A Framework to Assure the Trustworthiness of Physical Model-Based Digital Twins for Marine Engines
Abstract
:1. Introduction
2. Trustworthiness Definition
3. Reference Engine System Description
4. Framework and Methodology
4.1. Framework for Assuring Trustworthiness of Physical Model-Based Digital Twins
4.2. Application Methodology in Marine Engine Anomaly Diagnosis
5. Methods and Tools
5.1. Physical Model-Based Engine Digital Twin
5.2. Anomaly Summary Table
Anomaly Identification Process with FMECA | Anomaly Analysis for Simulation Design | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FMECA Output | DT Input parameters | DT Output parameters | ||||||||||||
Component | Function | Failure Mode | Failure Causes | Failure Effects | Detection Method | O | S | D | RPN | Name | Manufacturer limits | Input Range | Simulation Steps | Name |
5.3. DT Calibration and Design of Experiments
5.4. Trustworthiness Assurance
5.4.1. Validation
5.4.2. Verification
5.4.3. Robustness
5.4.4. Trustworthiness Assurance Table
5.5. Data-Driven Anomaly Diagnosis Model
6. Case Study Description
7. Results and Discussion
7.1. DT Management and Trustworthiness Management
7.2. Data Generation and Application Test
7.3. Discussion
8. Conclusions
- The trustworthiness of the developed DT was assured as the validation step resulted in errors within ±3%, the verification step resulted in sound trade-offs, and the robustness step confirmed the uncertainty was not propagated.
- The trustworthy DT generated 79,980 data samples representing a wide engine operating envelope. The generated dataset included ambient temperature variations and cylinder valve anomalies, making it suitable for training and testing anomaly diagnosis models.
- The accuracies of the anomaly diagnosis models were 98.8% for anomaly detection, 97.6% for anomaly identification, and 90.1–91.8% for anomaly isolation. These results demonstrated that the simulation-generated datasets can serve as viable alternatives to measurement datasets provided that the employed DT trustworthiness is appropriately assured.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
0D/1D | 0-Dimensional/1-Dimensional |
ADO | Advanced Direct Optimiser |
DD | Data Driven |
DOE | Design of Experiments |
DT | Digital Twin |
FMECA | Failure Mode, Effects and Criticality Analysis |
HM | Hybrid Model |
ISO | International Organisation for Standardisation |
LO | Lubricating Oil |
MC | Monte Carlo |
PHM | Prognostics and Health Management |
PID | Proportional-Integral-Derivative |
PM | Physical Model |
RBF | Radial Basis Function |
RPN | Risk Priority Number |
SVM | Support Vector Machine |
References
- BahooToroody, A.; Abaei, M.M.; Banda, O.V.; Kujala, P.; De Carlo, F.; Abbassi, R. Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship. Reliab. Eng. Syst. Saf. 2022, 221, 108355. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Arslanoğlu, Y.; Guedes Soares, C. Determination of a maintenance strategy for machinery systems of autonomous ships. Ocean Eng. 2022, 266, 113013. [Google Scholar] [CrossRef]
- Ellefsen, A.L.; Æsøy, V.; Ushakov, S.; Zhang, H. A comprehensive survey of prognostics and health management based on deep learning for autonomous ships. IEEE Trans. Reliab. 2019, 68, 720–740. [Google Scholar] [CrossRef]
- Abaei, M.M.; Hekkenberg, R.; BahooToroody, A. A multinomial process tree for reliability assessment of machinery in autonomous ships. Reliab. Eng. Syst. Saf. 2021, 210, 107484. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Cao, L.; Dong, F.; Zou, Y.; Wang, K.; Zhang, Y.; Sun, P. Marine Systems and Equipment Prognostics and Health Management: A Systematic Review from Health Condition Monitoring to Maintenance Strategy. Machines 2022, 10, 72. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Arslanoğlu, Y.; Soares, C.G. Review of maintenance strategies for ship machinery systems. J. Mar. Eng. Technol. 2023, 22, 233–247. [Google Scholar] [CrossRef]
