Water Injection for Cloud Cavitation Suppression: Analysis of the Effects of Injection Parameters
Abstract
:1. Introduction
2. Research Object
2.1. Hydrofoil and Jet Configuration
2.2. Computational Domain and Mesh Arrangement
3. Numerical Method and Validation
3.1. Governing Equation and Turbulence Model
3.2. Cavitation Model
3.3. Calculation Setup, Uncertainty Analysis and Validation of Numerical Results
4. Setup of Orthogonal Test Method
5. Results and Discussion
5.1. Analysis of Orthogonal Results
5.2. Cavitation Suppression Performance (σ = 0.83)
5.3. Energy Performance and Pressure Distribution
5.4. Influence Mechanism of Injection Parameters on Flow Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Wu, Q.; Huang, B. Dynamics of Cavitation–Structure Interaction. Acta Mech. Sin./Lixue Xuebao 2017, 33, 685–708. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Huang, Z. Numerical Study on Cavitation-Vortex-Noise Correlation Mechanism and Dynamic Mode Decomposition of a Hydrofoil. Phys. Fluids 2022, 34, 125105. [Google Scholar] [CrossRef]
- Long, Y.; Long, X.; Ji, B. LES Investigation of Cavitating Flows around a Sphere with Special Emphasis on the Cavitation–Vortex Interactions. Acta Mech. Sin./Lixue Xuebao 2020, 36, 1238–1257. [Google Scholar] [CrossRef]
- Peters, A.; Sagar, H.; Lantermann, U.; el Moctar, O. Numerical Modelling and Prediction of Cavitation Erosion. Wear 2015, 338–339, 189–201. [Google Scholar] [CrossRef]
- Qiu, N.; Zhou, W.; Che, B.; Wu, D.; Wang, L.; Zhu, H. Effects of Microvortex Generators on Cavitation Erosion by Changing Periodic Shedding into New Structures. Phys. Fluids 2020, 32, 104108. [Google Scholar] [CrossRef]
- Kawasaki, S.; Shimura, T.; Uchiumi, M.; Iga, Y. One-Dimensional Analysis Method for Cavitation Instabilities of a Rotating Machinery. J. Fluids Eng. Trans. ASME 2018, 140, 021113. [Google Scholar] [CrossRef]
- Bai, X.; Cheng, H.; Ji, B. LES Investigation of the Noise Characteristics of Sheet and Tip Leakage Vortex Cavitating Flow. Int. J. Multiph. Flow 2022, 146, 103880. [Google Scholar] [CrossRef]
- Gropper, D.; Wang, L.; Harvey, T.J. Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings. Tribol. Int. 2016, 94, 509–529. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Liu, M.; Ji, X. Influence of Water Injection on Broadband Noise and Hydrodynamic Performance for a NACA66 (MOD) Hydrofoil under Cloud Cavitation Condition. Appl. Ocean. Res. 2021, 115, 102858. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Ji, X.; Wang, X. Investigation of Water Injection Influence on Cloud Cavitating Vortical Flow for a Naca66 (Mod) Hydrofoil. Energies 2021, 14, 5973. [Google Scholar] [CrossRef]
- Che, B.; Wu, D. Study on Vortex Generators for Control of Attached Cavitation. Am. Soc. Mech. Eng. Fluids Eng. Div. (Publ.) FEDSM 2017, 58042, V01AT03A026. [Google Scholar] [CrossRef]
- Che, B.; Chu, N.; Cao, L.; Schmidt, S.J.; Likhachev, D.; Wu, D. Control Effect of Micro Vortex Generators on Attached Cavitation Instability. Phys. Fluids 2019, 31, 064102. [Google Scholar] [CrossRef]
- Che, B.; Cao, L.; Chu, N.; Likhachev, D.; Wu, D. Effect of Obstacle Position on Attached Cavitation Control through Response Surface Methodology. J. Mech. Sci. Technol. 2019, 33, 4265–4279. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.; Shao, X. Inhibition of Cloud Cavitation on a Flat Hydrofoil through the Placement of an Obstacle. Ocean. Eng. 2018, 155, 1–9. [Google Scholar] [CrossRef]
- Kadivar, E.; el Moctar, O.; Javadi, K. Stabilization of Cloud Cavitation Instabilities Using Cylindrical Cavitating-Bubble Generators (CCGs). Int. J. Multiph. Flow 2019, 115, 108–125. [Google Scholar] [CrossRef]
