A Systematic Review of Oceanic-Atmospheric Variations and Coastal Erosion in Continental Latin America: Historical Trends, Future Projections, and Management Challenges
Abstract
:1. Introduction
2. Systematic Review Process
3. Global and Regional Trends of Ocean–Atmospheric Variations: The Case of Latin America
3.1. Climate Mode and Teleconnections
3.2. Oceanic-Atmospheric Variations and Projections
4. Oceanic-Atmospheric Variations and Their Influence on Coastal Hydrodynamics and Shoreline Changes in Latin America
4.1. Extreme Events and Sea-Level Rise
4.2. El Niño-Southern Oscillation (ENSO)
Regions | Historical/Current Impacts and End-of-Century Projections under the RCP8.5 Scenario | Sources |
---|---|---|
Northern Atlantic | Historical/current impacts: | |
| Odériz et al., 2021 [74] | |
| Bevacqua et al., 2020 [2] | |
Projections: | ||
| Bevacqua et al., 2020 [2] | |
| Camus et al., 2017 [8] | |
| Mentaschi et al., 2017 [34] | |
| Morim et al., 2021 [77] | |
| Morim et al., 2019 [4] | |
| Morim et al., 2019 [4] | |
Caribbean | Historical/current impacts: | |
| Bevacqua et al., 2020 [2] | |
| Silva Casarín et al., 2012 [104]; Mulcahy et al., 2016 [105] | |
| Bernet et al., 2022 [107] | |
| Genes et al., 2021 [130] | |
Projections: | ||
| Morim et al., 2019 [4] | |
| Bevacqua et al., 2020 [2] | |
| Camus et al., 2017 [8] | |
| Belmadani et al., 2021 [84] | |
Southern Atlantic | Historical/current impacts: | |
| Verocai et al., 2015 [5] | |
| Odériz et al., 2021 [74] | |
| Dragani et al., 2013 [95] | |
| Machado et al., 2010 [99] | |
| Esteves et al., 2006 [48] | |
| Verocai et al., 2015 [5] | |
| Dutra et al., 2014 [126]; Campos Carvalho et al., 2020 [125] | |
Projections: | ||
| Mentaschi et al., 2017 [34] | |
| Melet et al., 2020 [62] | |
| Mentaschi et al., 2017 [34] | |
| Morim et al., 2019 [4] | |
| Morim et al., 2019 [4] | |
| Bevacqua et al., 2020 [2] |
Regions | Historical/Current Impacts and End-of-Century Projections under the RCP8.5 Scenario | Sources |
---|---|---|
Northern Pacific | Projections: | |
| Morim et al., 2019 [4] | |
| Bevacqua et al., 2020 [2] | |
| Camus et al., 2017 [8] | |
| Melet et al., 2020 [62] | |
| Morim et al., 2021 [79] | |
| Morim et al., 2019 [4] | |
Tropical and subtropical Pacific | Historical/current impacts: | |
| Odériz et al., 2021 [74] | |
| Kumar et al., 2022 [47] | |
| Lizano, 2016 [114] | |
| Godwyn-Paulson et al., 2021 [131] | |
| Bevacqua et al., 2020 [2] | |
Projections: | ||
| Mentaschi et al., 2017 [34] | |
| Camus et al., 2017 [8] | |
| Kumar et al., 2022 [47] | |
| Morim et al., 2021 [79] | |
| Morim et al., 2019 [4] | |
| Bevacqua et al., 2020 [2] | |
Southern Pacific | Historical/current impacts: | |
| Odériz et al., 2021 [74] | |
| Martínez et al., 2018 [116] | |
| Muñoz et al., 2022 [133] | |
| Jigena-Antelo et al., 2022 [70] | |
| Martínez et al., 2018 [116] | |
Projections: | ||
| Morim et al., 2019 [4] | |
| Bevacqua et al., 2020 [2] | |
| Bevacqua et al., 2020 [2] |
5. Implications for Coastal Management and Planning
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jevrejeva, S.; Bricheno, L.; Brown, J.; Byrne, D.; De Dominicis, M.; Matthews, A.; Rynders, S.; Palanisamy, H.; Wolf, J. Quantifying processes contributing to marine hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea. Nat. Hazards Earth Syst. Sci. 2020, 20, 2609–2626. [Google Scholar] [CrossRef]
- Bevacqua, E.; Vousdoukas, M.I.; Zappa, G.; Hodges, K.; Shepherd, T.G.; Maraun, D.; Mentaschi, L.; Feyen, L. More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ. 2020, 1, 47. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Li, G. Contemporary monitoring of storm surge activity. Prog. Phys. Geogr. Earth Environ. 2019, 44, 299–314. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M.; et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Chang. 2019, 9, 711–718. [Google Scholar] [CrossRef]
- Verocai, J.E.; Gómez-Erache, M.; Nagy, G.J.; Bidegain, M. Addressing climate extremes in Coastal Management: The case of the Uruguayan coast of the Rio de la Plata System. J. Integr. Coast. Zone Manag. 2015, 15, 91–107. [Google Scholar] [CrossRef]
- Spirandelli, D.J.; Anderson, T.R.; Porro, R.; Fletcher, C.H. Improving Adaptation Planning for Future Sea-Level Rise: Understanding Uncertainty and Risks Using a Probability-Based Shoreline Model. J. Plan. Educ. Res. 2016, 36, 290–303. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Woodroffe, C.; Burkett, V. Coastline Degradation as an Indicator of Global Change. In Climate Change: Observed Impacts on Planet Earth, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 309–324. [Google Scholar] [CrossRef]
- Camus, P.; Losada, I.J.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J. Statistical wave climate projections for coastal impact assessments. Earths Future 2017, 5, 918–933. [Google Scholar] [CrossRef]
- Lincke, D.; Hinkel, J.; Mengel, M.; Nicholls, R.J. Understanding the Drivers of Coastal Flood Exposure and Risk From 1860 to 2100. Earths Future 2022, 10, e2021EF002584. [Google Scholar] [CrossRef]
- Reguero, B.G.; Méndez, F.J.; Losada, I.J. Variability of multivariate wave climate in Latin America and the Caribbean. Glob. Planet. Change 2013, 100, 70–84. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Living Ocean. 2023. Available online: https://science.nasa.gov/earth-science/oceanography/living-ocean/#:~:text=There%20are%20about%20620%2C000%20kilom%20%28372%2C000%20miles%29%20of,devastating%20tsunami%20in%20the%20Indian%20Ocean%20in%202004 (accessed on 25 May 2023).
