Review of the Quantification of Aeolian Sediment Transport in Coastal Areas
Abstract
:1. Introduction
2. Materials and Methods
3. Empirical Equations
4. Numerical Models
5. Field Observations
5.1. Sand Traps
5.2. Impact Sensors
5.3. Optical Sensors
6. Vegetation and Fences
6.1. Vegetation
6.2. Fences
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pye, K. Coastal Dunes. Prog. Phys. Geogr. 1983, 7, 531–557. [Google Scholar] [CrossRef]
- Hesp, P.; Illenberger, W.; Rust, I.; McLachlan, A.; Hyde, R. Some Aspects of Transgressive Dunefield and Transverse Dune Geomorphology and Dynamics, South Coast, South Africa. Z. Geomorphol. Suppl. 1989, 73, 111–123. [Google Scholar]
- Arens, S.M. Rates of Aeolian Transport on a Beach in a Temperate Humid Climate. Geomorphology 1996, 17, 3–18. [Google Scholar] [CrossRef]
- Hesp, P. Foredunes and Blowouts: Initiation, Geomorphology and Dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Bailey, S.D.; Bristow, C.S. Migration of Parabolic Dunes at Aberffraw, Anglesey, North Wales. Geomorphology 2004, 59, 165–174. [Google Scholar] [CrossRef]
- Levin, N.; Ben-Dor, E. Monitoring Sand Dune Stabilization along the Coastal Dunes of Ashdod-Nizanim, Israel, 1945–1999. J. Arid Environ. 2004, 58, 335–355. [Google Scholar] [CrossRef]
- Hesp, P.A.; Martinez, M.L.M. Transverse Dune Trailing Ridges and Vegetation Succession. Geomorphology 2008, 99, 205–213. [Google Scholar] [CrossRef]
- Provoost, S.; Jones, M.L.M.; Edmondson, S.E. Changes in Landscape and Vegetation of Coastal Dunes in Northwest Europe: A Review. J. Coast. Conserv. 2011, 15, 207–226. [Google Scholar] [CrossRef]
- Einsele, G. Marine Depositional Events Controlled by Sediment Supply and Sea-Level Changes. Geol. Rundsch. 1993, 82, 173–184. [Google Scholar] [CrossRef]
- Mauz, B.; Hijma, M.P.; Amorosi, A.; Porat, N.; Galili, E.; Bloemendal, J. Aeolian Beach Ridges and Their Significance for Climate and Sea Level: Concept and Insight from the Levant Coast (East Mediterranean). Earth Sci. Rev. 2013, 121, 31–54. [Google Scholar] [CrossRef]
- Orford, J.D.; Wilson, P.; Wintle, A.G.; Knight, J.; Braley, S. Holocene Coastal Dune Initiation in Northumberland and Norfolk, Eastern UK: Climate and Sea-Level Changes as Possible Forcing Agents for Dune Initiation. Geol. Soc. Lond. Spec. Publ. 2000, 166, 197–217. [Google Scholar] [CrossRef]
- Short, A.D.; Hesp, P.A. Wave, Beach and Dune Interactions in Southeastern Australia. Mar. Geol. 1982, 48, 259–284. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Law, M.N. Measurement and Prediction of Long-Term Sediment Supply to Coastal Foredunes. J. Coast. Res. 1996, 12, 654–663. [Google Scholar]
- Bauer, B.O.; Davidson-Arnott, R.G.D. A General Framework for Modeling Sediment Supply to Coastal Dunes Including Wind Angle, Beach Geometry, and Fetch Effects. Geomorphology 2003, 49, 89–108. [Google Scholar] [CrossRef]
- Aagaard, T.; Orford, J.; Murray, A.S. Environmental Controls on Coastal Dune Formation; Skallingen Spit, Denmark. Geomorphology 2007, 83, 29–47. [Google Scholar] [CrossRef]
- Cooper, W.S. Coastal Sand Dunes of Oregon and Washington; Geological Society of America: New York, NY, USA, 1958; pp. 1–162. [Google Scholar]
- Ollerhead, J.; Davidson-Arnott, R.; Walker, I.J.; Mathew, S. Annual to Decadal Morphodynamics of the Foredune System at Greenwich Dunes, Prince Edward Island, Canada. Earth Surf. Process. Landf. 2013, 38, 284–298. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D. Conceptual Model of the Effects of Sea Level Rise on Sandy Coasts. J. Coast. Res. 2005, 216, 1166–1172. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Bauer, B.O. Controls on the Geomorphic Response of Beach-Dune Systems to Water Level Rise. J. Great Lakes Res. 2021, 47, 1594–1612. [Google Scholar] [CrossRef]
- Schofield, J.C. Sea-Level Fluctuations Cause Periodic, Post-Glacial Progradation, South Kaipara Barrier, North Island, New Zealand. N. Z. J. Geol. Geophys. 1975, 18, 295–316. [Google Scholar] [CrossRef]
- Lees, B. Timing and Formation of Coastal Dunes in Northern and Eastern Australia. J. Coast. Res. 2006, 22, 78–89. [Google Scholar] [CrossRef]
- Werner, B.T. Eolian Dunes: Computer Simulations and Attractor Interpretation. Geology 1995, 23, 1107. [Google Scholar] [CrossRef]
- Keijsers, J.G.S.; De Groot, A.V.; Riksen, M.J.P.M. Modeling the Biogeomorphic Evolution of Coastal Dunes in Response to Climate Change. J. Geophys. Res. Earth Surf. 2016, 121, 1161–1181. [Google Scholar] [CrossRef]
- Teixeira, M.; Horstman, E.M.; Wijnberg, K.M. Conceptualizing Aeolian Sediment Transport in a Cellular Automata Model to Simulate the Bio-Geomorphological Evolution of Beach–Dune Systems. J. Mar. Sci. Eng. 2023, 11, 1278. [Google Scholar] [CrossRef]
- Roelvink, D.; Costas, S. Coupling Nearshore and Aeolian Processes: XBeach and Duna Process-Based Models. Environ. Model. Softw. 2019, 115, 98–112. [Google Scholar] [CrossRef]
- Durán, O.; Moore, L.J. Vegetation Controls on the Maximum Size of Coastal Dunes. Proc. Natl. Acad. Sci. USA 2013, 110, 17217–17222. [Google Scholar] [CrossRef]
- Web of Science Databse. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 5 March 2024).
