott, D.J.; Savoie, M.H. Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record. Polar Res. 2014, 33, 21004. [Google Scholar] [CrossRef]
- Ivanova, N.; Pedersen, L.T.; Tonboe, R.T.; Kern, S.; Heygster, G.; Lavergne, T.; Sørensen, A.; Saldo, R.; Dybkjær, G.; Brucker, L.; et al. Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere 2015, 9, 1797–1817. [Google Scholar] [CrossRef]
- Kern, S.; Lavergne, T.; Notz, D.; Pedersen, L.T.; Tonboe, R. Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions. Cryosphere 2020, 14, 2469–2493. [Google Scholar] [CrossRef]
- Comiso, J.C.; Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P. Passive microwave algorithms for sea ice concentration: A comparison of two techniques. Remote Sens. Environ. 1997, 60, 357–384. [Google Scholar] [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Kaleschke, L.; Tian-Kunze, X.; King, J.; Haas, C. A Weekly Arctic Sea-Ice Thickness Data Record from Merged CryoSat-2 and SMOS Satellite Data. Cryosphere 2017, 11, 1607–1623. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Thickness Measurement Using Spaceborne GNSS-R: First Results with TechDemoSat-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 577–587. [Google Scholar] [CrossRef]
- Zhang, J.; Rothrock, D.A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Mon. Weather Rev. 2003, 131, 845–861. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, M.; Dong, C.; Liu, J. Modeling turbulent heat fluxes over Arctic sea ice using a maximum-entropy-production approach. Adv. Clim. Change Res. 2021, 12, 517–526. [Google Scholar] [CrossRef]
- Yu, L.; Liu, J.; Gao, Y.; Shu, Q. A Sensitivity Study of Arctic Ice-Ocean Heat Exchange to the Three-Equation Boundary Condition Parametrization in CICE6. Adv. Atmos. Sci. 2022, 39, 1398–1416. [Google Scholar] [CrossRef]
- Zhang, X. Sensitivity of Arctic Summer Sea Ice Coverage to Global Warming Forcing: Towards Reducing Uncertainty in Arctic Climate Change Projections. Tellus A 2010, 62, 220–227. [Google Scholar] [CrossRef]
- Davy, R.; Outten, S. The Arctic Surface Climate in CMIP6: Status and Developments since CMIP5. J. Clim. 2020, 33, 8047–8068. [Google Scholar] [CrossRef]
Component | CAS-ESM2-0 Old Version | CAS-ESM2-0 New Version | NESM3 Old Version | NESM3 New Version |
---|---|---|---|---|
Atmosphere | IAP AGCM5 | IAP AGCM5 | ECHAM6.3 | ECHAM6.3 |
Ocean | LICOM2 | LICOM3 | NEMO3.4 | NEMO3.4 |
Sea Ice | CICE4 | CICE6 | CICE4 | CICE6 |
Land | CoLM | CoLM | JSBACH | JSBACH |
Coupler | Coupler7 | Coupler7 | OASIS_3.0-MCT3 | OASIS_3.0-MCT3 |
Scheme | Air–Ice Heat Flux Exchanges | Shortwave Radiation | Melt Pond | Ice–Ocean Heat Flux Exchanges |
---|---|---|---|---|
old version | Bulk formula | dEdd | LVL | 2EQ |
new version | MEP | dEdd + IOP | LVL + MPSD | 3EQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, X.; He, Y.; Liu, J.; Jin, J.; Cao, J.; He, J.; Yu, Y.; Gao, X.; Song, M.; et al. Influence of New Parameterization Schemes on Arctic Sea Ice Simulation. J. Mar. Sci. Eng. 2024, 12, 555. https://doi.org/10.3390/jmse12040555
Lu Y, Wang X, He Y, Liu J, Jin J, Cao J, He J, Yu Y, Gao X, Song M, et al. Influence of New Parameterization Schemes on Arctic Sea Ice Simulation. Journal of Marine Science and Engineering. 2024; 12(4):555. https://doi.org/10.3390/jmse12040555
Chicago/Turabian StyleLu, Yang, Xiaochun Wang, Yijun He, Jiping Liu, Jiangbo Jin, Jian Cao, Juanxiong He, Yongqiang Yu, Xin Gao, Mirong Song, and et al. 2024. "Influence of New Parameterization Schemes on Arctic Sea Ice Simulation" Journal of Marine Science and Engineering 12, no. 4: 555. https://doi.org/10.3390/jmse12040555
APA StyleLu, Y., Wang, X., He, Y., Liu, J., Jin, J., Cao, J., He, J., Yu, Y., Gao, X., Song, M., & Zhang, Y. (2024). Influence of New Parameterization Schemes on Arctic Sea Ice Simulation. Journal of Marine Science and Engineering, 12(4), 555. https://doi.org/10.3390/jmse12040555