- Vos, K.; Harley, M.D.; Turner, I.L.; Splinter, K.D. Pacific Shoreline Erosion and Accretion Patterns Controlled by El Niño/Southern Oscillation. Nat. Geosci. 2023, 16, 140–146. [Google Scholar] [CrossRef]
- Barnard, P.L.; Hoover, D.; Hubbard, D.M.; Snyder, A.; Ludka, B.C.; Allan, J.; Kaminsky, G.M.; Ruggiero, P.; Gallien, T.W.; Gabel, L.; et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 2017, 8, 14365. [Google Scholar] [CrossRef]
- Barnard, P.L.; Short, A.D.; Harley, M.D.; Splinter, K.D.; Vitousek, S.; Turner, I.L.; Allan, J.; Banno, M.; Bryan, K.R.; Doria, A.; et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 2015, 8, 801–807. [Google Scholar] [CrossRef]
- Ghorai, D.; Sen, H.S. Role of climate change in increasing occurrences oceanic hazards as a potential threat to coastal ecology. Nat. Hazards 2015, 75, 1223–1245. [Google Scholar] [CrossRef]
- Souza, C.R.d.G.; Souza, A.P.; Harari, J. Long term analysis of meteorological-oceanographic extreme events for the Baixada Santista region. In Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2018; pp. 97–134. [Google Scholar] [CrossRef]
- Hauer, M.E.; Fussell, E.; Mueller, V.; Burkett, M.; Call, M.; Abel, K.; McLeman, R.; Wrathall, D. Sea-level rise and human migration. Nat. Rev. Earth Environ. 2020, 1, 28–39. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.G.; Anfuso, G.; Williams, A.; Bonetti, J.; Adriana, G.C.; Ortiz, J.C. Risk assessment to extreme wave events: The barranquilla—Cienaga, caribbean of Colombia case study, in: Beach Management Tools—Concepts. In Methodologies and Case Studies, Coastal Research Library; Springer: Cham, Switzerland, 2018; pp. 469–496. [Google Scholar] [CrossRef]
- Cruz-Ramírez, C.J.; Chávez, V.; Silva, R.; Muñoz-Perez, J.J.; Rivera-Arriaga, E. Coastal Management: A Review of Key Elements for Vulnerability Assessment. J. Mar. Sci. Eng. 2024, 12, 386. [Google Scholar] [CrossRef]
- Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Méndez, F.J. Comparative Coastal Risk Index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE 2017, 12, e0187011. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Yepes-Nuñez, J.J.; Urrútia, G.; Romero-García, M.; Alonso-Fernández, S.; Prisma, D. 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Odériz, I.; Silva, R.; Mortlock, T.R.; Mori, N. El Niño-Southern Oscillation Impacts on Global Wave Climate and Potential Coastal Hazards. J. Geophys. Res. Ocean. 2020, 125, e2020JC016464. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Crespo, N.M.; Dutra, L.M.M.; de Ferreira, G.W.S.; Rehbein, A.; Drumond, A.; da Rocha, R.P.; de Souza, C.A. Impacts of teleconnection patterns on South America climate. Ann. N. Y. Acad. Sci. 2021, 1504, 116–153. [Google Scholar] [CrossRef]
- Cramer, W.; Yohe, G.W.; Auffhammer, M.; Huggel, C.; Molau, U.; Da Silva Dias, M.A.F.; Solow, A.; Stone, D.A.; Tibig, L. Detection and attribution of observed impacts, in: Climate Change 2014: Impacts, Adaptation and Vulnerability. In Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015; pp. 979–1038. [Google Scholar] [CrossRef]
- Hewitson, B.; Janetos, A.C.; Carter, T.R.; Giorgi, F.; Jones, R.G.; Kwon, W.T.; Mearns, L.O.; Schipper, E.L.F.; Van Aalst, M.K.; Regional context; et al. 2014: Impacts, Adaptation and Vulnerability. In Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1133–1198. [Google Scholar] [CrossRef]
- Palanisamy, H.; Meyssignac, B.; Cazenave, A.; Delcroix, T. Is anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environ. Res. Lett. 2015, 10, 084024. [Google Scholar] [CrossRef]
- Pepper, D. El Niño-Southern Oscillation (ENSO) and coastal response: An overview with examples from Southern California and the Gulf of Mexico. In Beaches: Erosion, Management Practices and Environmental Implications; Cessa, M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 1–34. [Google Scholar]
- Enfield, D.B.; Niño, E. Past and present. Rev. Geophys. 1989, 27, 159–187. [Google Scholar] [CrossRef]
- Ardhuin, F.; Stopa, J.E.; Chapron, B.; Collard, F.; Husson, R.; Jensen, R.E.; Johannessen, J.; Mouche, A.; Passaro, M.; Quartly, G.D.; et al. Observing sea states. Front. Mar. Sci. 2019, 6, 124. [Google Scholar] [CrossRef]
- Wennersten, J.R.; Robbins, D. Robbins, Rising Tides: Climate Refugees in the Twenty-First Century; Indiana University Press: Bloomington, IN, USA, 2017. [Google Scholar]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides; Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Mentaschi, L.; Vousdoukas, M.I.; Voukouvalas, E.; Dosio, A.; Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 2017, 44, 2416–2426. [Google Scholar] [CrossRef]
- Aramburo, D.; Montoya, R.D.; Osorio, A.F. Impact of the ENSO phenomenon on wave variability in the Pacific Ocean for wind sea and swell waves. Dyn. Atmos. Ocean. 2022, 100, 101328. [Google Scholar] [CrossRef]
- Odériz, I.; Silva, R.; Mortlock, T.R.; Mendoza, E. Climate drivers of directional wave power on the Mexican coast. Ocean Dyn. 2020, 70, 1253–1265. [Google Scholar] [CrossRef]
- Boucharel, J.; Santiago, L.; Almar, R.; Kestenare, E. Coastal wave extremes around the pacific and their remote seasonal connection to climate modes. Climate 2021, 9, 168. [Google Scholar] [CrossRef]
- Viles, H.A.; Goudie, A.S. Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth Sci. Rev. 2003, 61, 105–131. [Google Scholar] [CrossRef]
- Giovannettone, J.; Paredes-Trejo, F.; Amaro, V.E.; Santos, C.A.C.D. Assessing Potential Links between Climate Variability and Sea Levels along the Coasts of North America. Climate 2023, 11, 80. [Google Scholar] [CrossRef]
- Osorio, A.F.; Montoya, R.D.; Ortiz, J.C.; Peláez, D. Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Appl. Ocean. Res. 2016, 56, 119–131. [Google Scholar] [CrossRef]
