Marine Renewable-Driven Green Hydrogen Production toward a Sustainable Solution and a Low-Carbon Future in Morocco
Abstract
:1. Introduction
2. Data and Methods
2.1. Description of the Study Area and System
2.2. Statistical Wave Models: Coastal Application Analysis
2.2.1. The SIMAR Data System
2.2.2. Mathematical Analysis of Wave Propagation
2.2.3. Statistical Analysis of Wave Energy
- is the energy generation or input term by the wind.
- is the energy exchange term between the different spectrum components.
- is the energy dissipation term.
2.2.4. Mathematical Analysis of Offshore Wind
Wind Power Estimation
Plant Load Factor and Capacity Factor
2.3. Wind Speed Frequency Distribution
2.3.1. Weibull Distribution
2.3.2. Rayleigh Distribution
2.4. Steps and Methodology
3. Method
3.1. Wind Turbine Model
3.2. Wave Energy Model
3.3. Power Conditioner
3.4. PEM Electrolyzer Technology
3.5. System Performance
4. Results and Discussions
4.1. Analysis of Wave and Wind Data
4.2. Model Simulation
4.3. Electrolyzer Performance and Water Usage Analysis
4.4. Power and Hydrogen Output Production
5. Performance of the Studied System
6. Techno-Economic Analysis
Hydrogen Production Cost Calculation
- i.
- Initial installation cost of OWC in Morocco
- ii.
- Initial installation cost of OWF in Morocco
Sea Depth (m) | Foundation | Turbine | Grid Connection | Installation | Other | Total Cost (EUR/kW) |
---|---|---|---|---|---|---|
10–20 | 352 | 772 | 133 | 465 | 79 | 1800 |
20–30 | 466 | 772 | 133 | 465 | 85 | 1920 |
30–40 | 625 | 772 | 133 | 605 | 92 | 2227 |
40–50 | 900 | 772 | 133 | 605 | 105 | 2514 |
7. Discussion and Future Research Directions
- Variability in renewable energy sources: The inherent variability of wind and wave energy presents significant technical challenges. This variability can lead to fluctuations in energy supply, which directly impacts the efficiency and reliability of hydrogen production. Consistent and predictable energy input is crucial for the stable operation of PEM electrolysis systems. Overcoming this requires advanced forecasting techniques and potentially integrating energy storage solutions to buffer against energy supply fluctuations.
- Infrastructure and technology maturity: The integration of wave energy conversion technologies with offshore wind farms and electrolysis systems is still at a developmental stage. The technical feasibility of such hybrid systems operating in harsh marine environments poses a significant challenge, requiring durable materials and technologies that can withstand corrosive saltwater, strong currents, and variable weather conditions.
- Assumption of static economic conditions: The study’s assumption of static economic conditions overlooks potential fluctuations in market prices for technologies, raw materials, and energy. The capital costs associated with developing and deploying advanced renewable technologies, especially in the marine environment, can be substantial. Moreover, the prices of raw materials such as special metals used in electrolyzers can vary significantly, affecting the overall economics of hydrogen production.
- Cost of developing new technologies: While the study provides a snapshot of current data, the rapidly evolving nature of renewable energy technologies means that initial cost assessments might quickly become outdated. The research and development of more efficient and robust wave energy converters, for instance, require significant investment. Achieving economies of scale and technological advancements could reduce costs, but these are not immediate and involve financial risks and uncertainties.
- Developing advanced forecasting and management systems: To manage the variability in wind and wave energy, advanced predictive models and real-time data management systems are essential. These systems can help optimize the operation of hybrid renewable energy systems and ensure a more stable energy supply for hydrogen production.
- Pilot and demonstration projects: Implementing pilot projects that integrate wind, wave, and electrolysis technologies will provide valuable real-world data on system performance, durability, and economic viability. These projects can help validate models and assumptions used in studies like this and adapt strategies based on operational experiences.
- Economic analysis including dynamic scenarios: Future studies should include dynamic economic analyses that account for fluctuations in technology costs, raw materials, and energy prices. Scenario-based planning can help identify robust strategies that can withstand a range of future economic conditions.