- Jackson, N.L.; Nordstrom, K.F. Aeolian Sediment Transport and Landforms in Managed Coastal Systems: A Review. Aeolian Res. 2011, 3, 181–196. [Google Scholar] [CrossRef]
- Bagnold, R. The Movement of Desert Sand. Proc. R. Soc. A Math. Phys. Sci. 1936, 157, 594–620. [Google Scholar] [CrossRef]
- Bagnold, R. The Physics of Blown Sand and Desert Dunes. Prog. Phys. Geogr. 1941, 18, 91–96. [Google Scholar] [CrossRef]
- Kawamura, R. Study on Sand Movement by Wind; NASA: Washington, DC, USA, 1951.
- Zingg, A.W. Wind-Tunnel Studies of the Movement of Sedimentary Material. In Proceedings of the 5th Hydraulics Conference Bull; 1953; pp. 111–135. Available online: https://infosys.ars.usda.gov/WindErosion/publications/Andrew_pdf/470.pdf (accessed on 28 February 2024).
- Owen, P.R. Saltation of Uniform Grains in Air. J. Fluid Mech. 1964, 20, 225–242. [Google Scholar] [CrossRef]
- Lettau, K.; Lettau, H. Experimental and Micrometeorological Field Studies of Dune Migration. 1977. Available online: https://cir.nii.ac.jp/crid/1572824500750088064 (accessed on 5 March 2024).
- Durán, O.; Claudin, P.; Andreotti, B. On Aeolian Transport: Grain-Scale Interactions, Dynamical Mechanisms and Scaling Laws. Aeolian Res. 2011, 3, 243–270. [Google Scholar] [CrossRef]
- Shao, Y.; Lu, H. A Simple Expression for Wind Erosion Threshold Friction Velocity. J. Geophys. Res. Atmos. 2000, 105, 22437–22443. [Google Scholar] [CrossRef]
- Hsu, S.A. Computing Eolian Sand Transport from Routine Weather Data. Coast. Eng. Proc. 1974, 94, 1619–1626. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Bauer, B.O. Aeolian Sediment Transport on a Beach: Thresholds, Intermittency, and High Frequency Variability. Geomorphology 2009, 105, 117–126. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.; Bauer, B.O.; Walker, I.J.; Ollerhead, J.; Rhew, H. Assessing Aeolian Beach-Surface Dynamics Using a Remote Sensing Approach. Earth Surf. Process. Landf. 2012, 37, 1651–1660. [Google Scholar] [CrossRef]
- Nield, J.M. Surface Moisture-Induced Feedback in Aeolian Environments. Geology 2011, 39, 915–918. [Google Scholar] [CrossRef]
- Smit, Y.; Ruessink, G.; Brakenhoff, L.B.; Donker, J.J.A. Measuring Spatial and Temporal Variation in Surface Moisture on a Coastal Beach with a Near-Infrared Terrestrial Laser Scanner. Aeolian Res. 2018, 31, 19–27. [Google Scholar] [CrossRef]
- Udo, K.; Kuriyama, Y.; Jackson, D.W.T. Observations of Wind-Blown Sand under Various Meteorological Conditions at a Beach. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef]
- Hotta, S.; Horikawa, K. CHAPTER 209: Function of Sand Fence Placed in Front of Embarkment. In Proceedings of the Coastal Engineering Proceedings, Seattle, WA, USA, 25–27 June 1991. [Google Scholar]
- Belly, P. Sand Movement by Wind; USACE: Washington, DC, USA, 1964.