- Vanem, E.; Brandsæter, A. Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine. J. Mar. Eng. Technol. 2021, 20, 217–234. [Google Scholar] [CrossRef]
- Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008; pp. 1–9. [Google Scholar]
- Basurko, O.C.; Uriondo, Z. Condition-based maintenance for medium speed diesel engines used in vessels in operation. Appl. Therm. Eng. 2015, 80, 404–412. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Ilardi, D.; Stoumpos, S.; Theotokatos, G. Marine dual fuel engines monitoring in the wild through weakly supervised data analytics. Eng. Appl. Artif. Intell. 2021, 100, 104179. [Google Scholar] [CrossRef]
- Raptodimos, Y.; Lazakis, I. Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications. Ships Offshore Struct. 2018, 13, 649–656. [Google Scholar] [CrossRef]
- Lazakis, I.; Gkerekos, C.; Theotokatos, G. Investigating an SVM-driven, one-class approach to estimating ship systems condition. Ships Offshore Struct. 2019, 14, 432–441. [Google Scholar] [CrossRef]
- VanDerHorn, E.; Wang, Z.; Mahadevan, S. Towards a digital twin approach for vessel-specific fatigue damage monitoring and prognosis. Reliab. Eng. Syst. Saf. 2022, 219, 108222. [Google Scholar] [CrossRef]
- Lebedevas, S.; Žaglinskis, J.; Drazdauskas, M. Development and Validation of Heat Release Characteristics Identification Method of Diesel Engine under Operating Conditions. J. Mar. Sci. Eng. 2023, 11, 182. [Google Scholar] [CrossRef]
- Tsitsilonis, K.M.; Theotokatos, G.; Patil, C.; Coraddu, A. Health assessment framework of marine engines enabled by digital twins. Int. J. Engine Res. 2022, 24, 3264–3281. [Google Scholar] [CrossRef]
- Altosole, M.; Donnarumma, S.; Spagnolo, V.; Vignolo, S. Performance Simulation of Marine Cycloidal Propellers: A Both Theoretical and Heuristic Approach. J. Mar. Sci. Eng. 2022, 10, 505. [Google Scholar] [CrossRef]
- Coraddu, A.; Kalikatzarakis, M.; Theotokatos, G.; Geertsma, R.; Oneto, L. Physical and data-driven models hybridisation for modelling the dynamic state of a four-stroke marine diesel engine. In Engine Modeling and Simulation; Springer: Singapore, 2022. [Google Scholar]
- Altosole, M.; Balsamo, F.; Acanfora, M.; Mocerino, L.; Campora, U.; Perra, F. A Digital Twin Approach to the Diagnostic Analysis of a Marine Diesel Engine. In Technology and Science for the Ships of the Future; Progress in Marine Science and Technology; IOS Press: Amsterdam, The Netherlands, 2022; Volume 6, pp. 198–206. [Google Scholar] [CrossRef]
- Djeziri, M.A.; Benmoussa, S.; Benbouzid, M.E. Data-driven approach augmented in simulation for robust fault prognosis. Eng. Appl. Artif. Intell. 2019, 86, 154–164. [Google Scholar] [CrossRef]
- Stoumpos, S.; Theotokatos, G. A novel methodology for marine dual fuel engines sensors diagnostics and health management. Int. J. Engine Res. 2021, 23, 974–994. [Google Scholar] [CrossRef]
- Schneider, F.B.; Bellovin, S.M.; Inouye, A.S. Building trustworthy systems: Lessons from the PTN and Internet. IEEE Internet Comput. 1999, 3, 64–72. [Google Scholar] [CrossRef]
- Sargent, R.G. Verification and validation of simulation models. In Proceedings of the 2010 Winter Simulation Conference, Baltimore, MD, USA, 5–8 December 2010; pp. 166–183. [Google Scholar]