- Long-term impact studies: To truly assess the sustainability and impact of integrating renewable energy for hydrogen production, long-term studies that track environmental, economic, and social impacts are necessary. These studies can provide a more comprehensive view of the benefits and challenges associated with such initiatives.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adeli, K.; Nachtane, M.; Faik, A.; Saifaoui, D.; Boulezhar, A. How Green Hydrogen and Ammonia Are Revolutionizing the Future of Energy Production: A Comprehensive Review of the Latest Developments and Future Prospects. Appl. Sci. 2023, 13, 8711. [Google Scholar] [CrossRef]
- Adeli, K.; Nachtane, M.; Faik, A.; Rachid, A.; Tarfaoui, M.; Saifaoui, D. A Deep Learning-Enhanced Framework for Sustainable Hydrogen Production from Solar and Wind Energy in the Moroccan Sahara: Coastal Regions Focus. Energy Convers. Manag. 2024, 302, 118084. [Google Scholar] [CrossRef]
- Global Hydrogen Review 2023—Analysis. Available online: https://www.iea.org/reports/global-hydrogen-review-2023 (accessed on 10 February 2024).
- Publications Office of the European Union. Hydrogen Roadmap Europe: A Sustainable Pathway for the European Energy Transition. Available online: https://op.europa.eu/en/publication-detail/-/publication/0817d60d-332f-11e9-8d04-01aa75ed71a1/language-en (accessed on 10 February 2024).
- Life Cycle Assessment of Hydrogen Energy Systems: A Review of Methodological Choices|Request PDF. Available online: https://www.researchgate.net/publication/304357784_Life_cycle_assessment_of_hydrogen_energy_systems_a_review_of_methodological_choices (accessed on 10 February 2024).
- Wave Energy to Reduce Green H2—Matching EU Hourly Rules 2023. Available online: https://corpowerocean.com/wave-energy-to-reduce-green-h2-matching-eu-hourly-rules/ (accessed on 10 January 2024).
- Wave Energy Spurs Green Hydrogen Production to Decarbonise Heavy Industry. 2023. Available online: https://corpowerocean.com/wave-energy-spurs-green-hydrogen-production-to-decarbonise-heavy-industry/ (accessed on 22 April 2024).
- Hassan, I.A.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen Storage Technologies for Stationary and Mobile Applications: Review, Analysis and Perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Lhyfe Completes a First Step in Its Work on Re-Oxygenating the Ocean. Lhyfe. Available online: https://www.lhyfe.com/press/lhyfe-completes-a-first-step-in-its-work-on-re-oxygenating-the-oceans-through-offshore-hydrogen-production/ (accessed on 22 April 2024).
- Pérez-Vigueras, M.; Sotelo-Boyás, R.; González-Huerta, R.D.G.; Bañuelos-Ruedas, F. Feasibility Analysis of Green Hydrogen Production from Oceanic Energy. Heliyon 2023, 9, e20046. [Google Scholar] [CrossRef]
- Alves, M. Hydrogen Energy: Terceira Island Demonstration Facility. CICEQ 2008, 14, 77–95. [Google Scholar] [CrossRef]
- Serna, Á.; Tadeo, F. Offshore Hydrogen Production from Wave Energy. Int. J. Hydrogen Energy 2014, 39, 1549–1557. [Google Scholar] [CrossRef]
- Calado, G.; Castro, R.; Pires, A.J.; Marques, M.J. Assessment of Hydrogen-Based Solutions Associated to Offshore Wind Farms: The Case of the Iberian Peninsula. Renew. Sustain. Energy Rev. 2024, 192, 114268. [Google Scholar] [CrossRef]
- Ngando Ebba, J.D.; Camara, M.B.; Doumbia, M.L.; Dakyo, B.; Song-Manguelle, J. Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art. Energies 2024, 17, 130. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Nachtane, M.; Amry, Y.; Moumen, A.E. From Renewable to Marine Energies Sources for Sustainable Development and Energy Transition in Morocco: Current Status and Scenario. Preprints 2018, 2018110568. [Google Scholar] [CrossRef]
- Nachtane, M. Énergies Marines Renouvelables et étude des Performances des Matériaux Composites: Cas d’une hydrolienne. Phdthesis, ENSTA Bretagne—École Nationale Supérieure de Techniques Avancées Bretagne; Université Hassan II: Casablanca, Maroc, 2019. [Google Scholar]
- Nachtane, M.; Tarfaoui, M.; Hilmi, K.; Saifaoui, D.; El Moumen, A. Assessment of Energy Production Potential from Tidal Stream Currents in Morocco. Energies 2018, 11, 1065. [Google Scholar] [CrossRef]
- Prediccion de Oleaje, Nivel Del Mar; Boyas y Mareografos|Puertos.Es. Available online: https://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx (accessed on 13 December 2023).