- Dong, Z.; Sun, H.; Zhao, A. WITSEG Sampler: A Segmented Sand Sampler for Wind Tunnel Test. Geomorphology 2004, 59, 119–129. [Google Scholar] [CrossRef]
- McMenamin, R.; Cassidy, R.; McCloskey, J. Self-Organised Criticality at the Onset of Aeolian Sediment Transport. J. Coast. Res. 2002, 36, 498–505. [Google Scholar] [CrossRef]
- Nield, J.M.; Baas, A.C.W. The Influence of Different Environmental and Climatic Conditions on Vegetated Aeolian Dune Landscape Development and Response. Glob. Planet. Change 2008, 64, 76–92. [Google Scholar] [CrossRef]
- Poppema, D.W.; Baas, A.C.W.; Hulscher, S.J.M.H.; Wijnberg, K.M. Cellular Automaton Modelling of the Effects of Buildings on Aeolian Bedform Dynamics. Aeolian Res. 2022, 59, 100840. [Google Scholar] [CrossRef]
- Pourteimouri, P.; Campmans, G.H.P.; Wijnberg, K.M.; Hulscher, S.J.M.H. How Wind Direction and Building Spacing Influences Airflow Patterns and Sediment Transport Patterns around a Row of Beach Buildings: A Numerical Study. Aeolian Res. 2023, 61, 100867. [Google Scholar] [CrossRef]
- Pourteimouri, P.; Campmans, G.H.P.; Wijnberg, K.M.; Hulscher, S.J.M.H. Modelling the Influence of Beach Building Pole Heights on Aeolian Morphology and Downwind Sediment Transport. Geomorphology 2023, 436, 108791. [Google Scholar] [CrossRef]
- Durán, O.; Herrmann, H.J. Vegetation against Dune Mobility. Phys. Rev. Lett. 2006, 97, 188001. [Google Scholar] [CrossRef] [PubMed]
- Hoonhout, B.M.; Vries, S. de A Process-Based Model for Aeolian Sediment Transport and Spatiotemporal Varying Sediment Availability. J. Geophys. Res. Earth Surf. 2016, 121, 1555–1575. [Google Scholar] [CrossRef]
- Hoonhout, B.; de Vries, S. Simulating Spatiotemporal Aeolian Sediment Supply at a Mega Nourishment. Coast. Eng. 2019, 145, 21–35. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling Storm Impacts on Beaches, Dunes and Barrier Islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Roelvink, D.; McCall, R.; Mehvar, S.; Nederhoff, K.; Dastgheib, A. Improving Predictions of Swash Dynamics in XBeach: The Role of Groupiness and Incident-Band Runup. Coast. Eng. 2018, 134, 103–123. [Google Scholar] [CrossRef]
- Kombiadou, K.; Costas, S.; Roelvink, D. Exploring Controls on Coastal Dune Growth Through a Simplified Model. J. Geophys. Res. Earth Surf. 2023, 128, e2023JF007080. [Google Scholar] [CrossRef]
- Cohn, N.; Hoonhout, B.M.; Goldstein, E.B.; de Vries, S.; Moore, L.J.; Vinent, O.D.; Ruggiero, P. Exploring Marine and Aeolian Controls on Coastal Foredune Growth Using a Coupled Numerical Model. J. Mar. Sci. Eng. 2019, 7, 13. [Google Scholar] [CrossRef]
- Larson, M.; Palalane, J.; Fredriksson, C.; Hanson, H. Simulating Cross-Shore Material Exchange at Decadal Scale. Theory and Model Component Validation. Coast. Eng. 2016, 116, 57–66. [Google Scholar] [CrossRef]
- Palalane, J.; Fredriksson, C.; Marinho, B.; Larson, M.; Hanson, H.; Coelho, C. Simulating Cross-Shore Material Exchange at Decadal Scale. Model Application. Coast. Eng. 2016, 116, 26–41. [Google Scholar] [CrossRef]
- Hallin, C. Long-Term Beach and Dune Evolution: Development and Application of the CS-Model. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar]
- Arens, S. Aeolian Processes in the Dutch Foredunes. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 1994. [Google Scholar]
- Al-Khalaf, A.H. Specification and Calibration of Bagnold’s Model for Sand Transport: Urayq al Buldan Dune Field, Central Saudi Arabia. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 1986. [Google Scholar]
- Arens, S.M.; van der Lee, G.E.M. Saltation Sand Traps for the Measurement of Aeolian Transport into the Foredunes. Soil Technol. 1995, 8, 61–74. [Google Scholar] [CrossRef]
- Cabrera, L.L.; Alonso, I. Correlation of Aeolian Sediment Transport Measured by Sand Traps and Fluorescent Tracers. J. Mar. Syst. 2010, 80, 235–242. [Google Scholar] [CrossRef]
- Leatherman, S.P. A New Aeolian Sand Trap Design. Sedimentology 1978, 25, 303–306. [Google Scholar] [CrossRef]
