Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Data Processing and Analysis
- Backbone (CSPDarknet53): This component is responsible for extracting relevant features from the input images at different scales. The CSPDarknet53 architecture has proven highly effective in feature extraction for object detection tasks.
- Neck (Path Aggregation Network, PAN): This network combines the features extracted by the backbone at different scales, thereby enabling better detection of objects of various sizes. YOLOv8 utilizes a modified PAN structure to optimize this process.
- Head: This component performs final detection and segmentation predictions. In the case of YOLOv8l-seg, the head has two branches: one for object detection, predicting bounding boxes and object classes; and another for instance segmentation, generating accurate segmentation masks for each detected object.
3. Results
3.1. Model Performance Evaluation
3.2. Coral Cover Comparison between Study Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). International Guidelines for the Management of Deep-Sea Fisheries in the High Seas; FAO: Rome, Italy, 2009; p. 73. [Google Scholar]
- Sundahl, H.; Buhl-Mortensen, P.; Buhl-Mortensen, L. Distribution and Suitable Habitat of the Cold-Water Corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian Continental Shelf. Front. Mar. Sci. 2020, 7, 213. [Google Scholar] [CrossRef]
- D’Onghia, G.; Maiorano, P.; Carlucci, R.; Capezzuto, F.; Carluccio, A.; Tursi, A.; Sion, L. Comparing Deep-Sea Fish Fauna between Coral and Non-Coral “Megahabitats” in the Santa Maria Di Leuca Cold-Water Coral Province (Mediterranean Sea). PLoS ONE 2012, 7, e44509. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.-A.; Navas, J.M.; Hennige, S.J.; Wicks, L.C.; Vad, J.; Murray Roberts, J. Cold-Water Coral Reef Habitats Benefit Recreationally Valuable Sharks. Biol. Conserv. 2013, 161, 67–70. [Google Scholar] [CrossRef]
- Henry, L.-A.; Stehmann, M.F.W.; De Clippele, L.; Findlay, H.S.; Golding, N.; Roberts, J.M. Seamount Egg-Laying Grounds of the Deep-Water Skate Bathyraja richardsoni: DEEP-WATER BATHYRAJA RICHARDSONI EGG-LAYING GROUNDS. J. Fish Biol. 2016, 89, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Buhl-Mortensen, L.; Vanreusel, A.; Gooday, A.J.; Levin, L.A.; Priede, I.G.; Buhl-Mortensen, P.; Gheerardyn, H.; King, N.J.; Raes, M. Biological Structures as a Source of Habitat Heterogeneity and Biodiversity on the Deep Ocean Margins. Mar. Ecol. 2010, 31, 21–50. [Google Scholar] [CrossRef]
- Orejas, C.; Gori, A.; Rad-Menéndez, C.; Last, K.S.; Davies, A.J.; Beveridge, C.M.; Sadd, D.; Kiriakoulakis, K.; Witte, U.; Roberts, J.M. The Effect of Flow Speed and Food Size on the Capture Efficiency and Feeding Behaviour of the Cold-Water Coral Lophelia Pertusa. J. Exp. Mar. Biol. Ecol. 2016, 481, 34–40. [Google Scholar] [CrossRef]
- Cordes, E.E.; Demopoulos, A.W.J.; Davies, A.J.; Gasbarro, R.; Rhoads, A.C.; Lobecker, E.; Sowers, D.; Chaytor, J.D.; Morrison, C.L.; Weinnig, A.M.; et al. Expanding Our View of the Cold-Water Coral Niche and Accounting of the Ecosystem Services of the Reef Habitat. Sci. Rep. 2023, 13, 19482. [Google Scholar] [CrossRef]