- Zamani, A.; Solomatine, D.; Azimian, A.; Heemink, A. Learning from data for wind–wave forecasting. Ocean. Eng. 2008, 35, 953–962. [Google Scholar] [CrossRef]
- Rajabi, M.; Ghorbani, H.; Aghdam, K.Y. Prediction of shear wave velocity by extreme learning machine technique from well log data. J. Pet. Geomech. 2022, 4, 35–49. [Google Scholar]
- Yu, X.; Shi, S.; Xu, L.; Liu, Y.; Miao, Q.; Sun, M. A novel method for sea surface temperature prediction based on deep learning. Math. Probl. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Gómez Lahoz, M.; Carretero Albiach, J.C. Wave Forecasting at the Spanish Coasts. J. Atmos. Ocean Sci. 2005, 10, 389–405. [Google Scholar] [CrossRef]
- Juan, N.P.; Rodríguez, J.O.; Valdecantos, V.N. Comparison of the SIMAR-WANA, ERA-5, and Waverys Databases for Maritime Climate Estimations and the Implications of Coastal Protection Structures. J. Waterw. Port Coast. Ocean. Eng. 2024, 150, 04023021. [Google Scholar] [CrossRef]
- Bardal, L.M.; Sætran, L.R. Wind gust factors in a coastal wind climate. Energy Procedia 2016, 94, 417–424. [Google Scholar] [CrossRef]
- Bataineh, K.M.; Dalalah, D. Assessment of Wind Energy Potential for Selected Areas in Jordan. Renew. Energy 2013, 59, 75–81. [Google Scholar] [CrossRef]
- Shata, A.A.; Hanitsch, R. The Potential of Electricity Generation on the East Coast of Red Sea in Egypt. Renew. Energy 2006, 31, 1597–1615. [Google Scholar] [CrossRef]
- Yaramasu, V.; Wu, B. Model Predictive Control of Wind Energy Conversion Systems; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Guarienti, J.A.; Almeida, A.K.; Neto, A.M.; de Oliveira Ferreira, A.R.; Ottonelli, J.P.; de Almeida, I.K. Performance Analysis of Numerical Methods for Determining Weibull Distribution Parameters Applied to Wind Speed in Mato Grosso Do Sul, Brazil. Sustain. Energy Technol. Assess. 2020, 42, 100854. [Google Scholar] [CrossRef]
- Bidaoui, H.; Abbassi, I.E.; Bouardi, A.E.; Darcherif, A. Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Functions, Case Study: Five Cities Northern Morocco. Procedia Manuf. 2019, 32, 786–793. [Google Scholar] [CrossRef]
- Gaertner, E.; Rinker, J.; Sethuraman, L.; Zahle, F.; Anderson, B.; Barter, G.E.; Viselli, A. IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine (No. NREL/TP-5000-75698); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020. [Google Scholar]
- Başaran, H.H.; Tarhan, İ. Investigation of Offshore Wind Characteristics for the Northwest of Türkiye Region by Using Multi-Criteria Decision-Making Method (MOORA). Results Eng. 2022, 16, 100757. [Google Scholar] [CrossRef]
- Akdağ, O. The Operation and Applicability to Hydrogen Fuel Technology of Green Hydrogen Production by Water Electrolysis Using Offshore Wind Power. J. Clean. Prod. 2023, 425, 138863. [Google Scholar] [CrossRef]