- Navarro, M.; Muñoz-Perez, J.J.; Román-Sierra, J.; Ruiz-Cañavate, A.; Gómez-Pina, G. Characterization of Wind-Blown Sediment Transport with Height in a Highly Mobile Dune (SW Spain). Geol. Acta 2015, 13, 155–166. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Nature of Saltation and of “bed-Load” Transport in Water. Proc. R. Soc. Lond. Ser. A 1973, 332, 473–504. [Google Scholar] [CrossRef]
- Bagnold, R. The Measurement of Sand Storms. Proc. R. Soc. Lond. A Math. Phys. Sci. 1938, 167, 282–291. [Google Scholar] [CrossRef]
- Sarre, R.D. Evaluation of Aeolian Sand Transport Equations Using Intertidal Zone Measurements, Saunton Sands, England. Sedimentology 1988, 35, 671–679. [Google Scholar] [CrossRef]
- Hijma, M.P.; Lodder, Q.J. An Evaluation of Aeolian Sand Transport Models Using Four Different Sand Traps at the Hors, Texel. Master’s Thesis, University Utrecht, Utrecht, The Netherlands, 2001. [Google Scholar]
- de Ploey, J. Some Field Measurements and Experimental Data on Wind-Blown Sands. Assess. Eros. 1980, 541–552. [Google Scholar]
- van Dijk, P.M.; Hollemans, W.A. Wind Erosion Measurements on the Island of Schiermonnikoog, Report. III. The Calibration of Wind. Erosion Measuring Devices by Means of Wind. Tunnel Research; Wageningen University: Wageningen, The Netherlands, 1991. [Google Scholar]
- Hilton, M.; Nickling, B.; Wakes, S.; Sherman, D.; Konlechner, T.; Jermy, M.; Geoghegan, P. An Efficient, Self-Orienting, Vertical-Array, Sand Trap. Aeolian Res. 2017, 25, 11–21. [Google Scholar] [CrossRef]
- Sherman, D.J.; Li, B.; Farrell, E.J.; Ellis, J.T.; Cox, W.D.; Maia, L.P.; Sousa, P.H.G.O. Measuring Aeolian Saltation: A Comparison of Sensors. J. Coast. Res. 2011, 59, 280–290. [Google Scholar] [CrossRef]
- Lee, J.A. A Field Experiment on the Role of Small Scale Wind Gustiness in Aeolian Sand Transport. Earth Surf. Process. Landf. 1987, 12, 331–335. [Google Scholar] [CrossRef]
- Jackson, D.W.T. A New, Instantaneous Aeolian Sand Trap Design for Field Use. Sedimentology 1996, 43, 791–796. [Google Scholar] [CrossRef]
- Bauer, B.O.; Namikas, S.L. Design and Field Test of a Continuously Weighing, Tipping-Bucket Assembly for Aeolian Sand Traps. Earth Surf. Process. Landf. 1998, 23, 1171–1183. [Google Scholar]
- Wang, P.; Kraus, N.C. Horizontal Water Trap for Measurement of a Aeolian Sand Transport. Earth Surf. Process. Landf. 1999, 24, 65–70. [Google Scholar]
- Namikas, S.L. Field Evaluation of Two Traps for High-Resolution Aeolian Transport Measurements. J. Coast. Res. 2002, 18, 136–148. [Google Scholar]
- Baas, A.C.W. Evaluation of Saltation Flux Impact Responders (Safires) for Measuring Instantaneous Aeolian Sand Transport Intensity. Geomorphology 2004, 59, 99–118. [Google Scholar] [CrossRef]
- Baas, A.C.W.; Sherman, D.J. Formation and Behavior of Aeolian Streamers. J. Geophys. Res. Earth Surf. 2005, 110, F3. [Google Scholar] [CrossRef]
- Gillette, D.A.; Stockton, P.H. The Effect of Nonerodible Particles on Wind Erosion of Erodible Surfaces. J. Geophys. Res. Atmos. 1989, 94, 12885–12893. [Google Scholar] [CrossRef]
- Stockton, P.H.; Gillette, D.A. Field Measurement of the Sheltering Effect of Vegetation on Erodible Land Surfaces. Land Degrad. Dev. 1990, 2, 77–85. [Google Scholar] [CrossRef]
- Gillies, J.A.; Nickling, W.G.; King, J. Aeolian Sediment Transport through Large Patches of Roughness in the Atmospheric Inertial Sublayer. J. Geophys. Res. Earth Surf. 2006, 111, F2. [Google Scholar] [CrossRef]
- Lancaster, N.; Nickling, W.G.; Gillies, J.A. Sand Transport by Wind on Complex Surfaces: Field Studies in the McMurdo Dry Valleys, Antarctica. J. Geophys. Res. Earth Surf. 2010, 115, F03027. [Google Scholar] [CrossRef]
- Stout, J.E.; Zobeck, T.M. Intermittent Saltation. Sedimentology 1997, 44, 959–970. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Atherton, R.J.; Baird, A.J. Thresholds of Aeolian Sand Transport: Establishing Suitable Values. Sedimentology 2004, 51, 95–108. [Google Scholar] [CrossRef]
- Spaan, W.P.; van den Abeele, G.D. Wind Borne Particle Measurements with Acoustic Sensors. Soil Technol. 1991, 4, 51–63. [Google Scholar] [CrossRef]
- van Dijk, P.M.; Stroosnijder, L.; de Lima, J.L.M.P. The Influence of Rainfall on Transport of Beach Sand by Wind. Earth Surf. Process. Landf. 1996, 21, 341–352. [Google Scholar]
