MEvo-GAN: A Multi-Scale Evolutionary Generative Adversarial Network for Underwater Image Enhancement
Abstract
:1. Introduction
2. Related Work
2.1. Underwater Image Enhancement
2.2. Genetic Algorithms with GAN
3. Proposed Method
3.1. Generators and Discriminators
3.2. Genetic Algorithm
Algorithm 1 The algorithm of MEvo-GAN |
|
3.3. Loss Functions
- (1)
- Adversarial loss is primarily used to train the generator and discriminator, enabling the generator to create realistic target-domain images and allowing the discriminator to distinguish between generated and real images. The loss function for the generator G is expressed as follows:
- (2)
- Cycle consistency loss ensures that an image, after being transformed by the generator then reversed back, maintains its original form. This helps the generator learn the mapping between the source and target domains and prevents mode collapse. Cycle consistency loss consists of two parts—for transformations from the source to target domain and vice versa.
- (3)
- Identity consistency loss ensures that the input image retains its own characteristics after being transformed by the generator, i.e., the input and generated images are similar to a certain extent. This helps reduce information loss during image transformation.
- (4)
- To further improve image quality, perceptual loss is introduced to reduce detail loss, improve image blur, and make enhanced images more realistic. The VGG network is trained on large-scale datasets such as ImageNet, making it visually perceptive for feature extraction. The use of VGG loss ensures that the generated images are visually perceived to be consistent with the real images, thus enhancing the subjective quality of the images.
4. Experimental Results and Analysis
4.1. Datasets
4.2. Training Details
4.3. Comparison of Visual Quality of Enhancement
4.4. Multi-Scale Visualization
4.5. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Liang, Z.; Zhang, W.; Ruan, R.; Zhuang, P.; Xie, X.; Li, C. Underwater image quality improvement via color, detail, and contrast restoration. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 1726–1742. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Chiang, J.Y.; Chen, Y.C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef]
- Drews, P.L.; Nascimento, E.R.; Botelho, S.S.; Campos, M.F.M. Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 2016, 36, 24–35. [Google Scholar] [CrossRef]
- Peng, Y.T.; Cosman, P.C. Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Li, N.; Zhuang, P.; Li, K.; Sun, H.; Li, C. Non-uniform illumination underwater image restoration via illumination channel sparsity prior. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 799–814. [Google Scholar] [CrossRef]
- Yao, X.; He, F.; Wang, B. Deep learning-based recurrent neural network for underwater image enhancement. In Proceedings of the Sixth Conference on Frontiers in Optical Imaging and Technology: Imaging Detection and Target Recognition, Nanjing, China, 30 April 2024; Volume 13156, pp. 368–378. [Google Scholar]
- Zhang, M.; Li, Y.; Yu, W. Underwater Image Enhancement Algorithm Based on Adversarial Training. Electronics 2024, 13, 2184. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, H.; Zhang, Y.; Pan, M.; Li, Z.; Liu, J.; Lv, S. An underwater image enhancement method for a preprocessing framework based on generative adversarial network. Sensors 2023, 23, 5774. [Google Scholar] [CrossRef]
- Guo, Y.; Li, H.; Zhuang, P. Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 2019, 45, 862–870. [Google Scholar] [CrossRef]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 2017, 3, 387–394. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, H. Single image deraining using a recurrent multi-scale aggregation and enhancement network. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 1378–1383. [Google Scholar]
- Li, Q.Z.; Bai, W.X.; Niu, J. Underwater image color correction and enhancement based on improved cycle-consistent generative adversarial networks. Acta Autom. Sin. 2023, 49, 820–829. [Google Scholar]
- Cong, R.; Yang, W.; Zhang, W.; Li, C.; Guo, C.L.; Huang, Q.; Kwong, S. Pugan: Physical model-guided underwater image enhancement using gan with dual-discriminators. IEEE Trans. Image Process. 2023, 32, 4472–4485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, L.; Wang, Z.; Lin, Y.; Jin, Y. Generation-based joint luminance-chrominance learning for underwater image quality assessment. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 1123–1139. [Google Scholar] [CrossRef]
- Li, K.; Fan, H.; Qi, Q.; Yan, C.; Sun, K.; Wu, Q.J. TCTL-Net: Template-free Color Transfer Learning for Self-Attention Driven Underwater Image Enhancement. IEEE Trans. Circuits Syst. Video Technol. 2023. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Yao, X.; Tao, D. Evolutionary Generative Adversarial Networks. IEEE Trans. Evol. Comput. 2019, 23, 921–934. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xia, B.; You, X.; Peng, Q.; Cao, Z.; Ding, W. CDE-GAN: Cooperative dual evolution-based generative adversarial network. IEEE Trans. Evol. Comput. 2021, 25, 986–1000. [Google Scholar] [CrossRef]
- Mu, J.; Zhou, Y.; Cao, S.; Zhang, Y.; Liu, Z. Enhanced evolutionary generative adversarial networks. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 7534–7539. [Google Scholar]