- Henry, L.-A.; Roberts, J.M. Global Biodiversity in Cold-Water Coral Reef Ecosystems. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Rossi, S., Bramanti, L., Gori, A., Orejas, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 235–256. [Google Scholar] [CrossRef]
- Rowden, A.A.; Schlacher, T.A.; Williams, A.; Clark, M.R.; Stewart, R.; Althaus, F.; Bowden, D.A.; Consalvey, M.; Robinson, W.; Dowdney, J. A Test of the Seamount Oasis Hypothesis: Seamounts Support Higher Epibenthic Megafaunal Biomass than Adjacent Slopes. Mar. Ecol. 2010, 31, 95–106. [Google Scholar] [CrossRef]
- Fernandez-Arcaya, U.; Ramirez-Llodra, E.; Aguzzi, J.; Allcock, A.L.; Davies, J.S.; Dissanayake, A.; Harris, P.; Howell, K.; Huvenne, V.A.I.; Macmillan-Lawler, M.; et al. Ecological Role of Submarine Canyons and Need for Canyon Conservation: A Review. Front. Mar. Sci. 2017, 4, 5. [Google Scholar] [CrossRef]
- Bourque, J.R.; Demopoulos, A.W.J. The Influence of Different Deep-Sea Coral Habitats on Sediment Macrofaunal Community Structure and Function. PeerJ 2018, 6, e5276. [Google Scholar] [CrossRef]
- Oevelen, D.; Duineveld, G.; Lavaleye, M.; Mienis, F.; Soetaert, K.; Heip, C. The Cold-Water Coral Community as Hotspot of Carbon Cycling on Continental Margins: A Food-Web Analysis from Rockall Bank (Northeast Atlantic). Limnol. Oceanogr. 2009, 54, 1829–1844. [Google Scholar] [CrossRef]
- Ríos, P.; Altuna, Á.; Frutos, I.; Manjón-Cabeza, E.; García-Guillén, L.; Macías-Ramírez, A.; Ibarrola, T.P.; Gofas, S.; Taboada, S.; Souto, J.; et al. Avilés Canyon System: Increasing the Benthic Biodiversity Knowledge. Estuar. Coast. Shelf Sci. 2022, 274, 107924. [Google Scholar] [CrossRef]
- Pinheiro, M.; Martins, I.; Raimundo, J.; Caetano, M.; Neuparth, T.; Santos, M.M. Stressors of Emerging Concern in Deep-Sea Environments: Microplastics, Pharmaceuticals, Personal Care Products and Deep-Sea Mining. Sci. Total Environ. 2023, 876, 162557. [Google Scholar] [CrossRef] [PubMed]
- Morato, T.; González-Irusta, J.-M.; Dominguez-Carrió, C.; Wei, C.-L.; Davies, A.; Sweetman, A.K.; Taranto, G.H.; Beazley, L.; García-Alegre, A.; Grehan, A.; et al. Climate-Induced Changes in the Suitable Habitat of Cold-Water Corals and Commercially Important Deep-Sea Fishes in the North Atlantic. Glob. Chang. Biol. 2020, 26, 2181–2202. [Google Scholar] [CrossRef]
- Weinnig, A.M.; Gómez, C.E.; Hallaj, A.; Cordes, E.E. Cold-Water Coral (Lophelia Pertusa) Response to Multiple Stressors: High Temperature Affects Recovery from Short-Term Pollution Exposure. Sci. Rep. 2020, 10, 1768. [Google Scholar] [CrossRef]
- Maier, S.R.; Bannister, R.J.; van Oevelen, D.; Kutti, T. Seasonal Controls on the Diet, Metabolic Activity, Tissue Reserves and Growth of the Cold-Water Coral Lophelia Pertusa. Coral Reefs 2020, 39, 173–187. [Google Scholar] [CrossRef]
- Beijbom, O.; Edmunds, P.J.; Roelfsema, C.; Smith, J.; Kline, D.I.; Neal, B.P.; Dunlap, M.J.; Moriarty, V.; Fan, T.-Y.; Tan, C.-J.; et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 2015, 10, e0130312. [Google Scholar] [CrossRef]
- Nawarathne, M.; Kumari, H.M.L.S.; Herath Mudiyanselage, N. Comparative Analysis of Jellyfish Classification: A Study Using YOLOv8 and Pre-Trained Models. In Proceedings of the 2024 International Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, 4 April 2024; p. 6. [Google Scholar] [CrossRef]