- Sterk, G.; Jacobs, A.F.G.; Van Boxel, J.H. The Effect of Turbulent Flow Structures on Saltation Sand Transport in the Atmospheric Boundary Layer. Earth Surf. Process. Landf. 1998, 23, 877–887. [Google Scholar]
- Ellis, J.T.; Morrison, R.F.; Priest, B.H. Detecting Impacts of Sand Grains with a Microphone System in Field Conditions. Geomorphology 2009, 105, 87–94. [Google Scholar] [CrossRef]
- de Winter, W.; van Dam, D.B.; Delbecque, N.; Verdoodt, A.; Ruessink, B.G.; Sterk, G. Measuring High Spatiotemporal Variability in Saltation Intensity Using a Low-Cost Saltation Detection System: Wind Tunnel and Field Experiments. Aeolian Res. 2018, 31, 72–81. [Google Scholar] [CrossRef]
- Rezaei, M.; Goossens, D.; Riksen, M.J.P.M. Evaluating the SandFlow, an Acoustic Sediment Transport Sensor. Aeolian Res. 2020, 42, 100558. [Google Scholar] [CrossRef]
- Butterfield, G.R. Transitional Behaviour of Saltation: Wind Tunnel Observations of Unsteady Winds. J. Arid Environ. 1998, 39, 377–394. [Google Scholar] [CrossRef]
- Mathews, R.; Stutz, M.L.; Sam Smith, A. A Field Investigation Study to Determine the Properties of Windblown Beach Sand. J. Coast. Res. 1998, 14, 444–450. [Google Scholar]
- Willetts, B.B.; Rice, M.A. Inter Saltation Collisions. In Proceedings of the International Workshop on the Physics of Blown Sand, Aarhus, Denmark, 28–31 May 1985; pp. 83–100. [Google Scholar]
- Willetts, B.B.; Rice, M.A. Wind Tunnel Tracer Experiments Using Dyed Sand. In Proceedings of the International Workshop on the Physics of Blown Sand, Aarhus, Denmark, 28–31 May 1985. [Google Scholar]
- Sherman, D.J. Evaluation of Aeolian Sand Transport Equations Using Intertidal-zone Measurements, Saunton Sands, England. Sedimentology 1990, 37, 385–392. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E. Laboratory and Field Performance of a Laser Particle Counter for Measuring Aeolian Sand Transport. J. Geophys. Res. Earth Surf. 2011, 116, F1. [Google Scholar] [CrossRef]
- Bauer, B.O.; Davidson-Arnott, R.G.D.; Hilton, M.J.; Fraser, D. On the Frequency Response of a Wenglor Particle-Counting System for Aeolian Transport Measurements. Aeolian Res. 2018, 32, 133–140. [Google Scholar] [CrossRef]
- Schmutz, P.; Briggs, T.; Tereszkiewicz, P. The Utility of an Omni-Directional Photoelectronic Sensor Device to Measure Meso-Scale Variability in Aeolian Sediment Transport Activity. Aeolian Res. 2019, 36, 61–67. [Google Scholar] [CrossRef]
- Barchyn, T.E.; Hugenholtz, C.H.; Li, B.; Neuman, C.M.K.; Steven Sanderson, R. From Particle Counts to Flux: Wind Tunnel Testing and Calibration of the “Wenglor” Aeolian Sediment Transport Sensor. Aeolian Res. 2014, 15, 311–318. [Google Scholar] [CrossRef]
- Duarte-Campos, L.; Wijnberg, K.M.; Oyarte-Gálvez, L.; Hulscher, S.J.M.H. Laser Particle Counter Validation for Aeolian Sand Transport Measurements Using a Highspeed Camera. Aeolian Res. 2017, 25, 37–44. [Google Scholar] [CrossRef]
- Bauer, B.O.; Davidson-Arnott, R.G.D. Aeolian Particle Flux Profiles and Transport Unsteadiness. J. Geophys. Res. Earth Surf. 2014, 119, 1542–1563. [Google Scholar] [CrossRef]
- Hoonhout, B.; de Vries, S. Field Measurements on Spatial Variations in Aeolian Sediment Availability at the Sand Motor Mega Nourishment. Aeolian Res. 2017, 24, 93–104. [Google Scholar] [CrossRef]
- Etyemezian, V.; Nikolich, G.; Nickling, W.; King, J.S.; Gillies, J.A. Analysis of an Optical Gate Device for Measuring Aeolian Sand Movement. Aeolian Res. 2017, 24, 65–79. [Google Scholar] [CrossRef]
- Goossens, D.; Nolet, C.; Etyemezian, V.; Duarte-Campos, L.; Bakker, G.; Riksen, M. Field Testing, Comparison, and Discussion of Five Aeolian Sand Transport Measuring Devices Operating on Different Measuring Principles. Aeolian Res. 2018, 32, 1–13. [Google Scholar] [CrossRef]
- Mikami, M.; Yamada, Y.; Ishizuka, M.; Ishimaru, T.; Gao, W.; Zeng, F. Measurement of Saltation Process over Gobi and Sand Dunes in the Taklimakan Desert, China, with Newly Developed Sand Particle Counter. J. Geophys. Res. D Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Poortinga, A.; van Rheenen, H.; Ellis, J.T.; Sherman, D.J. Measuring Aeolian Sand Transport Using Acoustic Sensors. Aeolian Res. 2015, 16, 143–151. [Google Scholar] [CrossRef]