- Kadivar, E.; Timoshevskiy, M.V.; Pervunin, K.S.; el Moctar, O. Cavitation Control Using Cylindrical Cavitating-Bubble Generators (CCGs): Experiments on a Benchmark CAV2003 Hydrofoil. Int. J. Multiph. Flow 2020, 125, 103186. [Google Scholar] [CrossRef]
- Kadivar, E.; Lin, Y.; el Moctar, O. Experimental Investigation of the Effects of Cavitation Control on the Dynamics of Cavitating Flows around a Circular Cylinder. Ocean. Eng. 2023, 286, 115634. [Google Scholar] [CrossRef]
- Kadivar, E.; Dawoodian, M.; Lin, Y.; el Moctar, O. Experiments on Cavitation Control around a Cylinder Using Biomimetic Riblets. J. Mar. Sci. Eng. 2024, 12, 293. [Google Scholar] [CrossRef]
- Lin, Y.; Kadivar, E.; el Moctar, O.; Schellin, T.E. Experimental Investigation of Partial and Cloud Cavitation Control on a Hydrofoil Using Bio-Inspired Riblets. Phys. Fluids 2024, 36, 053338. [Google Scholar] [CrossRef]
- Kadivar, E.; el Moctar, O.; Sagar, H.J. Experimental Study of the Influence of Mesoscale Surface Structuring on Single Bubble Dynamics. Ocean. Eng. 2022, 260, 111892. [Google Scholar] [CrossRef]
- Simanto, R.I.A.; Hong, J.W.; Kim, K.S.; Ahn, B.K.; Shin, S. Experimental Investigation on Cavitation and Induced Noise of Two-Dimensional Hydrofoils with Leading-Edge Protuberances. Phys. Fluids 2022, 34, 124115. [Google Scholar] [CrossRef]
- Chen, J.; Hu, C.; Zhang, M.; Huang, B.; Zhang, H. Experimental Investigation into Passive Control Effect of Micro Vortex Generator at Various Cavitation Conditions. Ocean. Eng. 2022, 260, 111734. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Ji, B.; Long, X.P.; Huai, W.X.; Farhat, M. A Review of Cavitation in Tip-Leakage Flow and Its Control. J. Hydrodyn. 2021, 33, 226–242. [Google Scholar] [CrossRef]
- Cheng, H.; Long, X.; Ji, B.; Peng, X.; Farhat, M. Suppressing Tip-Leakage Vortex Cavitation by Overhanging Grooves. Exp. Fluids 2020, 61, 159. [Google Scholar] [CrossRef]
- Amini, A.; Reclari, M.; Sano, T.; Iino, M.; Farhat, M. Suppressing Tip Vortex Cavitation by Winglets. Exp Fluids 2019, 60, 159. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Zhao, X.; Cheng, H.; Ji, B. LES Investigation of the Wavy Leading Edge Effect on Cavitation Noise. Ultrason. Sonochem. 2024, 103, 106780. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Shi, L.; Shen, X.; Zhang, D.; van Esch, B.P.M. Research on the Suppression Mechanism of a Tip Leakage Vortex over a Hydrofoil with Double-Control-Hole Structure. Ocean. Eng. 2024, 293, 116610. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Chang, Z.; Huang, B.; Wu, D. A Lagrangian Analysis of Partial Cavitation Growth and Cavitation Control Mechanism. Phys. Fluids 2022, 34, 113329. [Google Scholar] [CrossRef]
- Qiu, N.; Zhu, H.; Che, B.; Zhou, W.; Bai, Y.; Wang, C. Interaction Mechanism between Cloud Cavitation and Micro Vortex Flows. Ocean. Eng. 2024, 297, 117004. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, L. Influence of C Groove on Suppressing Vortex and Cavitation for a NACA0009 Hydrofoil with Tip Clearance in Tidal Energy. Renew Energy 2020, 148, 907–922. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, L. Method of C Groove on Vortex Suppression and Energy Performance Improvement for a NACA0009 Hydrofoil with Tip Clearance in Tidal Energy. Energy 2018, 155, 448–461. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Chang, H.; Fu, X.; Wang, H.; Qin, D. Suppression Effect of Bionic Guide Vanes with Different Parameters on the Hump Characteristics of Pump-Turbines Based on Entropy Production Theory. Energy 2023, 283, 128650. [Google Scholar] [CrossRef]
- Pang, S.; Zhu, B.; Shen, Y.; Chen, Z. Study on Suppression of Cavitating Vortex Rope on Pump-Turbines by J-Groove. Appl. Energy 2024, 360, 122843. [Google Scholar] [CrossRef]