- Huang, X.; Kroening, D.; Ruan, W.; Sharp, J.; Sun, Y.; Thamo, E.; Wu, M.; Yi, X. A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 2020, 37, 100270. [Google Scholar] [CrossRef]
- Wang, B.T.; Burdon, M. Automating trustworthiness in digital twins. In Advances in 21st Century Human Settlements; Springer: Singapore, 2021; pp. 345–365. [Google Scholar] [CrossRef]
- Babiceanu, R.F.; Seker, R. Trustworthiness requirements for manufacturing cyber-physical systems. Procedia Manuf. 2017, 11, 973–981. [Google Scholar] [CrossRef]
- de la Vara, J.L.; Ruiz, A.; Blondelle, G. Assurance and certification of cyber–physical systems: The AMASS open source ecosystem. J. Syst. Softw. 2021, 171, 110812. [Google Scholar] [CrossRef]
- Cerbo, F.D.; Bisson, P.; Hartman, A.; Keller, S.; Meland, P.H.; Moffie, M.; Mohammadi, N.G.; Paulus, S.; Short, S. Towards trustworthiness assurance in the cloud. In Cyber Security and Privacy Forum; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–15. [Google Scholar]
- Connett, B.; O’Halloran, B. Systems engineering design: Architecting trustworthiness in cyber physical systems using an extended aggregated modality. Procedia Comput. Sci. 2018, 140, 4–12. [Google Scholar] [CrossRef]
- Wärtsilä. Wärtsilä 50DF Product Guide. 2012. Available online: https://cdn.wartsila.com/docs/default-source/product-files/engines/df-engine/product-guide-o-e-w50df.pdf?sfvrsn=9 (accessed on 7 March 2024).
- Theotokatos, G.; Stoumpos, S.; Bolbot, V.; Boulougouris, E. Simulation-based investigation of a marine dual-fuel engine. J. Mar. Eng. Technol. 2020, 19, 5–16. [Google Scholar] [CrossRef]
- Gamma Technologies. GT-SUITE Manual. 2022. [Google Scholar]
- Stoumpos, S.; Theotokatos, G.; Boulougouris, E.; Vassalos, D.; Lazakis, I.; Livanos, G. Marine dual fuel engine modelling and parametric investigation of engine settings effect on performance-emissions trade-offs. Ocean Eng. 2018, 157, 376–386. [Google Scholar] [CrossRef]
- Stoumpos, S.; Theotokatos, G.; Mavrelos, C.; Boulougouris, E. Towards marine dual fuel engines digital twins–integrated modelling of thermodynamic processes and control system functions. J. Mar. Sci. Eng. 2020, 8, 200. [Google Scholar] [CrossRef]
- Woschni, G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 1967. [Google Scholar]
- Merker, G.P.; Schwarz, C.; Stiesch, G.; Otto, F. Simulating Combustion: Simulation of Combustion and Pollutant Formation for Engine-Development; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Jerath, K.; Brennan, S.; Lagoa, C. Bridging the gap between sensor noise modeling and sensor characterization. Measurement 2018, 116, 350–366. [Google Scholar] [CrossRef]
- Borgovini, R.; Pemberton, S.; Rossi, M. Failure Mode, Effects, and Criticality Analysis (FMECA); Reliability Analysis Center: Rome, NY, USA, 1993. [Google Scholar]
- Liu, H.C. FMEA Using Uncertainty Theories and MCDM Methods; Springer: Singapore, 2016; pp. 13–27. [Google Scholar] [CrossRef]
- Andradóttir, S. Simulation optimization. In Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; pp. 307–333. [Google Scholar]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [Google Scholar] [CrossRef]
- Cox, D.R.; Reid, N. The Theory of the Design of Experiments; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Antony, J. Design of Experiments for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Huntington, D.E.; Lyrintzis, C.S. Improvements to and limitations of Latin hypercube sampling. Probabilistic Eng. Mech. 1998, 13, 245–253. [Google Scholar] [CrossRef]
- ISO 15550; Internal Combustion Engines: Determination and Method for the Measurement of Engine Power-General Requirements. ISO: Geneva, Switzerland, 2016.