- Danchenkov, A.; Belov, N.; Stont, Z. Using the Terrestrial Laser Scanning Technique for Aeolian Sediment Transport Assessment in the Coastal Zone in Seasonal Scale. Estuar. Coast. Shelf Sci. 2019, 223, 105–114. [Google Scholar] [CrossRef]
- Charbonneau, B.R.; Wnek, J.P.; Langley, J.A.; Lee, G.; Balsamo, R.A. Above vs. Belowground Plant Biomass along a Barrier Island: Implications for Dune Stabilization. J. Environ. Manag. 2016, 182, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chu, L.; Daryanto, S.; Lü, L.; Ala, M.; Wang, L. Sand Dune Stabilization Changes the Vegetation Characteristics and Soil Seed Bank and Their Correlations with Environmental Factors. Sci. Total Environ. 2019, 648, 500–507. [Google Scholar] [CrossRef]
- Hesp, P. Surfzone, Beach, and Foredune Interactions on the Australian South East Coast. J. Coast. Res. 1988, 3, 15–25. [Google Scholar]
- Sherman, D.J.; Lyons, W. Beach-State Controls on Aeolian Sand Delivery to Coastal Dunes. Phys. Geogr. 1994, 15, 381–395. [Google Scholar] [CrossRef]
- Bauer, B.O.; Davidson-Arnott, R.G.D.; Hesp, P.A.; Namikas, S.L.; Ollerhead, J.; Walker, I.J. Aeolian Sediment Transport on a Beach: Surface Moisture, Wind Fetch, and Mean Transport. Geomorphology 2009, 105, 106–116. [Google Scholar] [CrossRef]
- Oliver, T.S.N.; Kennedy, D.M.; Tamura, T.; Murray-Wallace, C.V.; Konlechner, T.M.; Augustinus, P.C.; Woodroffe, C.D. Interglacial-Glacial Climatic Signatures Preserved in a Regressive Coastal Barrier, Southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 501, 124–135. [Google Scholar] [CrossRef]
- Carter, R.W.G. Near-Future Sea Level Impacts on Coastal Dune Landscapes. Landsc. Ecol. 1991, 6, 29–39. [Google Scholar] [CrossRef]
- Jackson, D.W.T.; Costas, S.; González-Villanueva, R.; Cooper, A. A Global ‘Greening’ of Coastal Dunes: An Integrated Consequence of Climate Change? Glob. Planet. Change 2019, 182, 103026. [Google Scholar] [CrossRef]
- Feagin, R.A.; Sherman, D.J.; Grant, W.E. Coastal Erosion, Global Sea-Level Rise, and the Loss of Sand Dune Plant Habitats. Front. Ecol. Environ. 2005, 3, 351–404. [Google Scholar] [CrossRef]
- Houser, C.; Hapke, C.; Hamilton, S. Controls on Coastal Dune Morphology, Shoreline Erosion and Barrier Island Response to Extreme Storms. Geomorphology 2008, 100, 223–240. [Google Scholar] [CrossRef]
- Psuty, N.P.; Silveira, T.M. Global Climate Change: An Opportunity for Coastal Dunes?? J. Coast. Conserv. 2010, 14, 153–160. [Google Scholar] [CrossRef]
- Hesp, P.A. Conceptual Models of the Evolution of Transgressive Dune Field Systems. Geomorphology 2013, 199, 138–149. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Gracia, C.A.; Neal, W.J. Dune Ecosystems along the Central Caribbean Coast of Colombia: Evolution, Human Influences, and Conservation Challenges. Ocean. Coast. Manag. 2023, 243, 106767. [Google Scholar] [CrossRef]
- Gao, J.; Kennedy, D.M.; McSweeney, S. Decadal Changes in Vegetation Cover within Coastal Dunes at the Regional Scale in Victoria, SE Australia. J. Environ. Manag. 2024, 351, 119622. [Google Scholar] [CrossRef] [PubMed]
- Muhs, D.R.; Roskin, J.; Tsoar, H.; Skipp, G.; Budahn, J.R.; Sneh, A.; Porat, N.; Stanley, J.D.; Katra, I.; Blumberg, D.G. Origin of the Sinai-Negev Erg, Egypt and Israel: Mineralogical and Geochemical Evidence for the Importance of the Nile and Sea Level History. Quat. Sci. Rev. 2013, 69, 28–48. [Google Scholar] [CrossRef]
- Jackson, D.W.T.; Cooper, J.A.G. Coastal Dune Fields in Ireland: Rapid Regional Response to Climatic. J. Coast. Res. 2011, 293–297. [Google Scholar]
- Levin, N. Climate-Driven Changes in Tropical Cyclone Intensity Shape Dune Activity on Earth’s Largest Sand Island. Geomorphology 2011, 125, 239–252. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J. Decadal-Scale Variation in Dune Erosion and Accretion Rates: An Investigation of the Significance of Changing Storm Tide Frequency and Magnitude on the Sefton Coast, UK. Geomorphology 2008, 102, 652–666. [Google Scholar] [CrossRef]
- Da Silva, G.M.; Hesp, P.A. Increasing Rainfall, Decreasing Winds, and Historical Changes in Santa Catarina Dunefields, Southern Brazil. Earth Surf. Process Landf. 2013, 38, 1036–1045. [Google Scholar] [CrossRef]
