SIGAN: A Multi-Scale Generative Adversarial Network for Underwater Sonar Image Super-Resolution
Abstract
:1. Introduction
2. Methods
2.1. Overall Structure of SIGAN
2.2. CBAM-Based Generator Structure
2.2.1. RDN Structure
2.2.2. CBAM Structure
2.3. Multi-Scale Discriminator Structure
2.4. Loss Function Composition
3. Experimental Validation
3.1. Datasets
3.2. Objective Evaluation Metrics
3.3. Visual Comparison with Other SR Methods
3.4. Objective Evaluation with Other Methods
- PSNR: the SIGAN and EDSR generally showed higher PSNR values, particularly at a magnification factor of 2, where both algorithms demonstrated strong performance across multiple categories. Notably, at r = 4, the SIGAN achieved an average PSNR of 25.95 on the Set100, nearly indistinguishable from high-resolution images.
- SSIM: the SIGAN consistently performed well across different magnification factors and categories, particularly in the “Shipwreck” and “Aircraft” categories, where the SSIM values were high, indicating good structural fidelity of the images.
- LPIPS: Low LPIPS values indicated that the perceived quality of the images was closer to the original. EDSR stood out in the “Set100” category, showcasing its advantages in perceived image quality. Similarly, the SIGAN showed lower LPIPS values at lower magnification factors (such as 2×) in the “Shipwreck” and “Aircraft” categories, indicating superior perceptual quality.
4. Discussion
4.1. Performance in Target Recognition
4.2. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henriksen, L. Real-Time Underwater Object Detection Based on an Electrically Scanned High-Resolution Sonar. In Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV’94), Cambridge, MA, USA, 19–20 July 1994; pp. 99–104. [Google Scholar]
- Huo, G.; Wu, Z.; Li, J. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data. IEEE Access 2020, 8, 47407–47418. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, J.; Zeng, L.; Zhang, C.; Wang, B. MLFFNet: Multilevel feature fusion network for object detection in sonar images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5119119. [Google Scholar] [CrossRef]
- Zhou, T.; Si, J.; Wang, L.; Xu, C.; Yu, X. Automatic detection of underwater small targets using forward-looking sonar images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4207912. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, J.; Zhong, H.; Ning, M.; Liu, D.; Wu, K. Self-trained target detection of radar and sonar images using automatic deep learning. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4701914. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Er, M.J.; Yang, Q. Underwater Sonar Image Segmentation Based on Deep Learning of Receptive Field Block and Search Attention Mechanism. In Proceedings of the 2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS), Wuhan, China, 14–16 May 2021; pp. 44–48. [Google Scholar]
- Wang, Z.; Guo, J.; Huang, W.; Zhang, S. Side-scan sonar image segmentation based on multi-channel fusion convolution neural networks. IEEE Sens. J. 2022, 22, 5911–5928. [Google Scholar] [CrossRef]
- Li, J.; Jiang, P.; Zhu, H. A local region-based level set method with Markov random field for side-scan sonar image multi-level segmentation. IEEE Sens. J. 2020, 21, 510–519. [Google Scholar] [CrossRef]