- Christensen, J.H.; Kumar, K.K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.; et al. Climate Phenomena and their Relevance for Future Regional Climate Change, in: Climate Change 2013: The Physical Sci- Ence Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Garcia, N.O.; Ferreira, R.N.; Latrubesse, E.M. Climate and Geomorphologic-related Disasters in Latin America. In Developments in Earth Surface Processe; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–27. [Google Scholar] [CrossRef]
- Bittencourt, A.C.D.S.P.; Dominguez, J.M.L.; Martin, L.; Silva, I.R. Longshore transport on the northeastern Brazilian coast and implications to the location of large scale accumulative and erosive zones: An overview. Mar. Geol. 2005, 219, 219–234. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Claar, D.C.; Hobday, A.J.; McInnes, K.L.; Oliver, E.C.J.; Gupta, A.S.; Widlansky, M.J.; Zhang, X. ENSO-Driven Ocean Extremes and Their Ecosystem Impacts. In El Niño Southern Oscillation in a Changing Climate, Geophysical Monograph Series; John Wiley and Sons Inc: Hoboken, NJ, USA, 2020; pp. 409–428. [Google Scholar] [CrossRef]
- Grez, P.W.; Aguirre, C.; Farías, L.; Contreras-López, M.; Masotti, Í. Evidence of climate-driven changes on atmospheric, hydrological, and oceanographic variables along the Chilean coastal zone. Clim. Change 2020, 163, 633–652. [Google Scholar] [CrossRef]
- Terry, J.P. Tropical Cyclones: Climatology and impacts in the South Pacific; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Kumar, P.; Sardana, D.; Kaur, S.; Remya, P.G.; Rajni; Weller, E. Influence of climate variability on wind-sea and swell wave height extreme over the Indo-Pacific Ocean. Int. J. Climatol. 2022, 42, 6183–6203. [Google Scholar] [CrossRef]
- Esteves, L.S.; Williams, J.J.; Dillenburg, S.R. Seasonal and interannual influences on the patterns of shoreline changes in Rio Grande do Sul, southern Brazil. J. Coast. Res. 2006, 22, 1076–1093. [Google Scholar] [CrossRef]
- Oldfield, F. Environmental Change: Key Issues and Alternative Perspectives; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005. [Google Scholar]
- Palanisamy, H.; Cazenave, A.; Delcroix, T.; Meyssignac, B. Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: The contribution of thermocline depth change and internal climate variability. Ocean Dyn. 2015, 65, 341–356. [Google Scholar] [CrossRef]
- Ortega, L.; Celentano, E.; Finkl, C.; Defeo, O. Effects of climate variability on the morphodynamics of Uruguayan sandy beaches. J. Coast. Res. 2013, 29, 747–755. [Google Scholar] [CrossRef]
- Economic Commission for Latin America and the Caribbean (ECLAC), Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Efectos del Cambio Climático en la Costa de América Latina y el Caribe: Dinámicas, Tendencias y Variabilidad Climática. 2015. Available online: https://www.cepal.org/es/publicaciones/3955-efectos-cambio-climatico-la-costa-america-latina-caribe-dinamicas-tendencias (accessed on 15 November 2023).
- Kekeh, M.; Akpinar-Elci, M.; Allen, M.J. Sea Level Rise and Coastal Communities. In Extreme Weather Events and Human Health: International Case Studies; Akhtar, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–376. [Google Scholar] [CrossRef]
- Vergara, W.; Rios, A.R.; Galindo, L.M.; Samaniego, J. Physical Damages Associated with Climate Change Impacts and the Need for Adaptation Actions in Latin America and the Caribbean. In Handbook of Climate Change Adaptation; Filho, W.L., Ed.; Springer Reference: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Thiéblemont, R.; Rohmer, J.; Idier, D.; Manceau, J.C.; Quique, R. Low-end probabilistic sea-level projections. Water 2019, 11, 1507. [Google Scholar] [CrossRef]
- Lobeto, H.; Menendez, M.; Losada, I.J.; Hemer, M. The effect of climate change on wind-wave directional spectra. Glob. Planet. Change 2022, 213, 103820. [Google Scholar] [CrossRef]
- Betts, R.A.; Arnell, N.W.; Boorman, P.M.; Cornell, S.E.; House, J.I.; Kaye, N.R.; Carthy, M.P.M.; Neall, D.J.M.; Sanderson, M.G.; Wiltshire, A.J. Climate change impacts and adaptation: An earth system view. In Understanding the Earth System: Global Change Science for Application; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 160–201. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Nicholls, R.J.; Dalrymple, R.A.; Stive, M.J.F. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2020, 156, 103611. [Google Scholar] [CrossRef]
- Toste, R.; de Assad, L.P.F.; Landau, L. Downscaling of the global HadGEM2-ES results to model the future and present-day ocean conditions of the southeastern Brazilian continental shelf. Clim. Dyn. 2017, 51, 143–159. [Google Scholar] [CrossRef]
- Carson, M.; Köhl, A.; Stammer, D.; Slangen, A.B.A.; Katsman, C.A.; van de Wal, R.S.W.; Church, J.; White, N. Coastal sea level changes, observed and projected during the 20th and 21st century. Clim. Change 2016, 134, 269–281. [Google Scholar] [CrossRef]
- Cazenave, A.; Palanisamy, H.; Ablain, M. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Adv. Space Res. 2018, 62, 1639–1653. [Google Scholar] [CrossRef]
- Melet, A.; Almar, R.; Hemer, M.; Le Cozannet, G.; Meyssignac, B.; Ruggiero, P. Contribution of Wave Setup to Projected Coastal Sea Level Changes. J. Geophys. Res. Ocean. 2020, 125, e2020JC016078. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.J.; Gattuso, J.P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal systems and low-lying areas, in: Clim. Change 2014 Impacts, Adaptation and Vulnerability. In Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–410. [Google Scholar] [CrossRef]
- McLeman, R.A. Mean Sea Level Rise and Its Implications for Migration and Migration Policy. In Climate and Human Migration; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 180–209. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C. Upper limit for sea level projections by 2100. Environ. Res. Lett. 2014, 9, 104008. [Google Scholar] [CrossRef]