- Sierra, J.P.; Martín, C.; Mösso, C.; Mestres, M.; Jebbad, R. Wave Energy Potential along the Atlantic Coast of Morocco. Renew. Energy 2016, 96, 20–32. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G. A Methodology to Determine the Power Performance of Wave Energy Converters at a Particular Coastal Location. Energy Convers. Manag. 2012, 61, 8–18. [Google Scholar] [CrossRef]
- Groenemans, H.; Saur, G.; Mittelsteadt, C.; Lattimer, J.; Xu, H. Techno-Economic Analysis of Offshore Wind PEM Water Electrolysis for H2 Production. Curr. Opin. Chem. Eng. 2022, 37, 100828. [Google Scholar] [CrossRef]
- Mansilla, C.; Louyrette, J.; Albou, S.; Bourasseau, C.; Dautremont, S. Economic Competitiveness of Off-Peak Hydrogen Production Today—A European Comparison. Energy 2013, 55, 996–1001. [Google Scholar] [CrossRef]
- Siracusano, S.; Baglio, V.; Briguglio, N.; Brunaccini, G.; Di Blasi, A.; Stassi, A.; Ornelas, R.; Trifoni, E.; Antonucci, V.; Aricò, A.S. An Electrochemical Study of a PEM Stack for Water Electrolysis. Int. J. Hydrogen Energy 2012, 37, 1939–1946. [Google Scholar] [CrossRef]
- Di Blasi, A.; Andaloro, L.; Siracusano, S.; Briguglio, N.; Brunaccini, G.; Stassi, A.; Aricò, A.S.; Antonucci, V. Evaluation of Materials and Components Degradation of a PEM Electrolyzer for Marine Applications. Int. J. Hydrogen Energy 2013, 38, 7612–7615. [Google Scholar] [CrossRef]
- Millet, P.; Dragoe, D.; Grigoriev, S.; Fateev, V.; Etievant, C. GenHyPEM: A Research Program on PEM Water Electrolysis Supported by the European Commission. Int. J. Hydrogen Energy 2009, 34, 4974–4982. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. Techno-Economic Assessment of Clean Hydrogen Production and Storage Using Hybrid Renewable Energy System of PV/Wind under Different Climatic Conditions. Sustain. Energy Technol. Assess. 2022, 52, 102195. [Google Scholar] [CrossRef]
- Egeland-Eriksen, T.; Jensen, J.F.; Ulleberg, Ø.; Sartori, S. Simulating Offshore Hydrogen Production via PEM Electrolysis Using Real Power Production Data from a 2.3 MW Floating Offshore Wind Turbine. Int. J. Hydrogen Energy 2023, 48, 28712–28732. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.; Ookawara, S.; Hassan, H. Techno-Economic Assessment of Green Hydrogen Production Using Different Configurations of Wind Turbines and PV Panels. JES 2022, 6, 560–572. [Google Scholar] [CrossRef]
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.M.; Rahman, S.A.; Nghiem, L.D.; Mahlia, T.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941. [Google Scholar] [CrossRef]
- Astariz, S.; Iglesias, G. The economics of wave energy: A review. Renew. Sustain. Energy Rev. 2015, 45, 397–408. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Verpoort, P.C.; Anantharaman, R.; Bauer, C.; Beck, F.; Longden, T.; Roussanaly, S. On the cost competitiveness of blue and green hydrogen. Joule 2024, 8, 104–128. [Google Scholar] [CrossRef]
- Europe’s Onshore and Offshore Wind Energy Potential—European Environment Agency. Available online: https://www.eea.europa.eu/publications/europes-onshore-and-offshore-wind-energy-potential (accessed on 6 February 2024).