- Dos Santos, M.M.; De Giacomo, G.G.; Drews, P.L.J.; Botelho, S.S. Matching color aerial images and underwater sonar images using deep learning for underwater localization. IEEE Robot. Autom. Lett. 2020, 5, 6365–6370. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, Y.; Chen, B.; Zhu, J.; Yu, X. Underwater multitarget tracking with sonar images using thresholded sequential Monte Carlo probability hypothesis density algorithm. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Nambiar, A.M.; Mittal, A. A Gan-Based Super Resolution Model for Efficient Image Enhancement in Underwater Sonar Images. In Proceedings of the OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022; pp. 1–8. [Google Scholar]
- Chen, W.; Gu, K.; Lin, W.; Yuan, F.; Cheng, E. Statistical and structural information backed full-reference quality measure of compressed sonar images. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 334–348. [Google Scholar] [CrossRef]
- Freeman, W.T.; Pasztor, E.C.; Carmichael, O.T. Learning low-level vision. Int. J. Comput. Vis. 2000, 40, 25–47. [Google Scholar] [CrossRef]
- Duchon, C.E. Lanczos filtering in one and two dimensions. J. Appl. Meteorol. Climatol. 1979, 18, 1016–1022. [Google Scholar] [CrossRef]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Yoon, Y.; Jeon, H.G.; Yoo, D.; Lee, J.Y.; So Kweon, I. Learning a deep convolutional network for light-field image super-resolution. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015; pp. 24–32. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. Esrgan: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the 15th European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Yan, Y.; Liu, C.; Chen, C.; Sun, X.; Jin, L.; Peng, X.; Zhou, X. Fine-grained attention and feature-sharing generative adversarial networks for single image super-resolution. IEEE Trans. Multimed. 2021, 24, 1473–1487. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C.H. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3365–3387. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Liu, Y.; Gu, J.; Qiao, Y.; Dong, C. Blind image super-resolution: A survey and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5461–5480. [Google Scholar] [CrossRef] [PubMed]
- Arefin, M.R.; Michalski, V.; St-Charles, P.L.; Kalaitzis, A.; Kim, S.; Kahou, S.E.; Bengio, Y. Multi-Image Super-Resolution for Remote Sensing Using Deep Recurrent Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 206–207. [Google Scholar]
- Liu, F.; Yang, X.; De Baets, B. A deep recursive multi-scale feature fusion network for image super-resolution. J. Vis. Commun. Image Represent. 2023, 90, 103730. [Google Scholar] [CrossRef]
- Zhou, D.; Duan, R.; Zhao, L.; Chai, X. Single image super-resolution reconstruction based on multi-scale feature mapping adversarial network. Signal Process. 2020, 166, 107251. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar]
- Zhang, Y.; Zhang, K.; Chen, Z.; Li, Y.; Timofte, R.; Zhang, J.; Zhang, K.; Peng, R.; Ma, Y.; Jia, L.; et al. NTIRE 2023 Challenge on Image Super-Resolution (x4): Methods and Results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 1864–1883. [Google Scholar]
- Kong, D.; Gu, L.; Li, X.; Gao, F. Multi-Scale Residual Dense Network for the Super-Resolution of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5612612. [Google Scholar] [CrossRef]
- Qin, J.; Sun, X.; Yan, Y.; Jin, L.; Peng, X. Multi-resolution space-attended residual dense network for single image super-resolution. IEEE Access 2020, 8, 40499–40511. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, L.; Shen, J.; Tang, E.; Zheng, S.; Xu, L. Multi-scale attention network for image super-resolution. J. Vis. Commun. Image Represent. 2021, 80, 103300. [Google Scholar] [CrossRef]