- Li, J.; Xu, W.; Deng, L.; Xiao, Y.; Han, Z.; Zheng, H. Deep Learning for Visual Recognition and Detection of Aquatic Animals: A Review. Rev. Aquac. 2023, 15, 409–433. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Li, P.; Dai, L.; Wang, T.; Chen, Z. Boosting R-CNN: Reweighting R-CNN Samples by RPN’s Error for Underwater Object Detection. Neurocomputing 2023, 530, 150–164. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Terven, J.; Cordova-Esparza, D. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Clark, H.P.; Smith, A.G.; Fletcher, D.M.; Larsson, A.I.; Jaspars, M.; Clippele, L.H.D. New Interactive Machine Learning Tool for Marine Image Analysis. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Basalo, A.; Sánchez, F.; Punzón, A.; Gómez-Ballesteros, M. Updating the Master Management Plan for El Cachucho MPA (Cantabrian Sea) Using a Spatial Planning Approach. Cont. Shelf Res. 2019, 184, 54–65. [Google Scholar] [CrossRef]
- Gómez-Ballesteros, M.; Druet Vélez, M.; Muñoz, A.; Arrese-González, B.; Rivera, J.; Sánchez-Delgado, F.; Cristobo, J.; Parra-Descalzo, S.; García-Alegre, A.; González-Pola, C.; et al. Geomorphology of the Avilés Canyon System, Cantabrian Sea (BayofBiscay). Deep.-Sea Res. Part II Top. Stud. Oceanogr. 2014, 106, 99–117. [Google Scholar] [CrossRef]
- Altuna, Á.; Ríos, P. Scleractinia (Cnidaria: Anthozoa) from INDEMARES 2010–2012 Expeditions to the Avilés Canyon System (Bay of Biscay, Spain, Northeast Atlantic). Helgol. Mar. Res. 2014, 68, 399–430. [Google Scholar] [CrossRef]
- García-Alegre, A.; Sánchez, F.; Gómez-Ballesteros, M.; Hinz, H.; Serrano, A.; Parra, S. Modelling and Mapping the Local Distribution of Representative Species on the Le Danois Bank, El Cachucho Marine Protected Area (Cantabrian Sea). Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 106, 151–164. [Google Scholar] [CrossRef]
- Price, D.M.; Robert, K.; Callaway, A.; Lo Lacono, C.; Hall, R.A.; Huvenne, V.A.I. Using 3D Photogrammetry from ROV Video to Quantify Cold-Water Coral Reef Structural Complexity and Investigate Its Influence on Biodiversity and Community Assemblage. Coral Reefs 2019, 38, 1007–1021. [Google Scholar] [CrossRef]
- Sánchez, F.; Rodríguez, J.M. POLITOLANA, a New Low Cost Towed Vehicle Designed for the Characterization of the Deep-Sea Floor. Instrum. Viewp. 2013, 15, 69. [Google Scholar]
- Martín-García, L.; Prado, E.; Falcón, J.M.; González Porto, M.; Punzón, A.; Martín-Sosa, P. Population Structure of Asconema Setubalense Kent, 1870 at Concepción Seamount, Canary Islands (Spain). Methodological Approach Using Non-Invasive Techniques. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 2022, 185, 103775. [Google Scholar] [CrossRef]
- Gayá-Vilar, A.; Cobo, A.; Abad-Uribarren, A.; Rodríguez, A.; Sierra, S.; Clemente, S.; Prado, E. High-Resolution Density Assessment Assisted by Deep Learning of Dendrophyllia Cornigera (Lamarck, 1816) and Phakellia Ventilabrum (Linnaeus, 1767) in Rocky Circalittoral Shelf of Bay of Biscay. PeerJ 2024, 12, e17080. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023. [Google Scholar] [CrossRef]
- Prado, E.; Rodríguez-Basalo, A.; Cobo, A.; Ríos, P.; Sánchez, F. 3D Fine-Scale Terrain Variables from Underwater Photogrammetry: A New Approach to Benthic Microhabitat Modeling in a Circalittoral Rocky Shelf. Remote Sens. 2020, 12, 2466. [Google Scholar] [CrossRef]