- Kleijnen, J.P.C. Sensitivity Analysis of Simulation Models. CentER Discuss. Pap. Ser. 2009. [Google Scholar] [CrossRef]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87. [Google Scholar] [CrossRef]
- Xiao, C.; Ye, J.; Esteves, R.M.; Rong, C. Using Spearman’s correlation coefficients for exploratory data analysis on big dataset. Concurr. Comput. Pract. Exp. 2016, 28, 3866–3878. [Google Scholar] [CrossRef]
- Vrijdag, A.; Schulten, P.; Stapersma, D.; Van Terwisga, T. Efficient uncertainty analysis of a complex multidisciplinary simulation model. J. Mar. Eng. Technol. 2007, 6, 79–88. [Google Scholar] [CrossRef]
- Smith, E. Uncertainty analysis. Encycl. Environmetrics 2002, 4, 2283–2297. [Google Scholar]
- Cox, D.C.; Baybutt, P. Methods for uncertainty analysis: A comparative survey. Risk Anal. 1981, 1, 251–258. [Google Scholar] [CrossRef]
- Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018. [Google Scholar]
- Yin, Z.; Hou, J. Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. Neurocomputing 2016, 174, 643–650. [Google Scholar] [CrossRef]
- Cai, C.; Weng, X.; Zhang, C. A novel approach for marine diesel engine fault diagnosis. Clust. Comput. 2017, 20, 1691–1702. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, J.; Tian, H.; Jiang, D.; Guo, L.; Wang, G.; Lin, Y. Multi-label classification for simultaneous fault diagnosis of marine machinery: A comparative study. Ocean Eng. 2021, 239, 109723. [Google Scholar] [CrossRef]
- Mulgrew, B. Applying radial basis functions. IEEE Signal Process. Mag. 1996, 13, 50–65. [Google Scholar] [CrossRef]
- Wainer, J.; Fonseca, P. How to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithms. Artif. Intell. Rev. 2021, 54, 4771–4797. [Google Scholar] [CrossRef]
- Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [CrossRef]
- Heydarian, M.; Doyle, T.E.; Samavi, R. MLCM: Multi-label confusion matrix. IEEE Access 2022, 10, 19083–19095. [Google Scholar] [CrossRef]
- Ftoutou, E.; Chouchane, M.; Besbès, N. Internal combustion engine valve clearance fault classification using multivariate analysis of variance and discriminant analysis. Trans. Inst. Meas. Control 2012, 34, 566–577. [Google Scholar] [CrossRef]
- Kowalski, J. An experimental study of emission and combustion characteristics of marine diesel engine in case of cylinder valves leakage. Pol. Marit. Res. 2015, 22, 90–98. [Google Scholar] [CrossRef]
- Rubio, J.A.P.; Vera-García, F.; Grau, J.H.; Cámara, J.M.; Hernandez, D.A. Marine diesel engine failure simulator based on thermodynamic model. Appl. Therm. Eng. 2018, 144, 982–995. [Google Scholar] [CrossRef]
- Whitehouse, N.D.; Stotter, A.; Janota, M.S. Estimating the effects of altitude, ambient temperature and turbocharger match on engine performance. Proc. Inst. Mech. Eng. 1963, 178, 483–500. [Google Scholar] [CrossRef]