- Clemmensen, L.B.; Hansen, K.W.T.; Kroon, A. Storminess Variation at Skagen, Northern Denmark since AD 1860: Relations to Climate Change and Implications for Coastal Dunes. Aeolian Res. 2014, 15, 101–112. [Google Scholar] [CrossRef]
- Hilton, M.J. The Loss of New Zealand’s Active Dunes and the Spread of Marram Grass (Ammophila Arenaria). N. Z. Geogr. 2006, 62, 105–120. [Google Scholar] [CrossRef]
- Tribe, H.M.; Kennedy, D.M. The Geomorphology and Evolution of a Large Barrier Spit: Farewell Spit, New Zealand. Earth Surf. Process Landf. 2010, 35, 1751–1762. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J.; Howe, M.A. Coastal Dune Stabilization in Wales and Requirements for Rejuvenation. J. Coast. Conserv. 2014, 18, 27–54. [Google Scholar] [CrossRef]
- Gao, J.; Kennedy, D.M.; Konlechner, T.M.; McSweeney, S.; Chiaradia, A.; McGuirk, M. Changes in the Vegetation Cover of Transgressive Dune Fields: A Case Study in Cape Woolamai, Victoria. Earth Surf. Process Landf. 2022, 47, 778–792. [Google Scholar] [CrossRef]
- Feagin, R.A.; Furman, M.; Salgado, K.; Martinez, M.L.; Innocenti, R.A.; Eubanks, K.; Figlus, J.; Huff, T.P.; Sigren, J.; Silva, R. The Role of Beach and Sand Dune Vegetation in Mediating Wave Run up Erosion. Estuar. Coast. Shelf Sci. 2019, 219, 97–106. [Google Scholar] [CrossRef]
- Ford, H.; Garbutt, A.; Ladd, C.; Malarkey, J.; Skov, M.W. Soil Stabilization Linked to Plant Diversity and Environmental Context in Coastal Wetlands. J. Veg. Sci. 2016, 27, 259–268. [Google Scholar] [CrossRef] [PubMed]
- de Battisti, D.; Fowler, M.S.; Jenkins, S.R.; Skov, M.W.; Rossi, M.; Bouma, T.J.; Neyland, P.J.; Griffin, J.N. Intraspecific Root Trait Variability along Environmental Gradients Affects Salt Marsh Resistance to Lateral Erosion. Front. Ecol. Evol. 2019, 7, 00150. [Google Scholar] [CrossRef]
- Silliman, B.R.; He, Q.; Angelini, C.; Smith, C.S.; Kirwan, M.L.; Daleo, P.; Renzi, J.J.; Butler, J.; Osborne, T.Z.; Nifong, J.C.; et al. Field Experiments and Meta-Analysis Reveal Wetland Vegetation as a Crucial Element in the Coastal Protection Paradigm. Curr. Biol. 2019, 29, 1800–1806.e3. [Google Scholar] [CrossRef] [PubMed]
- Bryant, D.B.; Anderson Bryant, M.; Sharp, J.A.; Bell, G.L.; Moore, C. The Response of Vegetated Dunes to Wave Attack. Coast. Eng. 2019, 152, 103506. [Google Scholar] [CrossRef]
- de Battisti, D.; Griffin, J.N. Below-Ground Biomass of Plants, with a Key Contribution of Buried Shoots, Increases Foredune Resistance to Wave Swash. Ann. Bot. 2020, 125, 325–333. [Google Scholar] [CrossRef]
- Brown, J.K.; Zinnert, J.C. Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation after Sand Deposition. Ecosphere 2018, 9, e02162. [Google Scholar] [CrossRef]
- Reijers, V.C.; Hoeks, S.; van Belzen, J.; Siteur, K.; de Rond, A.J.A.; van de Ven, C.N.; Lammers, C.; van de Koppel, J.; van der Heide, T. Sediment Availability Provokes a Shift from Brownian to Lévy-like Clonal Expansion in a Dune Building Grass. Ecol. Lett. 2021, 24, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Hacker, S.D.; Jay, K.R.; Cohn, N.; Goldstein, E.B.; Hovenga, P.A.; Itzkin, M.; Moore, L.J.; Mostow, R.S.; Mullins, E.V.; Ruggiero, P. Species-Specific Functional Morphology of Four US Atlantic Coast Dune Grasses: Biogeographic Implications for Dune Shape and Coastal Protection. Diversity 2019, 11, 82. [Google Scholar] [CrossRef]
- Zarnetske, P.L.; Ruggiero, P.; Seabloom, E.W.; Hacker, S.D. Coastal Foredune Evolution: The Relative Influence of Vegetation and Sand Supply in the US Pacific Northwest. J. R. Soc. Interface 2015, 12, 20150017. [Google Scholar] [CrossRef]
- Walker, S.L.; Zinnert, J. Whole Plant Traits of Coastal Dune Vegetation and Implications for Interactions with Dune Dynamics. Ecosphere 2022, 13, e4065. [Google Scholar] [CrossRef]
- Grafals-Soto, R.; Nordstrom, K. Sand Fences in the Coastal Zone: Intended and Unintended Effects. Environ. Manag. 2009, 44, 420–429. [Google Scholar] [CrossRef]
- Itzkin, M.; Moore, L.J.; Ruggiero, P.; Hacker, S.D. The Effect of Sand Fencing on the Morphology of Natural Dune Systems. Geomorphology 2020, 352, 106995. [Google Scholar] [CrossRef]