- Somoza, L.; Ercilla, G.; Urgorri, V.; León, R.; Medialdea, T.; Paredes, M.; Gonzalez, F.J.; Nombela, M.A. Detection and Mapping of Cold-Water Coral Mounds and Living Lophelia Reefs in the Galicia Bank, Atlantic NW Iberia Margin. Mar. Geol. 2014, 349, 73–90. [Google Scholar] [CrossRef]
- Vinha, B.; Murillo, F.J.; Schumacher, M.; Hansteen, T.H.; Schwarzkopf, F.U.; Biastoch, A.; Kenchington, E.; Piraino, S.; Orejas, C.; Huvenne, V.A.I. Ensemble Modelling to Predict the Distribution of Vulnerable Marine Ecosystems Indicator Taxa on Data-Limited Seamounts of Cabo Verde (NW Africa). Divers. Distrib. 2024, 30, e13896. [Google Scholar] [CrossRef]
- Prado, E.; Abad-Uribarren, A.; Ramo, R.; Sierra, S.; González-Pola, C.; Cristobo, J.; Ríos, P.; Graña, R.; Aierbe, E.; Rodríguez, J.M.; et al. Describing Polyps Behavior of a Deep-Sea Gorgonian, Placogorgia Sp., Using a Deep-Learning Approach. Remote Sens. 2023, 15, 2777. [Google Scholar] [CrossRef]
- Šiaulys, A.; Vaičiukynas, E.; Medelytė, S.; Buškus, K. Coverage Estimation of Benthic Habitat Features by Semantic Segmentation of Underwater Imagery from South-Eastern Baltic Reefs Using Deep Learning Models. Oceanologia 2024, 66, 286–298. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Deng, J.; Guo, F.; Yue, L.; Sun, J.; Zhang, Y.; Hou, X. Visibility Enhancement of Underwater Images Based on Polarization Common-Mode Rejection of a Highly Polarized Target Signal. Opt. Express 2022, 30, 43973–43986. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Chang, L.; Li, H.; Zhang, W.; Frery, A.C.; Ren, P. INSPIRATION: A Reinforcement Learning-Based Human Visual Perception-Driven Image Enhancement Paradigm for Underwater Scenes. Eng. Appl. Artif. Intell. 2024, 133, 108411. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.K.; Chu, C.H.; Zhang, J.; Leng, B.; Yamaguchi, T.; Tanaka, T.; Tsai, D.P. Underwater Binocular Meta-Lens. ACS Photonics 2023, 10, 2382–2389. [Google Scholar] [CrossRef]
Validation | Precision (P) | Recall (R) | mAP50 | mAP50-95 |
---|---|---|---|---|
Cross-validation (B) | 0.784 | 0.703 | 0.781 | 0.544 |
Cross-validation (M) | 0.784 | 0.694 | 0.769 | 0.508 |
Independent validation | 0.839 | 0.749 | 0.833 | 0.601 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gayá-Vilar, A.; Abad-Uribarren, A.; Rodríguez-Basalo, A.; Ríos, P.; Cristobo, J.; Prado, E. Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8. J. Mar. Sci. Eng. 2024, 12, 1617. https://doi.org/10.3390/jmse12091617
Gayá-Vilar A, Abad-Uribarren A, Rodríguez-Basalo A, Ríos P, Cristobo J, Prado E. Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8. Journal of Marine Science and Engineering. 2024; 12(9):1617. https://doi.org/10.3390/jmse12091617
Chicago/Turabian StyleGayá-Vilar, Alberto, Alberto Abad-Uribarren, Augusto Rodríguez-Basalo, Pilar Ríos, Javier Cristobo, and Elena Prado. 2024. "Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8" Journal of Marine Science and Engineering 12, no. 9: 1617. https://doi.org/10.3390/jmse12091617
APA StyleGayá-Vilar, A., Abad-Uribarren, A., Rodríguez-Basalo, A., Ríos, P., Cristobo, J., & Prado, E. (2024). Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8. Journal of Marine Science and Engineering, 12(9), 1617. https://doi.org/10.3390/jmse12091617