- Boumis, G.; Moftakhari, H.R.; Moradkhani, H. Coevolution of Extreme Sea Levels and Sea-Level Rise Under Global Warming. Earths Future 2023, 11, e2023EF003649. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; Innes, K.M.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar] [CrossRef]
- Houston, J. Sea Level Rise. In Coastal Hazards, Coastal Research Library; Finkl, C.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 245–266. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Jigena-Antelo, B.; Estrada-Ludeña, C.; Howden, S.; Rey, W.; Paz-Acosta, J.; Lopez-García, P.; Salazar-Rodriguez, E.; Endrina, N.; Muñoz-Pérez, J.J. Evidence of sea level rise at the Peruvian coast (1942–2019). Sci. Total Environ. 2022, 859, 160082. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.M.D.; Serrao-Neumann, S. Climate and Environmental Perception and Governance in Coastal Areas: The Case of Ilha Comprida, São Paulo, Brazil. In Climate Change Adaptation in Latin America, Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 399–412. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U. Sea level change. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. [Google Scholar] [CrossRef]
- Hendry, M. Sea-Level Movements and Shoreline Changes. In Climatic Change in the Intra-Americas Sea: Implications of Future Climate on the Ecosystems and Socio-Economic Structure in the Marine and Coastal Regions of the Caribbean Sea, Gulf of Mexico, Bahamas, and the Northeast Coast of South America; United Nations Environment Programme United Nations Educational, Scientific and Cultural Organization, Intergovernmental Oceanographic Commission: Nairobi, Kenya, 1993; pp. 115–161. [Google Scholar]
- Odériz, I.; Silva, R.; Mortlock, T.R.; Mori, N.; Shimura, T.; Webb, A.; Padilla-Hernández, R.; Villers, S. Natural Variability and Warming Signals in Global Ocean Wave Climates. Geophys. Res. Lett. 2021, 48, e2021GL093622. [Google Scholar] [CrossRef]
- Instituto de Hidráulica Ambiental—Universidad de Cantabria (IH Cantabria), Comisión Económica para América Latina y el Caribe (CEPAL), Efectos del cambio climático en la costa de América Latina y el Caribe—Vulnerabilidad y Exposición. 2015. Available online: https://www.cepal.org/es/publicaciones/3982-efectos-cambio-climatico-la-costa-america-latina-caribe-vulnerabilidad-exposicion (accessed on 25 May 2024).
- Joint Research Centre—JRC—European Commission. Global Human Settlement Layer: Population and Built-Up Estimates, and Degree of Urbanization Settlement Model Grid; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2021. [Google Scholar]
- Semedo, A.; SušElj, K.; Rutgersson, A.; Sterl, A. A global view on the wind sea and swell climate and variability from ERA-40. J. Clim. 2011, 24, 1461–1479. [Google Scholar] [CrossRef]
- Lobeto, H.; Menendez, M.; Losada, I.J. Projections of Directional Spectra Help to Unravel the Future Behavior of Wind Waves. Front. Mar. Sci. 2021, 8, 655490. [Google Scholar] [CrossRef]
- Morim, J.; Vitousek, S.; Hemer, M.; Reguero, B.; Erikson, L.; Casas-Prat, M.; Wang, X.L.; Semedo, A.; Mori, N.; Shimura, T.; et al. Global-scale changes to extreme ocean wave events due to anthropogenic warming. Environ. Res. Lett. 2021, 16, 074056. [Google Scholar] [CrossRef]
- Martell-Dubois, R.; Silva-Casarin, R.; Mendoza-Baldwin, E.G.; Muñoz-Pérez, J.J.; Cerdeira-Estrada, S.; Escalante-Mancera, E.; Laiz, I. Spectral bimodality of waves produced by hurricanes in the Caribbean coastal zone off Mexico. Cienc. Mar. 2018, 44, 33–48. [Google Scholar] [CrossRef]
- Gray, C.R. Regional Meteorology and Hurricanes. In Climatic Change in the Intra-Americas Sea; Maul, G.A., Ed.; United Nations Environment Programme: Nairobi, Kenya, 1993; pp. 87–99. [Google Scholar]
- Timmermans, B.; Patricola, C.; Wehner, M. Simulation and analysis of extreme hurricane-driven wave climate under two ocean warming scenarios. Oceanography 2018, 31, 88–99. [Google Scholar] [CrossRef]
- Mori, N.; Shimura, T.; Yoshida, K.; Mizuta, R.; Okada, Y.; Fujita, M.; Khujanazarov, T.; Nakakita, E. Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model. Coast. Eng. J. 2019, 61, 295–307. [Google Scholar] [CrossRef]
- Belmadani, A.; Dalphinet, A.; Chauvin, F.; Pilon, R.; Palany, P. Projected future changes in tropical cyclone-related wave climate in the North Atlantic. Clim. Dyn. 2021, 56, 3687–3708. [Google Scholar] [CrossRef]
- Resio, D.T.; Irish, J.L. Tropical Cyclone Storm Surge Risk. Curr. Clim. Change Rep. 2015, 1, 74–84. [Google Scholar] [CrossRef]
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Change 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Nicholls, R.J. Coastal Megacities and Climate Change. GeoJournal 1995, 37, 369–379. [Google Scholar] [CrossRef]
- Vallarino Castillo, R.; Negro Valdecantos, V.; del Campo, J.M. Understanding the impact of hydrodynamics on coastal erosion in Latin America: A systematic review. Front. Environ. Sci. 2023, 11, 1267402. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; Hesp, P.A.; Catalan, P.; Osorio, A.F.; Martell, R.; Fossati, M.; Da Silva, G.M.; Mariño-Tapia, I.; Pereira, P.; et al. Present and future challenges of coastal erosion in Latin America. J. Coast. Res. 2014, 71, 1–16. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment. Sustain. Sci. 2008, 3, 89–102. [Google Scholar] [CrossRef]
- Center for International Earth Science Information Network—CIESIN—Columbia University. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 2; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2013. [CrossRef]
- Microsoft, Insert Icons in PowerPoint. Available online: https://support.microsoft.com/en-us/office/insert-icons-in-microsoft-365-e2459f17-3996-4795-996e-b9a13486fa79#:~:text=Select%20Insert%20%3E%20Icons.%20Scroll%20through%20the%20icons,by%20choosing%20each%20of%20them%20before%20clicking%20Insert (accessed on 23 May 2024).