- Serrano, J.R.; Guardiola, C.; Dolz, V.; Tiseira, A.; Cervelló, C. Experimental Study of the Turbine Inlet Gas Temperature Influence on Turbocharger Performance; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- MAN. Influence of Ambient Temperature Conditions; MAN Diesel and Turbo: Copenhagen, Denmark, 2014. [Google Scholar]
- Zhan, Y.; Shi, Z.; Liu, M. The application of support vector machines (SVM) to fault diagnosis of marine main engine cylinder cover. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 3018–3022. [Google Scholar]
- Tong, S.; Yanqiao, C.; Yuan, Z. Fault prediction of marine diesel engine based on time series and support vector machine. In Proceedings of the 2020 International Conference on Intelligent Design, ICID 2020, Xi’an, China, 11–13 December 2020. [Google Scholar] [CrossRef]
Engine Type | 8L50DF |
Maximum Continuous Rating (MCR) Power | 7800 kW |
Nominal Engine Speed | 514 rev/m |
Cylinder Bore | 500 mm |
Stroke | 580 mm |
Number of Cylinders | 8 |
Turbocharger | 1 TPL 76 |
Combustion System | Air Supply System | Fuel Supply System | Lubricating Oil System | Others |
---|---|---|---|---|
Fuel Injector | Turbocharger | Fuel Pump | LO Pump | Cooling Water System |
Gas Admission Valve | Waste Gate Valve | Fuel Filter | LO Cooler | Safety and Monitoring System |
Intake Valve | Air Cooler | Fuel Rack and Governor | LO Filter | Compressed Air System |
Exhaust Valve | Air Filter | (Control and Starting) |
Factors | Responses | |||||
---|---|---|---|---|---|---|
Parameter | Turbine Mass Flow Scale Factor [–] | Turbine Efficiency Scale Factor [–] | Parameter | TC Shaft Speed [rev/m] | Exhaust Gas Temperature Upstream Turbine [K] | Exhaust Gas Temperature Downstream Turbine [K] |
Search Range | 0.8–0.99 | 1.0–1.12 | Target Value | 16,690 | 749 | 594 |
Optimal Value | 0.9354 | 1.0753 |
Steps | Acceptance Criteria | Trustworthiness Checks | |
---|---|---|---|
Environment Conditions | Anomaly Conditions | ||
Validation | Acceptable Errors | Pass/Fail | |
Verification | Trade-off Soundness | Pass/Fail | Pass/Fail |
Robustness | Uncertainty Ratio | Pass/Fail | Pass/Fail |
Predicted Class | ||||
---|---|---|---|---|
True Class | Class 1 | Class 2 | Class 3 | |
Class 1 | TN | FP | FN | |
Class 2 | FN | TP | FN | |
Class 3 | FN | FP | TN |
Condition | Engine Load [%] | Anomaly Location [–] | Anomaly Severity [mm] | Amb_T 4 [°C] |
---|---|---|---|---|
Healthy | 25; 50; 75; 100 | – | – | 15–45 |
EV_Leak 1 | 25; 50; 75; 100 | Cyl 3 1–8 | 0.1; 0.3; 0.5 | 15–45 |
IV_Leak 2 | 25; 50; 75; 100 | Cyl 1–8 | 0.1; 0.3; 0.5 | 15–45 |
Code | Simulated Case Study | Methodology Step | Scope |
---|---|---|---|
H1 | Healthy (4 Loads, 1 Amb_T) | DT Management and Trustworthiness (Validation) | Model calibration/comparison to measured data for DT validation check |
H2 | Healthy Ambient Temperature Variation (4 Loads, Amb_T: 15–45 °C) | Trustworthiness (Verification) | Sensitivity analysis to confirm the predicted parameters trade-offs under ambient temperature variation |