- Zhai, S.; Huang, H.; Zhang, H.; Liu, D. Study on the Application of Vortex Generator to Suppress Ship Propeller Cavitation Excitation. Ships Offshore Struct. 2024, 1–12. [Google Scholar] [CrossRef]
- Sun, S.; Zhi, Y.; Li, X.; Guo, Z. Numerical Investigation on Cavitating Wake Dynamic of a Propeller with Bionic Tubercle Leading-Edge. Ocean. Eng. 2022, 252, 111240. [Google Scholar] [CrossRef]
- Timoshevskiy, M.V.; Zapryagaev, I.I. Generation of a Wall Jet to Control Unsteady Cavitation over a 2D Hydrofoil: Visualization and Hydroacoustic Signal Analysis. J. Phys. Conf. Ser. 2017, 899, 032021. [Google Scholar] [CrossRef]
- Timoshevskiy, M.V.; Zapryagaev, I.I.; Pervunin, K.S.; Markovich, D.M. Cavitation Control on a 2D Hydrofoil through a Continuous Tangential Injection of Liquid: Experimental Study. AIP Conf. Proc. 2016, 1770, 030026. [Google Scholar] [CrossRef]
- Timoshevskiy, M.V.; Zapryagaev, I.I.; Pervunin, K.S.; Markovich, D.M. Cavitating Flow Control through Continuous Tangential Mass Injection on a 2D Hydrofoil at a Small Attack Angle. MATEC Web Conf. 2016, 84, 00039. [Google Scholar] [CrossRef]
- Chang, N.; Ganesh, H.; Yakushiji, R.; Ceccio, S.L. Tip Vortex Cavitation Suppression by Active Mass Injection. J. Fluids Eng. Trans. ASME 2011, 133, 111301. [Google Scholar] [CrossRef]
- Lee, C.S.; Ahn, B.K.; Han, J.M.; Kim, J.H. Propeller Tip Vortex Cavitation Control and Induced Noise Suppression by Water Injection. J. Mar. Sci. Technol. 2018, 23, 453–463. [Google Scholar] [CrossRef]
- de Giorgi, M.G.; Ficarella, A.; Fontanarosa, D. Active Control of Unsteady Cavitating Flows in Turbomachinery. Proceedings of the ASME Turbo Expo 2019, 58554, V02AT45A027. [Google Scholar] [CrossRef]
- Maltsev, L.I.; Dimitrov, V.D.; Milanov, E.M.; Zapryagaev, I.I.; Timoshevskiy, M.V.; Pervunin, K.S. Jet Control of Flow Separation on Hydrofoils: Performance Evaluation Based on Force and Torque Measurements. J. Eng. Thermophys. 2020, 29, 424–442. [Google Scholar] [CrossRef]
- Wang, W.; Yi, Q.; Lu, S.; Wang, X. Exploration and Research of the Impact of Hydrofoil Surface Water Injection on Cavitation Suppression. In Proceedings of the Volume 2D: Turbomachinery; American Society of Mechanical Engineers, Charlotte, NC, USA, 26–30 June 2017; Volume 2D-2017. pp. 1–8. [Google Scholar]
- Lu, S.P.; Wang, W.; Hou, T.; Zhang, M.; Jiao, J.; Zhang, Q.; Wang, X.F. Experiment Research on Cavitation Control by Active Injection. In Proceedings of the 10th International Symposium on Cavitation (CAV2018), Baltimore, MD, USA, 14–16 May 2018; pp. 363–368. [Google Scholar]
- Gu, Y.; Yin, Z.; Yu, S.; He, C.; Wang, W.; Zhang, J.; Wu, D.; Mou, J.; Ren, Y. Suppression of Unsteady Partial Cavitation by a Bionic Jet. Int. J. Multiph. Flow 2023, 164, 104466. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Wang, F. Suppression of Hydrofoil Unsteady Cavitation by Periodic Jets Based on Fish Gill Respiration. Ocean. Eng. 2024, 293, 116584. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Cao, S. Cavitation-Vortex-Turbulence Interaction and One-Dimensional Model Prediction of Pressure for Hydrofoil ALE15 by Large Eddy Simulation. J. Fluids Eng. Trans. ASME 2018, 141, 021103. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Li, X.; Zhu, Z. Multiscale Modeling of Tip-Leakage Cavitating Flows by a Combined Volume of Fluid and Discrete Bubble Model. Phys. Fluids 2021, 33, 062104. [Google Scholar] [CrossRef]
- Li, L.; Jiang, B.; Wei, G.; Li, X.; Zhu, Z. Multiscale Multiphase Flow Simulations Using Interface Capturing and Lagrangian Particle Tracking. Phys. Fluids 2022, 34, 121801. [Google Scholar] [CrossRef]
- Li, F.; Huang, Q.; Pan, G.; Shi, Y. Effect of Hydrofoil Leading Edge Waviness on Hydrodynamic Performance and Flow Noise. Ocean. Eng. 2021, 231, 108883. [Google Scholar] [CrossRef]