- Masselink, G.; Van Heteren, S. Response of wave-dominated and mixed-energy barriers to storms. Mar. Geol. 2014, 352, 321–347. [Google Scholar] [CrossRef]
- De Fátima Alves de Matos, M.; Amaro, V.E.; Scudelari, A.C.; Rosado, S.B. Estimation of long term shoreline changes along the Eastern Coast of Rio Grande do Norte State, Northeast Brazil. Rev. Bras. Geomorfol. 2022, 23, 1027–1053. [Google Scholar] [CrossRef]
- Dragani, W.C.; Martin, P.B.; Alonso, G.; Codignotto, J.O.; Prario, B.E.; Bacino, G. Wind wave climate change: Impacts on the littoral processes at the Northern Buenos Aires Province Coast. Argent. Clim Change 2013, 121, 649–660. [Google Scholar] [CrossRef]
- Dragani, W.C.; Martin, P.B.; Simionato, C.G.; Campos, M.I. Are wind wave heights increasing in south-eastern south American continental shelf between 32°S and 40°S? Cont. Shelf Res. 2010, 30, 481–490. [Google Scholar] [CrossRef]
- Bacino, G.L.; Dragani, W.C.; Codignotto, J.O. Changes in wave climate and its impact on the coastal erosion in Samborombón Bay, Río de la Plata estuary, Argentina. Estuar. Coast. Shelf Sci. 2019, 219, 71–80. [Google Scholar] [CrossRef]
- Pousa, J.L.; D’Onofrio, E.E.; Fiore, M.M.E.; Kruse, E.E. Environmental impacts and simultaneity of positive and negative storm surges on the coast of the Province of Buenos Aires, Argentina. Environ. Earth Sci. 2013, 68, 2325–2335. [Google Scholar] [CrossRef]
- Machado, A.A.; Calliari, L.J.; Melo, E.; Klein, A.H.F. Historical assessment of extreme coastal sea state conditions in southern Brazil and their relation to erosion episodes. Panam. J. Aquat. Sci. 2010, 5, 105–114. [Google Scholar]
- Machado, A.A.; Calliari, L.J. Synoptic systems generators of extreme wind in Southern Brazil: Atmospheric conditions and consequences in the coastal zone. J. Coast. Res. 2016, 1, 1182–1186. [Google Scholar] [CrossRef]
- Parise, C.K.; Calliari, L.J.; Krusche, N. Extreme storm surges in the south of Brazil: Atmospheric conditions and shore erosion. Braz. J. Oceanogr. 2009, 57, 175–188. [Google Scholar] [CrossRef]
- Gable, F.J.; Aubrey, D.G. Potential Impacts of Contemporary Changing Climate on Caribbean Coastlines. Ocean. Shorel. Manag. 1990, 13, 35–67. [Google Scholar] [CrossRef]
- Scott, D.; Simpson, M.C.; Sim, R. The vulnerability of Caribbean coastal tourism to scenarios of climate change related sea level rise. J. Sustain. Tour. 2012, 20, 883–898. [Google Scholar] [CrossRef]
- Silva Casarin, R.; Martinez, G.R.; Mariño-Tapia, I.; Vanegas, G.P.; Baldwin, E.M.; Mancera, E.E. Manmade Vulnerability of the Cancun Beach System: The Case of Hurricane Wilma. Clean Weinh 2012, 40, 911–919. [Google Scholar] [CrossRef]
- Mulcahy, N.; Kennedy, D.M.; Blanchon, P. Hurricane-induced shoreline change and post-storm recovery: Northeastern Yucatan Peninsula, Mexico. J. Coast. Res. 2016, 1192–1196. [Google Scholar] [CrossRef]
- Bates, S. Tras Los Históricos Huracanes Eta e Iota, la NASA Ayuda a Preparar a Centroamérica Para Los Próximos Desastres, National Aeronautics and Space Administration (NASA). 2021. Available online: https://www.nasa.gov/es/tras-los-hist%c3%b3ricos-huracanes-eta-e-iota-la-nasa-ayuda-a-preparar-a-centroam%c3%a9rica-para-los-pr%c3%b3ximos-desastres/ (accessed on 23 May 2024).