- Qin, X.; Gao, X.; Yue, K. Remote Sensing Image Super-Resolution Using Multi-Scale Convolutional Neural Network. In Proceedings of the 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), HangZhou, China, 5–7 September 2018; Volume 1, pp. 1–3. [Google Scholar]
- Li, Y.; Mavromatis, S.; Zhang, F.; Du, Z.; Sequeira, J.; Wang, Z.; Zhao, X.; Liu, R. Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms. IEEE Trans. Geosci. Remote Sens. 2021, 60, 3000224. [Google Scholar] [CrossRef]
- Wang, X.; Xie, L.; Dong, C.; Shan, Y. Real-Esrgan: Training Real-World Blind Super-Resolution with Pure Synthetic Data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1905–1914. [Google Scholar]
- Peng, C.; Jin, S.; Bian, G.; Cui, Y.; Wang, M. Sample Augmentation Method for Side-Scan Sonar Underwater Target Images Based on CBL-sinGAN. J. Mar. Sci. Eng. 2024, 12, 467. [Google Scholar] [CrossRef]
KLSG-II | RCAN | EDSR | MSRResNet | SRGAN | SIGAN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | Class | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS |
2 | Shipwreck | 28.209 | 0.7966 | 0.196 | 29.145 | 0.8276 | 0.153 | 29.641 | 0.8356 | 0.152 | 28.209 | 0.7966 | 0.16 | 30.1563 | 0.8524 | 0.199 |
Aircraft | 28.555 | 0.78 | 0.1458 | 29.244 | 0.8033 | 0.1303 | 31.054 | 0.9364 | 0.1046 | 28.555 | 0.78 | 0.1458 | 31.3621 | 0.8836 | 0.0828 | |
Rocks | 22.707 | 0.5652 | 0.251 | 23.023 | 0.5625 | 0.2433 | 24.514 | 0.6765 | 0.2256 | 22.707 | 0.5652 | 0.251 | 26.5623 | 0.7246 | 0.228 | |
Set100 | 26.433 | 0.7167 | 0.188 | 28.809 | 0.7028 | 0.1826 | 29.134 | 0.7994 | 0.1589 | 26.433 | 0.7167 | 0.188 | 29.1156 | 0.8324 | 0.1285 | |
4 | Shipwreck | 27.866 | 0.5667 | 0.4035 | 24.516 | 0.5843 | 0.314 | 25.595 | 0.6321 | 0.3141 | 23.866 | 0.5667 | 0.4035 | 27.2544 | 0.7315 | 0.1998 |
Aircraft | 24.812 | 0.652 | 0.2613 | 25.065 | 0.5825 | 0.2932 | 30.386 | 0.8362 | 0.1026 | 24.812 | 0.652 | 0.2613 | 29.3691 | 0.8210 | 0.1212 | |
Rocks | 19.962 | 0.2297 | 0.3691 | 20.082 | 0.2254 | 0.3664 | 21.261 | 0.3122 | 0.378 | 19.962 | 0.2297 | 0.3691 | 24.2145 | 0.6615 | 0.321 | |
Set100 | 22.722 | 0.3971 | 0.3114 | 21.478 | 0.3911 | 0.3288 | 23.993 | 0.5635 | 0.2547 | 22.722 | 0.3971 | 0.3114 | 25.9541 | 0.761 | 0.25 | |
8 | Shipwreck | 21.267 | 0.431 | 0.4035 | 22.06 | 0.4466 | 0.4171 | 22.958 | 0.4844 | 0.4327 | 21.267 | 0.431 | 0.4035 | 23.2155 | 0.631 | 0.35 |
Aircraft | 22.804 | 0.4571 | 0.2613 | 22.278 | 0.4247 | 0.4142 | 27.617 | 0.732 | 0.1482 | 22.804 | 0.4571 | 0.2613 | 25.4612 | 0.6315 | 0.2218 | |
Rocks | 18.92 | 0.1439 | 0.3691 | 19.261 | 0.152 | 0.4214 | 19.552 | 0.1685 | 0.4028 | 18.92 | 0.1439 | 0.3691 | 21.1586 | 0.5365 | 0.499 | |
Set100 | 20.741 | 0.3396 | 0.3114 | 21.163 | 0.3448 | 0.4178 | 21.874 | 0.3997 | 0.3514 | 20.741 | 0.3396 | 0.3114 | 22.1498 | 0.636 | 0.3599 |
DNASI-I | RCAN | EDSR | MSRResNet | SRGAN | SIGAN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | Class | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS |
2 | Shipwreck | 30.429 | 0.8763 | 0.1764 | 32.059 | 0.9103 | 0.1377 | 32.605 | 0.9392 | 0.1368 | 30.429 | 0.8763 | 0.144 | 33.1719 | 0.9377 | 0.1791 |
Aircraft | 31.41 | 0.858 | 0.1312 | 32.169 | 0.8836 | 0.1173 | 34.16 | 1.03 | 0.0942 | 31.41 | 0.858 | 0.1312 | 34.4983 | 0.9719 | 0.0745 | |