- van der Laan, D.; van Tongeren, O.F.R.; van der Putten, W.H.; Veenbaas, G. Vegetation Development in Coastal Foredunes in Relation to Methods of Establishing Marram Grass (Ammophila Arenaria). J. Coast. Conserv. 1997, 3, 179–190. [Google Scholar] [CrossRef]
- Miller, D.L.; Thetford, M.; Yager, L. Evaluation of Sand Fence and Vegetation for Dune Building Following Overwash by Hurricane Opal on Santa Rosa Island, Florida. Artic. J. Coast. Res. 2001, 17, 936–948. [Google Scholar]
- Ning, Q.; Li, B.; Zhou, C.; He, Y.; Liu, J. Effect of Fence Opening Configurations on Dune Development. Acta Oceanol. Sin. 2023, 42, 185–193. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Jackson, N.L. Offshore Aeolian Sediment Transport across a Human-Modified Foredune. Earth Surf. Process Landf. 2018, 43, 195–201. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Aeolian Sediment Transport on a Recovering Storm-Eroded Foredune with Sand Fences. Earth Surf. Process Landf. 2018, 43, 1310–1320. [Google Scholar] [CrossRef]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How Ecological Engineering Can Serve in Coastal Protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Sherman, D.J.; Nordstrom, K.F. Hazards of Wind-Blown Sand and Coastal Sand Drifts: A Review. J. Coast. Res. 1994, 263–275. [Google Scholar]
- Eichmanns, C.; Schüttrumpf, H. A Nature-Based Solution for Coastal Protection: Wind Tunnel Investigations on the Influence of Sand-Trapping Fences on Sediment Accretion. Front. Built Environ. 2022, 8, 878197. [Google Scholar] [CrossRef]
- Bofah, K.K.; Al-Hinai, K.G. Field Tests of Porous Fences in the Regime of Sand-Laden Wind. J. Wind. Eng. Ind. Aerodyn. 1986, 23, 309–319. [Google Scholar] [CrossRef]
- Mendelssohn, I.A.; Hester, M.W.; Monteferrante, F.J.; Talbot, F. Experimental Dune Building and Vegetative Stabilization in a Sand-Deficient Barrier Island Setting on the Louisiana Coast, USA. J. Coast. Res. 1991, 7, 137–149. [Google Scholar]
- Ning, Q.; Li, B.; Ellis, J.T. Fence Height Control on Sand Trapping. Aeolian Res. 2020, 46, 100617. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.G.D.; Hesp, P.A. Is ‘Re-Mobilisation’ Nature Restoration or Nature Destruction? A Commentary. J. Coast. Conserv. 2019, 23, 1093–1103. [Google Scholar] [CrossRef]
Keyword | Results | Highly Cited | Review |
---|---|---|---|
aeolian sediment transport | 2224 | 8 | 88 |
dune aeolian sediment transport | 956 | 2 | 38 |
coastal aeolian sediment transport | 585 | 1 | 22 |
aeolian sediment transport storm | 298 | 2 | 10 |
dune aeolian sediment transport storm | 150 | 1 | 5 |
coastal aeolian sediment transport storm | 124 | 0 | 4 |
aeolian sediment transport model | 867 | 4 | 41 |
dune aeolian sediment transport model | 424 | 1 | 23 |
coastal aeolian sediment transport model | 237 | 1 | 15 |
aeolian sediment transport vegetation | 430 | 1 | 25 |
dune aeolian sediment transport vegetation | 223 | 0 | 11 |
coastal aeolian sediment transport vegetation | 143 | 0 | 9 |
aeolian sediment transport fence | 44 | 0 | 1 |
dune aeolian sediment transport fence | 34 | 0 | 1 |
coastal aeolian sediment transport fence | 27 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husemann, P.; Romão, F.; Lima, M.; Costas, S.; Coelho, C. Review of the Quantification of Aeolian Sediment Transport in Coastal Areas. J. Mar. Sci. Eng. 2024, 12, 755. https://doi.org/10.3390/jmse12050755
Husemann P, Romão F, Lima M, Costas S, Coelho C. Review of the Quantification of Aeolian Sediment Transport in Coastal Areas. Journal of Marine Science and Engineering. 2024; 12(5):755. https://doi.org/10.3390/jmse12050755
Chicago/Turabian StyleHusemann, Paul, Frederico Romão, Márcia Lima, Susana Costas, and Carlos Coelho. 2024. "Review of the Quantification of Aeolian Sediment Transport in Coastal Areas" Journal of Marine Science and Engineering 12, no. 5: 755. https://doi.org/10.3390/jmse12050755
APA StyleHusemann, P., Romão, F., Lima, M., Costas, S., & Coelho, C. (2024). Review of the Quantification of Aeolian Sediment Transport in Coastal Areas. Journal of Marine Science and Engineering, 12(5), 755. https://doi.org/10.3390/jmse12050755