- Bernet, M.; Acosta, L.T. Rising sea level and increasing tropical cyclone frequency are threatening the population of San Andrés Island, Colombia, western Caribbean. BSGF—Earth Sci. Bull. 2022, 193, 4. [Google Scholar] [CrossRef]
- Bernal, G.; Osorio, A.F.; Urrego, L.; Peláez, D.; Molina, E.; Zea, S.; Montoya, R.D.; Villegas, N. Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems. J. Mar. Syst. 2016, 164, 85–100. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.N. Risk assessment as tool for coastal erosion management. Ocean Coast Manag. 2020, 186, 105099. [Google Scholar] [CrossRef]
- Cueto, J.E.; Díaz, L.J.O.; Ospino-Ortiz, S.R.; Torres-Freyermuth, A. The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions. Nat. Hazards Earth Syst. Sci. 2022, 22, 713–728. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; de Lopez, M.V.; Noguera-Oviedo, K.M. Shorelines in Colombia (South America). In Sea Level Rise, Coastal Engineering, Shorelines and Tides; Wright, L.L., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 139–153. [Google Scholar]
- Orejarena-Rondón, A.F.; Sayol, J.M.; Marcos, M.; Otero, L.; Restrepo, J.C.; Hernández-Carrasco, I.; Orfila, A. Coastal Impacts Driven by Sea-Level Rise in Cartagena de Indias. Front. Mar. Sci. 2019, 6, 614. [Google Scholar] [CrossRef]
- Barrantes-Castillo, G.; Ortega-Otárola, K. Coastal erosion and accretion on the Caribbean coastline of Costa Rica long-term observations. J. S. Am. Earth Sci. 2023, 127, 104371. [Google Scholar] [CrossRef]
- Lizano, O.G. La dinámica oceanográfica frente al Humedal Nacional Térraba-Sierpe y su relación con la muerte del mangler. Rev. Biol. Trop. 2016, 63, 29–46. [Google Scholar] [CrossRef]
- Martínez, C.; Grez, P.W.; Martín, R.A.; Acuña, C.E.; Torres, I.; Contreras-López, M. Coastal erosion in sandy beaches along a tectonically active coast: The Chile study case. Prog. Phys. Geogr. 2021, 46, 250–271. [Google Scholar] [CrossRef]
- Martínez, C.; Contreras-López, M.; Winckler, P.; Hidalgo, H.; Godoy, E.; Agredano, R. Coastal erosion in central Chile: A new hazard? Ocean Coast. Manag. 2018, 156, 141–155. [Google Scholar] [CrossRef]
- Igualt, F.; Breuer, W.A.; Contreras-López, M.; Martínez, C. Effects of climate change on the urban tourist and coastal area of Viña del Mar: Survey of damage for flooding by storm surge and perception of security. Rev. 180 2019, 44, 120–133. [Google Scholar] [CrossRef]
- Winckler, P.; Martín, R.A.; Esparza, C.; Melo, O.; Sactic, M.I.; Martínez, C. Projections of Beach Erosion and Associated Costs in Chile. Sustainability 2023, 15, 5883. [Google Scholar] [CrossRef]
- Clara, M.L.; Simionato, C.G.; D’Onofrio, E.; Fiore, M.; Moreira, D. Variability of tidal constants in the Río de la Plata estuary associated to the natural cycles of the runoff. Estuar. Coast. Shelf Sci. 2014, 148, 85–96. [Google Scholar] [CrossRef]
- Codignotto, J.O.; Dragani, W.C.; Martin, P.B.; Simionato, C.G.; Medina, R.A.; Alonso, G. Wind-wave climate change and increasing erosion in the outer Río de la Plata, Argentina. Cont. Shelf Res. 2012, 38, 110–116. [Google Scholar] [CrossRef]
- Isla, F.I.; Cortizo, L.; Merlotto, A.; Bértola, G.; Albisetti, M.P.; Finocchietti, C. Erosion in Buenos Aires province: Coastal-management policy revisited. Ocean Coast. Manag. 2018, 156, 107–116. [Google Scholar] [CrossRef]
- Merlotto, A.; Bértola, G.R.; Isla, F.I.; Cortizo, L.C.; Piccolo, M.C. Short and medium-term coastal evolution of Necochea Municipality, Buenos Aires province, Argentina. Environ. Earth Sci. 2014, 71, 1213–1225. [Google Scholar] [CrossRef]
- Gutiérrez, O.; Panario, D.; Nagy, G.J.; Bidegain, M.; Montes, C. Climate teleconnections and indicators of coastal systems response. Ocean Coast. Manag. 2016, 122, 64–76. [Google Scholar] [CrossRef]
- De Souza, M.C.; Angulo, R.J. Decadal and Inter-annual Variations of Shoreline and Beach Volumes in Itapoá (Santa Catarina, Brazil). J. Coast. Res. 2003, 19, 202–208. [Google Scholar]
- Carvalho, B.C.; Dalbosco, A.L.P.; Guerra, J.V. Shoreline position change and the relationship to annual and interannual meteo-oceanographic conditions in Southeastern Brazil. Estuar. Coast. Shelf Sci. 2020, 235, 106582. [Google Scholar] [CrossRef]
- Dutra, F.R.L.S.; Cirano, M.; Bittencourt, A.C.S.P.; Tanajura, C.A.S.; Lima, M. Meteorological tides and episodes of severe coastal erosion on the coast of Salvador, Bahia state, Brazil. Rev. Bras. Geofísica 2014, 32, 615–636. [Google Scholar] [CrossRef]
- Sondermann, M.; Chou, S.C.; de Souza, C.R.G.; Rodrigues, J.; Caprace, J.D. Atmospheric patterns favourable to storm surge events on the coast of São Paulo State. Brazil. Nat. Hazards 2023, 117, 93–111. [Google Scholar] [CrossRef]
- De Mahiques, M.M.; Siegle, E.; Alcántara-Carrió, J.; Silva, F.G.; de Oliveira Sousa, P.H.G.; Martins, C.C. The Beaches of the State of São Paulo. In Brazilian Beach Systems, Coastal Research Library; Short, A.D., da F, A.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 397–418. [Google Scholar]
- Orlando, L.; Ortega, L.; Defeo, O. Multi-decadal variability in sandy beach area and the role of climate forcing. Estuar. Coast. Shelf Sci. 2019, 218, 197–203. [Google Scholar] [CrossRef]
- Genes, L.S.; Montoya, R.D.; Osorio, A.F. Costal sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea. Cont. Shelf Res. 2021, 228, 104489. [Google Scholar] [CrossRef]
- Godwyn-Paulson, P.; Jonathan, M.P.; Roy, P.D.; Rodríguez-Espinosa, P.F.; Muthusankar, G.; Muñoz-Sevilla, N.P.; Lakshumanan, C. Evolution of southern Mexican Pacific coastline: Responses to meteo-oceanographic and physiographic conditions. Reg. Stud. Mar. Sci. 2021, 47, 101914. [Google Scholar] [CrossRef]
- Vallarino Castillo, R.; Negro Valdecantos, V.; Moreno Blasco, L. Shoreline Change Analysis Using Historical Multispectral Landsat Images of the Pacific Coast of Panama. J. Mar. Sci. Eng. 2022, 10, 1801. [Google Scholar] [CrossRef]
- Muñoz, A.; Mendoza, L.; Guzmán, E.; Ramos, C. Analysis of Coastline Evolution using Landsat and Sentinel 2 Images from 2001 to 2020 in Callao Bay, Peru. In International Conference on Geographical Information Systems Theory, Applications and Management, GISTAM—Proceedings, Science and Technology Publications; Science and Technology Publications, Lda: Setúbal, Portugal, 2022; pp. 115–122. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- CHW platform—Deltares, Coastal Hazard Wheel App, (n.d.). Available online: https://chw-app.coastalhazardwheel.org/ (accessed on 25 May 2023).