A1 | Anomaly EVLeak or IVLeak (4 Loads, 1 Location, 3 Severities for each anomaly) | Trustworthiness (Verification) | Sensitivity analysis to confirm the predicted parameter trade-offs under various anomaly conditions |
A2 | Anomaly EVLeak or IVLeak (4 Loads, 1 Location, Severities of anomaly: 0.1–0.5 mm, Amb_T: 15–45 °C) | Trustworthiness (Robustness) | Uncertainty analysis based on Monte Carlo simulations to check predicted parameter variances |
DG1 | Healthy and Anomalies EVLeak or IVLeak (4 Loads, 1 Location, 3 Severities for each anomaly, Amb_T 25–35 °C) | Data generation | Multiple simulations to generate the datasets required for the data-driven anomaly detection models |
DG2 | Healthy and Anomalies EVLeak or/and IVLeak (4 Loads, 1 Location, 42 Severities with combined anomalies, Amb_T: 25–35 °C) | Data generation | Multiple simulations to generate the datasets required for the data-driven anomaly identification models |
DG3 | Healthy and Anomalies EVLeak or IVLeak (4 Loads, 8 Locations, 2 Severities for each anomaly, Amb_T: 25–35 °C) | Data generation | Multiple simulations to generate the datasets required for the data-driven anomaly isolation models |
DD | Healthy and Anomalies EV or/and IV leakage | Application test | Developing data-driven models for anomaly diagnosis; check with the data-driven models’ accuracy |
Component | Function | Failure Mode | Failure Causes | Failure Effects | Detection Method | O | S | D | RPN | Simulation Input | Simulation Output | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Manufacturer Limit | Input Range | Simulation Steps | Name | ||||||||||
Intake Valve | Supply intake air into a cylinder | The valve is not fully closed | Valve seat wear | Intake air leakage → Engine efficiency deterioration | Manual measurement of clearance | 4 | 5 | 6 | 120 | Valve remained lift and lash [mm] | Normal clearance: 1.0 mm (cold) Wear limit: 0.147–0.199 mm | Valve remained lift: 0–0.75 mm Valve lash: 0.25–1.0 mm | (4 steps of clearance) 0 mm—No leakage 0.1 mm—Acceptable clearance/No leakage 0.3 mm—Slight leakage 0.5 mm—Severe leakage | TC_RPM 1 Exh_T 2 Pmax 3 CA_P 4 CA_T 5 FOC 6 |
Exhaust Valve | Releases burned gases from a cylinder | The valve is not fully closed | Valve seat wear | Exhaust gas leakage → Engine efficiency deterioration | Manual measurement of clearance | 4 | 5 | 6 | 120 | Valve remained lift and lash [mm] | Normal clearance: 1.5 mm (cold) Wear limit: 0.147–0.199 mm | Valve remained lift: 0–1.0 mm Valve lash: 0.5–1.5 mm | (4 steps of clearance) 0 mm—No leakage 0.1 mm—Acceptable clearance/No leakage 0.3 mm—Slight leakage 0.5 mm—Severe leakage | TC_RPM Exh_T Pmax CA_P CA_T FOC |
Load [%] | 100 | 75 | 50 | 25 | Acceptable Error |
---|---|---|---|---|---|
TC_RPM | 0.2 | 0.0 | −1.3 | −1.2 | ± 2 |
Exh_T | −2.9 | −2.0 | 0.0 | −1.1 | ±5 (±25 K) |
Pmax | 1.0 | 0.9 | 0.4 | −1.1 | ±5 |
CA_P | 1.7 | −1.4 | −1.0 | 0.9 | ±2 |
CA_T | 0.1 | −0.5 | −0.1 | −1.1 | ±1.2 (±4 K) |
FOC | −3.0 | −1.6 | −0.5 | −0.3 | ±3 |
Input Parameters | Spearman’s Coefficient [–] | |||||