Rocks | 24.978 | 0.6217 | 0.2259 | 25.325 | 0.6188 | 0.2189 | 26.966 | 0.7442 | 0.2031 | 24.978 | 0.6217 | 0.2259 | 29.2185 | 0.797 | 0.2052 | |
Set100 | 29.076 | 0.7884 | 0.1692 | 31.69 | 0.7731 | 0.1643 | 32.047 | 0.8793 | 0.1431 | 29.076 | 0.7884 | 0.1692 | 32.027 | 0.9157 | 0.1156 | |
4 | Shipwreck | 30.652 | 0.6234 | 0.3632 | 26.967 | 0.6428 | 0.2826 | 28.155 | 0.6953 | 0.2826 | 26.252 | 0.6234 | 0.3632 | 29.9803 | 0.8046 | 0.1798 |
Aircraft | 27.293 | 0.7172 | 0.2352 | 27.572 | 0.6408 | 0.2639 | 33.425 | 0.9198 | 0.0923 | 27.293 | 0.7172 | 0.2352 | 32.306 | 0.9031 | 0.1091 | |
Rocks | 21.958 | 0.2527 | 0.3322 | 22.09 | 0.2479 | 0.3297 | 23.387 | 0.3434 | 0.3402 | 21.958 | 0.2527 | 0.3322 | 26.6359 | 0.7277 | 0.2889 | |
Set100 | 25.094 | 0.4368 | 0.2803 | 23.626 | 0.4302 | 0.296 | 26.392 | 0.6199 | 0.2293 | 25.094 | 0.4368 | 0.2803 | 28.5495 | 0.8371 | 0.225 | |
8 | Shipwreck | 23.394 | 0.4741 | 0.3632 | 24.266 | 0.4911 | 0.3757 | 25.254 | 0.5328 | 0.3896 | 23.394 | 0.4741 | 0.3632 | 25.5371 | 0.6941 | 0.315 |
Aircraft | 25.085 | 0.5028 | 0.2352 | 24.506 | 0.4672 | 0.3725 | 30.378 | 0.8052 | 0.1334 | 25.085 | 0.5028 | 0.2352 | 28.0073 | 0.6947 | 0.1996 | |
Rocks | 20.812 | 0.1583 | 0.3322 | 21.187 | 0.1672 | 0.3791 | 21.508 | 0.1852 | 0.3625 | 20.812 | 0.1583 | 0.3322 | 23.2744 | 0.5902 | 0.4491 | |
Set100 | 22.815 | 0.3736 | 0.2803 | 23.279 | 0.3794 | 0.376 | 24.061 | 0.4397 | 0.3163 | 22.815 | 0.3736 | 0.2803 | 24.3644 | 0.5781 | 0.2232 |
Group | LR Images | HR Images |
---|---|---|
G1 | 2181 | - |
G2 | 2081 | 100 (EDSR) |
G3 | 2081 | 100 (SRGAN) |
G4 | 2081 | 100 (RCAN) |
G5 | 2081 | 100 (MSRResNet) |
G6 | 2081 | 100 (SIGAN) |
Test images | - | 200 |
Precision | Recall | AP0.5 | AP0.5:0.95 | |
---|---|---|---|---|
G1 | 88.8% | 89.9% | 0.938 | 0.558 |
G2 | 91.1% | 85.7% | 0.935 | 0.576 |
G3 | 86.8% | 92.6% | 0.932 | 0.576 |
G4 | 89.7% | 90.1% | 0.945 | 0.581 |
G5 | 90.9% | 94.1% | 0.962 | 0.566 |
G6 | 91.4% | 94.6% | 0.959 | 0.579 |
Model/Group | G1 | G2 | G3 | G4 | G5 | G6 |
---|---|---|---|---|---|---|
YOLOv5n | 88.8% | 91.1% | 86.8% | 89.7% | 90.9% | 91.4% |
YOLOv5s | 89.6% | 90.2% | 87.5% | 89.5% | 91.4% | 92.3% |
YOLOv5m | 90.1% | 91.5% | 89.6% | 90.3% | 91.9% | 92.9% |
Group | CBAM Model | Multi-Scale | L2 Loss | PSNR | SSIM | LPIPS |
---|---|---|---|---|---|---|
T1 | - | - | - | 30.68 | 0.828 | 0.232 |
T2 | √ | - | - | 32.288 | 0.781 | 0.054 |
T3 | - | √ | - | 33.721 | 0.92 | 0.155 |
T4 | - | - | √ | 34.925 | 0.938 | 0.147 |
T5 | √ | √ | √ | 35.92 | 0.969 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Jin, S.; Bian, G.; Cui, Y. SIGAN: A Multi-Scale Generative Adversarial Network for Underwater Sonar Image Super-Resolution. J. Mar. Sci. Eng. 2024, 12, 1057. https://doi.org/10.3390/jmse12071057
Peng C, Jin S, Bian G, Cui Y. SIGAN: A Multi-Scale Generative Adversarial Network for Underwater Sonar Image Super-Resolution. Journal of Marine Science and Engineering. 2024; 12(7):1057. https://doi.org/10.3390/jmse12071057
Chicago/Turabian StylePeng, Chengyang, Shaohua Jin, Gang Bian, and Yang Cui. 2024. "SIGAN: A Multi-Scale Generative Adversarial Network for Underwater Sonar Image Super-Resolution" Journal of Marine Science and Engineering 12, no. 7: 1057. https://doi.org/10.3390/jmse12071057
APA StylePeng, C., Jin, S., Bian, G., & Cui, Y. (2024). SIGAN: A Multi-Scale Generative Adversarial Network for Underwater Sonar Image Super-Resolution. Journal of Marine Science and Engineering, 12(7), 1057. https://doi.org/10.3390/jmse12071057