- Pernetta, J.C.; Elder, D.L. Climate, Sea Level Rise and the Coastal Zonei Management and Planning for Global Changes*. Ocean. Coast Manag. 1992, 18, 113–160. [Google Scholar] [CrossRef]
- Short, A.D.; Klein, A.H.d.F. Brazilian beach systems: Review and overview. In Brazilian Beach Systems, Coastal Research Library; Springer: Berlin/Heidelberg, Germany, 2016; pp. 573–608. [Google Scholar] [CrossRef]
- Fernández-Díaz, V.Z.; Turriza, R.A.C.; Castilla, A.K.; Hinojosa-Huerta, O. Loss of coastal ecosystem services in Mexico: An approach to economic valuation in the face of sea level rise. Front. Mar. Sci. 2022, 9, 898904. [Google Scholar] [CrossRef]
- Filho, L.N.L.M.; Roebeling, P.C.; Costa, L.F.C.; de Lima, L.T. Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development. Ecosyst. Serv. 2022, 58, 101492. [Google Scholar] [CrossRef]
- Olsen, W.S.; Figueiredo, S.A.; Albuquerque, M.D.G.; Calliari, L.J. The Role of Local Geomorphology Influencing Coastal Response to Sea Level Rise. J. Coast. Res. 2018, 85, 311–315. [Google Scholar] [CrossRef]
- Toimil, A.; Camus, P.; Losada, I.J.; Le Cozannet, G.; Nicholls, R.J.; Idier, D.; Maspataud, A. Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. Earth Sci. Rev. 2020, 202, 103110. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed]
- Hagen, I.; Huggel, C.; Ramajo, L.; Chacón, N.; Ometto, J.P.; Postigo, J.C.; Castellanos, E.J. Climate change-related risks and adaptation potential in Central and South America during the 21st century. Environ. Res. Lett. 2022, 17, 033002. [Google Scholar] [CrossRef]
- Lipp, D.O. The impact of the increase of the level of the sea in the argentine coastal areas. Current evidence and future scenarios. In Extreme Weather Events and Human Health: International Case Studies; Akhtar, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–376. [Google Scholar] [CrossRef]
- Brown, S.; Nicholls, R.J.; Woodroffe, C.D.; Hanson, S.; Hinkel, J.; Kebede, A.S.; Neumann, B.; Vafeidis, A.T. Sea-level rise impacts and responses: A global perspective. In Coastal Hazards, Coastal Research Library; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–149. [Google Scholar] [CrossRef]
- Small, C.; Gornitz, V.; Cohen, J.E. Coastal Hazards and the Global Distribution of Human Population. Environ. Geosci. 2000, 7, 3–12. [Google Scholar] [CrossRef]
- Guido-Aldana, P.; Ramírez-Camperos, A.; Godínez-Orta, L.; Cruz-León, S.; Juárez-León, A. Estudio de La Erosión Costera En Cancún y La Riviera Maya, México. Av. En Recur. Hidraúlicos 2009, 20, 41–56. [Google Scholar]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Barragán-Muñoz, J.M. Progress of Coastal Management in Latin America and the Caribbean. Ocean Coast. Manag. 2020, 184, 105009. [Google Scholar] [CrossRef]
- Simpson, M.C.; Clarke, C.S.L.M.; Clarke, J.D.; Scott, D.; Clarke, A.J.; Bank, D. Coastal Setbacks in Latin America and the Caribbean A Study of Emerging Issues and Trends That Inform Guidelines for Coastal Planning and Development; Inter American Development Bank (IDB): New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Narváez, D.H.; Cabrera, A.V.; Bornachera, A.Z.; Sierra-Correa, P.C. Climate Change and Socioeconomic Impacts on the Colombian Coastal and Insular Area. Bol. Investig. Mar. Y Costeras 2019, 48, 9–32. [Google Scholar]
- Ministerio de Ambiente de Panamá—Wetlands International Panamá Diagnóstico de La Situación de Pérdida de La Línea Costera y Su Impacto En Los Medios de Vida de La Comunidad de Garachiné, Distrito de Chepigana, Provincia de Darién. 2020. Available online: https://lac.wetlands.org/caso/proyecto-diagnostico-de-la-situacion-de-la-perdida-de-la-linea-costera-y-su-impacto-en-los-medios-de-vida-de-la-comunidad-de-garachine-distrito-de-chepigana-provincia-de-darien/ (accessed on 20 June 2024).
- McLeman, R.A. Climate and Human Migration: Past Experiences, Future Challenges; Wilfrid Laurier University: Waterloo, ON, Canada, 2013; ISBN 9781139136938. [Google Scholar]
- González-Riancho, P.; Aguirre-Ayerbe, I.; García-Aguilar, O.; Medina, R.; González, M.; Aniel-Quiroga, I.; Gutiérrez, O.Q.; Álvarez-Gómez, J.A.; Larreynaga, J.; Gavidia, F. Integrated Tsunami Vulnerability and Risk Assessment: Application to the Coastal Area of El Salvador. Nat. Hazards Earth Syst. Sci. 2014, 14, 1223–1244. [Google Scholar] [CrossRef]
- Milliman, J.D. Coral reefs and their response to global climate change. In Climatic Change in the Intra-Americas Sea: Implications of Future Climate on the Ecosystems and Socio-Economic Structure in the Marine and Coastal Regions of the Caribbean Sea, Gulf of Mexico, Bahamas, and the Northeast Coast of South America; Maul, G.A., Ed.; United Nations Environment Programme and Intergovernmental Oceanographic Commission: Nairobi, Kenya, 1993; pp. 306–321. [Google Scholar]
- CNN Threatened by Rising Seas, the First of Panama’s Indigenous Islanders Are Forced to Leave. Available online: https://edition.cnn.com/interactive/2024/06/climate/panama-climate-refugees-guna-rising-seas-cnnphotos/ (accessed on 20 June 2024).