---|---|---|---|---|---|---|
TC_RPM | Exh_T | Pmax | CA_P | CA_T | FOC | |
Ambient Temperature | 0.19 | 0.84 | −0.23 | −0.58 | 0.58 | 0.35 |
Exhaust Valve Leakage | 0.92 | 0.15 | −0.31 | 0.61 | 0.76 | 0.43 |
Intake Valve Leakage | 0.36 | 0.56 | −0.95 | 0.40 | 0.37 | 0.85 |
Output Parameters | Low Temperature | High Temperature | Reference | ||
---|---|---|---|---|---|
DT | Reference | DT | Reference | ||
TC_RPM | ↓ | ↓ | ↑ | ↑ | [63,64] |
Exh_T | ↓ | ↓ | ↑ | ↑ | [64] |
Pmax | ↑ | ↑ | ↓ | ↓ | [64] |
CA_P | ↑ | ↑ | ↓ | ↓ | [64] |
CA_T | ↓ | ↓ | ↑ | ↑ | [62] |
FOC | ↓ | ↓ | ↑ | ↑ | [64] |
Output Parameters | Exhaust Valve Leakage | Intake Valve Leakage | Reference | ||
---|---|---|---|---|---|
DT | Reference | DT | Reference | ||
TC_RPM | ↑ | ↑ | ↑ | ↑ | [60] |
Exh_T | ↑ | ↑ | ↑ | ↑ | |
Pmax | ↓ | ↓ | ↓ | ↓ | |
CA_P | ↑ | ↑ | ↑ | ↑ | |
CA_T | ↑ | ↑ | ↑ | ↑ | |
FOC | ↑ | ↑ | ↑ | ↑ |
Input | Load [%] | Uncertainty Ratio [–] | |||||
---|---|---|---|---|---|---|---|
Parameters | TC_RPM | Exh_T | Pmax | CA_P | CA_T | FOC | |
Amb_T | 100 | 0.001 | 0.162 | 0.005 | 0.006 | 0.622 | 0.007 |
75 | 0.001 | 0.151 | 0.004 | 0.006 | 0.605 | 0.008 | |
50 | 0.000 | 0.211 | 0.003 | 0.005 | 0.427 | 0.010 | |
25 | 0.000 | 0.125 | 0.000 | 0.001 | 0.729 | 0.009 | |
EV_Leak | 100 | 0.004 | 0.055 | 0.054 | 0.009 | 0.573 | 0.028 |
75 | 0.005 | 0.025 | 0.030 | 0.010 | 0.750 | 0.024 | |
50 | 0.004 | 0.034 | 0.014 | 0.004 | 0.374 | 0.032 | |
25 | 0.002 | 0.060 | 0.005 | 0.000 | 0.082 | 0.045 | |
IV_Leak | 100 | 0.001 | 0.207 | 0.009 | 0.127 | 0.071 | 0.028 |
75 | 0.001 | 0.156 | 0.004 | 0.139 | 0.068 | 0.024 | |
50 | 0.000 | 0.084 | 0.001 | 0.179 | 0.105 | 0.032 | |
25 | 0.000 | 0.036 | 0.000 | 0.073 | 0.129 | 0.045 |
Steps | Acceptance Criteria | Trustworthiness Checks | |
---|---|---|---|
Environment Conditions | Anomaly Conditions | ||
Validation | Acceptable Errors | Pass | |
Verification | Trade-off Soundness | Pass | Pass |
Robustness | Uncertainty ratio | Pass | Pass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Theotokatos, G. A Framework to Assure the Trustworthiness of Physical Model-Based Digital Twins for Marine Engines. J. Mar. Sci. Eng. 2024, 12, 595. https://doi.org/10.3390/jmse12040595
Jeon J, Theotokatos G. A Framework to Assure the Trustworthiness of Physical Model-Based Digital Twins for Marine Engines. Journal of Marine Science and Engineering. 2024; 12(4):595. https://doi.org/10.3390/jmse12040595
Chicago/Turabian StyleJeon, Jaehan, and Gerasimos Theotokatos. 2024. "A Framework to Assure the Trustworthiness of Physical Model-Based Digital Twins for Marine Engines" Journal of Marine Science and Engineering 12, no. 4: 595. https://doi.org/10.3390/jmse12040595
APA StyleJeon, J., & Theotokatos, G. (2024). A Framework to Assure the Trustworthiness of Physical Model-Based Digital Twins for Marine Engines. Journal of Marine Science and Engineering, 12(4), 595. https://doi.org/10.3390/jmse12040595