Cities | Longitude (W) | Latitude (N) |
---|---|---|
Larache | 6°50′ | 35°00′ |
Casablanca | 8°50′ | 33°50′ |
El jadida | 9°00′ | 33°50′ |
Essaouira | 10°50′ | 31°50′ |
Agadir | 10°50′ | 30°50′ |
Laayoune | 13°50′ | 27°25′ |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
Parameter | Value | Units |
---|---|---|
Power rating (Pr) | 15 | MW |
Cut-in wind speed (Vcut-in) | 3 | m/s |
Rated wind speed (Vr) | 10.59 | m/s |
Cut-out wind speed (Vcut-out) | 25 | m/s |
Rotor diameter (D) | 240 | M |
City | Casablanca | Agadir | El Jadida | Essaouira | Larache | Laayoune |
---|---|---|---|---|---|---|
Wave Power (kW) | 9439.05 | 4008.50 | 10,348.08 | 10,028.80 | 1985.69 | 2951.09 |
Wind Power (kW) | 11,797.60 | 15,924.27 | 12,422.57 | 14,680.98 | 12,281.25 | 12,811.74 |
City | Casablanca | Agadir | El Jadida | Essaouira | Larache | Laayoune |
---|---|---|---|---|---|---|
Wave H2 (tonnes) | 101.31 | 43.02 | 111.06 | 107.64 | 21.31 | 31.67 |
Wind H2 (tonnes) | 126.62 | 170.91 | 133.33 | 157.57 | 131.81 | 137.51 |
City | Casablanca | Agadir | El Jadida | Essaouira | Larache | Laayoune |
---|---|---|---|---|---|---|
Total Power (kW) | 21,236.65 | 19,932.77 | 22,770.65 | 24,709.78 | 14,266.94 | 15,762.83 |
Total H2 (tonnes) | 227.93 | 213.93 | 244.39 | 265.20 | 153.12 | 169.18 |
Parameter | Range/Value |
---|---|
Electrical current intensity | 1–2 A/cm² |
Operating temperature | 50–80 °C |
System electric efficiency | 50–83 kWh/kg (H2) |
Stack electric efficiency | 47–66 kWh/kg (H2) |
Voltage limits | 1.4–2.5V (range) |
Pressure at the cell level | Below 30 bar |
Hydrogen purity | 99.9% |
Efficiency of voltage | 50–68% |
System lifetime | 50,000–80,000 h (range) |
Electrode surface area | 1500 cm² |
System capital cost | USD 700–1400 per kW (range) |
System stack cost | USD 400/kW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taroual, K.; Nachtane, M.; Rouway, M.; Tarfaoui, M.; Faik, A.; Mînzu, V.; Hilmi, K.; Saifaoui, D. Marine Renewable-Driven Green Hydrogen Production toward a Sustainable Solution and a Low-Carbon Future in Morocco. J. Mar. Sci. Eng. 2024, 12, 774. https://doi.org/10.3390/jmse12050774
Taroual K, Nachtane M, Rouway M, Tarfaoui M, Faik A, Mînzu V, Hilmi K, Saifaoui D. Marine Renewable-Driven Green Hydrogen Production toward a Sustainable Solution and a Low-Carbon Future in Morocco. Journal of Marine Science and Engineering. 2024; 12(5):774. https://doi.org/10.3390/jmse12050774
Chicago/Turabian StyleTaroual, Khadija, Mourad Nachtane, Marwane Rouway, Mostapha Tarfaoui, Abdessamad Faik, Viorel Mînzu, Karim Hilmi, and Dennoun Saifaoui. 2024. "Marine Renewable-Driven Green Hydrogen Production toward a Sustainable Solution and a Low-Carbon Future in Morocco" Journal of Marine Science and Engineering 12, no. 5: 774. https://doi.org/10.3390/jmse12050774
APA StyleTaroual, K., Nachtane, M., Rouway, M., Tarfaoui, M., Faik, A., Mînzu, V., Hilmi, K., & Saifaoui, D. (2024). Marine Renewable-Driven Green Hydrogen Production toward a Sustainable Solution and a Low-Carbon Future in Morocco. Journal of Marine Science and Engineering, 12(5), 774. https://doi.org/10.3390/jmse12050774