- Gracia, A.; Rangel-Buitrago, N.; Oakley, J.A.; Williams, A.T. Use of Ecosystems in Coastal Erosion Management. Ocean Coast. Manag. 2018, 156, 277–289. [Google Scholar] [CrossRef]
- Ciantelli, C.; Palazzi, E.; Von Hardenberg, J.; Vaccaro, C.; Tittarelli, F.; Bonazza, A. How Can Climate Change Affect the UNESCO Cultural Heritage Sites in Panama? Geosciences 2018, 8, 296. [Google Scholar] [CrossRef]
- Miller, F.; Bowen, K. Questioning the Assumptions: The Role of Vulnerability Assessments in Climate Change Adaptation. Impact Assess. Proj. Apprais. 2013, 31, 190–197. [Google Scholar] [CrossRef]
- Schilderman, T. Adapting Traditional Shelter for Disaster Mitigation and Reconstruction: Experiences with Community-Based Approaches. Build. Res. Inf. 2004, 32, 414–426. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Buckley, E.N.; Aston, J.; Nicholls, R.J. Coastal Adaptation. IPCC: Special Report on Methodological and Technological Issues in Technology Transfer. In Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000; pp. 349–372. [Google Scholar]
- Romieu, E.; Welle, T.; Schneiderbauer, S.; Pelling, M.; Vinchon, C. Vulnerability Assessment within Climate Change and Natural Hazard Contexts: Revealing Gaps and Synergies through Coastal Applications. Sustain. Sci. 2010, 5, 159–170. [Google Scholar] [CrossRef]
- Lam, N.S.-N.; Qiang, Y.; Arenas, H.; Brito, P.; Liu, K. Mapping and Assessing Coastal Resilience in the Caribbean Region. Cartogr. Geogr. Inf. Sci. 2015, 42, 315–322. [Google Scholar] [CrossRef]
- Silva, R.; Lithgow, D.; Esteves, L.S.; Martínez, M.L.; Moreno-Casasola, P.; Martell, R.; Pereira, P.; Mendoza, E.; Campos-Cascaredo, A.; Grez, W.; et al. Coastal Risk Mitigation by Green Infrastructure in Latin America. Proc. Inst. Civ. Eng.—Marit. Eng. 2017, 170, 39–54. [Google Scholar] [CrossRef]
- Martínez, C.; Rojas, D.; Quezada, M.; Quezada, J.; Oliva, R. Post-Earthquake Coastal Evolution and Recovery of an Embayed Beach in Central-Southern Chile. Geomorphology 2015, 250, 321–333. [Google Scholar] [CrossRef]
- De Lima, A.D.S.; Scherer, M.E.G.; Gandra, T.B.R.; Bonetti, J. Exploring the Contribution of Climate Change Policies to Integrated Coastal Zone Management in Brazil. Mar. Policy 2022, 143, 105180. [Google Scholar] [CrossRef]
- Merlotto, A.; Bértola, G.R.; Piccolo Hazard, M.C. Vulnerability and Coastal Erosion Risk Assessment in Necochea Municipality, Buenos Aires Province, Argentina. J. Coast. Conserv. 2016, 20, 351–362. [Google Scholar] [CrossRef]
- Rojas, M.L.; Recalde, M.Y.; London, S.; Perillo, G.M.E.; Zilio, M.I.; Piccolo, M.C. Behind the Increasing Erosion Problem: The Role of Local Institutions and Social Capital on Coastal Management in Argentina. Ocean Coast. Manag. 2014, 93, 76–87. [Google Scholar] [CrossRef]
- Godoy, M.D.P.; De Lacerda, L.D. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution. An. Acad. Bras. Cienc. 2015, 87, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Barragán, J.M.; Lazo, Ó. Policy Progress on ICZM in Peru. Ocean Coast. Manag. 2018, 157, 203–216. [Google Scholar] [CrossRef]
- Álvarez-Cuesta, M.; Losada, I.J.; Toimil, A. A Nearshore Evolution Model for Sandy Coasts: IH-LANSloc. Environ. Model. Softw. 2023, 169, 105827. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P. Can Beaches Survive Climate Change? J. Geophys. Res. Earth Surf. 2017, 122, 1060–1067. [Google Scholar] [CrossRef]
- Vitousek, S.; Vos, K.; Splinter, K.D.; Erikson, L.; Barnard, P.L. A Model Integrating Satellite-Derived Shoreline Observations for Predicting Fine-Scale Shoreline Response to Waves and Sea-Level Rise Across Large Coastal Regions. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006936. [Google Scholar] [CrossRef]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The Future of Coastal Monitoring through Satellite Remote Sensing. Camb. Prism. Coast. Futures 2023, 1, e10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallarino-Castillo, R.; Negro-Valdecantos, V.; del Campo, J.M. A Systematic Review of Oceanic-Atmospheric Variations and Coastal Erosion in Continental Latin America: Historical Trends, Future Projections, and Management Challenges. J. Mar. Sci. Eng. 2024, 12, 1077. https://doi.org/10.3390/jmse12071077
Vallarino-Castillo R, Negro-Valdecantos V, del Campo JM. A Systematic Review of Oceanic-Atmospheric Variations and Coastal Erosion in Continental Latin America: Historical Trends, Future Projections, and Management Challenges. Journal of Marine Science and Engineering. 2024; 12(7):1077. https://doi.org/10.3390/jmse12071077
Chicago/Turabian StyleVallarino-Castillo, Ruby, Vicente Negro-Valdecantos, and José María del Campo. 2024. "A Systematic Review of Oceanic-Atmospheric Variations and Coastal Erosion in Continental Latin America: Historical Trends, Future Projections, and Management Challenges" Journal of Marine Science and Engineering 12, no. 7: 1077. https://doi.org/10.3390/jmse12071077
APA StyleVallarino-Castillo, R., Negro-Valdecantos, V., & del Campo, J. M. (2024). A Systematic Review of Oceanic-Atmospheric Variations and Coastal Erosion in Continental Latin America: Historical Trends, Future Projections, and Management Challenges. Journal of Marine Science and Engineering, 12(7), 1077. https://doi.org/10.3390/jmse12071077