- He, C.; Huang, S.; Cheng, R.; Tan, K.C.; Jin, Y. Evolutionary multiobjective optimization driven by generative adversarial networks (GANs). IEEE Trans. Cybern. 2020, 51, 3129–3142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, L. High-quality face image generation using particle swarm optimization-based generative adversarial networks. Future Gener. Comput. Syst. 2021, 122, 98–104. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Zhang, J.; Fu, Z.; Zhou, A.; Qi, J.; Li, Z. EvoGAN: An evolutionary computation assisted GAN. Neurocomputing 2022, 469, 81–90. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.; Neri, F. A method based on evolutionary algorithms and channel attention mechanism to enhance cycle generative adversarial network performance for image translation. Int. J. Neural Syst. 2023, 33, 2350026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, L.; Zhang, C.; Shi, H.; Li, H. GMA-DRSNs: A novel fault diagnosis method with global multi-attention deep residual shrinkage networks. Measurement 2022, 196, 111203. [Google Scholar] [CrossRef]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2794–2802. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Nagarajan, V.; Kolter, J.Z. Gradient descent GAN optimization is locally stable. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [PubMed]
- Yuzhen, L.; Meiyi, L.; Sen, L.; Zhiyong, T. Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network. J. Comput.-Aided Des. Comput. Graph. 2023, 35, 685–695. [Google Scholar]
- Islam, M.J.; Luo, P.; Sattar, J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. arXiv 2020, arXiv:2002.01155. [Google Scholar]
- Saleh, A.; Sheaves, M.; Jerry, D.; Azghadi, M.R. Adaptive uncertainty distribution in deep learning for unsupervised underwater image enhancement. arXiv 2022, arXiv:2212.08983. [Google Scholar]
- Han, J.; Shoeiby, M.; Malthus, T.; Botha, E.; Anstee, J.; Anwar, S.; Wei, R.; Petersson, L.; Armin, M.A. Single underwater image restoration by contrastive learning. In Proceedings of the 2021 IEEE iNternational Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2385–2388. [Google Scholar]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef]
- Naik, A.; Swarnakar, A.; Mittal, K. Shallow-uwnet: Compressed model for underwater image enhancement (student abstract). In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 15853–15854. [Google Scholar]
- Ren, T.; Xu, H.; Jiang, G.; Yu, M.; Luo, T. Reinforced swin-convs transformer for underwater image enhancement. arXiv 2022, arXiv:2205.00434. [Google Scholar]
- Fabbri, C.; Islam, M.J.; Sattar, J. Enhancing underwater imagery using generative adversarial networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7159–7165. [Google Scholar]
- Peng, W.; Zhou, C.; Hu, R.; Cao, J.; Liu, Y. RAUNE-Net: A Residual and Attention-Driven Underwater Image Enhancement Method. arXiv 2023, arXiv:2311.00246. [Google Scholar]
Method | UIEBD | EUVP | UFO-120 | ||||||
---|---|---|---|---|---|---|---|---|---|
Metric | PSNR | SSIM | UCIQE | PSNR | SSIM | UCIQE | PSNR | SSIM | UCIQE |
UGAN | 19.4947 | 0.7496 | 0.6476 | 19.6102 | 0.8131 | 0.6169 | 23.1764 | 0.7959 | 0.6487 |
WaterNet | 21.1659 | 0.8290 | 0.6414 | 19.4398 | 0.8492 | 0.6628 | 19.6768 | 0.7704 | 0.6373 |
FunieGAN | 16.3028 | 0.7045 | 0.6434 | 20.3005 | 0.7721 | 0.6451 | 23.4593 | 0.7959 | 0.6487 |
CWR | 16.8157 | 0.7451 | 0.5334 | 16.2670 | 0.6820 | 0.6230 | 16.3482 | 0.6120 | 0.6346 |
Shallow-UWnet | 16.9228 | 0.6857 | 0.5457 | 18.9380 | 0.8288 | 0.5367 | 22.2391 | 0.7796 | 0.5682 |
UDnet | 18.3965 | 0.7959 | 0.5509 | 20.0486 | 0.8251 | 0.5594 | 19.4468 | 0.7560 | 0.6206 |
URSCT | 17.8031 | 0.6609 | 0.5432 | 17.1730 | 0.8114 | 0.4231 | 21.3893 | 0.7930 | 0.4314 |
RAUnet | 22.9179 | 0.8148 | 0.6467 | 19.9144 | 0.8092 | 0.5809 | 24.0392 | 0.8224 | 0.5961 |
Ours | 21.2758 | 0.8662 | 0.6597 | 20.0502 | 0.8255 | 0.6727 | 19.4011 | 0.7989 | 0.7001 |
Model | PSNR | SSIM | UCIQE |
---|---|---|---|
−w/o multiscale network | 19.0107 | 0.7950 | 0.6053 |
−w/o Evo mechanism | 20.0486 | 0.8352 | 0.5694 |
−w/o VGG loss | 20.8675 | 0.8251 | 0.6420 |
MEvo-GAN | 21.2758 | 0.8662 | 0.6597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, F.; Liu, P.; Shao, Z.; Xu, J.; Fang, M. MEvo-GAN: A Multi-Scale Evolutionary Generative Adversarial Network for Underwater Image Enhancement. J. Mar. Sci. Eng. 2024, 12, 1210. https://doi.org/10.3390/jmse12071210
Fu F, Liu P, Shao Z, Xu J, Fang M. MEvo-GAN: A Multi-Scale Evolutionary Generative Adversarial Network for Underwater Image Enhancement. Journal of Marine Science and Engineering. 2024; 12(7):1210. https://doi.org/10.3390/jmse12071210
Chicago/Turabian StyleFu, Feiran, Peng Liu, Zhen Shao, Jing Xu, and Ming Fang. 2024. "MEvo-GAN: A Multi-Scale Evolutionary Generative Adversarial Network for Underwater Image Enhancement" Journal of Marine Science and Engineering 12, no. 7: 1210. https://doi.org/10.3390/jmse12071210
APA StyleFu, F., Liu, P., Shao, Z., Xu, J., & Fang, M. (2024). MEvo-GAN: A Multi-Scale Evolutionary Generative Adversarial Network for Underwater Image Enhancement. Journal of Marine Science and Engineering, 12(7), 1210. https://doi.org/10.3390/jmse12071210