- Li, F.; Huang, Q.; Pan, G.; Shi, Y. Numerical Study on Hydrodynamic Performance and Flow Noise of a Hydrofoil with Wavy Leading-Edge. AIP Adv. 2021, 11, 095105. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Roohi, E. Large Eddy Simulation of Cavitating Flow around a Pitching Hydrofoil. Ocean. Eng. 2024, 292, 116547. [Google Scholar] [CrossRef]
- Alavi, A.; Roohi, E. Large Eddy Simulations of Cavitation around a Pitching-Plunging Hydrofoil. Phys. Fluids 2023, 35, 125102. [Google Scholar] [CrossRef]
- Yu, A.; Ji, B.; Huang, R.F.; Zhang, Y.; Zhang, Y.N.; Luo, X.W. Cavitation Shedding Dynamics around a Hydrofoil Simulated Using a Filter-Based Density Corrected Model. Sci. China Technol. Sci. 2015, 58, 864–869. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Long, X.P.; Ji, B.; Liu, Q.; Bai, X.R. 3-D Lagrangian-Based Investigations of the Time-Dependent Cloud Cavitating Flows around a Clark-Y Hydrofoil with Special Emphasis on Shedding Process Analysis. J. Hydrodyn. 2018, 30, 122–130. [Google Scholar] [CrossRef]
- Long, X.; Cheng, H.; Ji, B.; Arndt, R.E.A. Numerical Investigation of Attached Cavitation Shedding Dynamics around the Clark-Y Hydrofoil with the FBDCM and an Integral Method. Ocean. Eng. 2017, 137, 247–261. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Tan, L. Method of Variable-Depth Groove on Vortex and Cavitation Suppression for a NACA0009 Hydrofoil with Tip Clearance in Tidal Energy. Renew Energy 2022, 199, 546–559. [Google Scholar] [CrossRef]
- Wang, W.; Tang, T.; Zhang, Q.D.; Wang, X.F.; An, Z.Y.; Tong, T.H.; Li, Z.J. Effect of Water Injection on the Cavitation Control:Experiments on a NACA66 (MOD) Hydrofoil. Acta Mech. Sin./Lixue Xuebao 2020, 36, 999–1017. [Google Scholar] [CrossRef]
- Leroux, J.B.; Astolfi, J.A.; Billard, J.Y. An Experimental Study of Unsteady Partial Cavitation. J. Fluids Eng. Trans. ASME 2004, 126, 94–101. [Google Scholar] [CrossRef]
- Leroux, J.B.; Coutier-Delgosha, O.; Astolfi, J.A. A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil. Physics of Fluids 2005, 17, 052101. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wan, D. Numerical Simulations of Cavitation Flows around Clark-Y Hydrofoil. J. Appl. Math. Phys. 2019, 7, 1660–1676. [Google Scholar] [CrossRef]
- Liu, D.M.; Liu, S.H.; Wu, Y.L.; Xu, H.Y. LES Numerical Simulation of Cavitation Bubble Shedding on ALE 25 and ALE 15 Hydrofoils. J. Hydrodyn. 2009, 21, 807–813. [Google Scholar] [CrossRef]
- Long, Y.; Long, X.P.; Ji, B.; Huai, W.X.; Qian, Z.D. Verification and Validation of URANS Simulations of the Turbulent Cavitating Flow around the Hydrofoil. J. Hydrodyn. 2017, 29, 610–620. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, L.; Wu, J.; Li, Z.; Wang, W. Simulation Study on Active Cavitation Suppression for a Typical Hydrofoil. J. Phys. Conf. Ser. 2023, 2441, 012043. [Google Scholar] [CrossRef]
- Luo, X.; Ji, B.; Peng, X.; Xu, H.; Nishi, M. Numerical Simulation of Cavity Shedding from a Three-Dimensional Twisted Hydrofoil and Induced Pressure Fluctuation by Large-Eddy Simulation. J. Fluids Eng. Trans. ASME 2012, 134, 041202. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.W.; Arndt, R.E.A.; Peng, X.; Wu, Y. Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure around a NACA66 Hydrofoil. Int. J. Multiph. Flow 2015, 68, 121–134. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Cao, S. Dynamic Mode Decomposition of Cavitating Flow around ALE 15 Hydrofoil. Renew Energy 2019, 139, 214–227. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Liu, Y.; Xu, Y.; Cao, S. Large Eddy Simulation of Cavitation Vortex Interaction and Pressure Fluctuation around Hydrofoil ALE 15. Ocean. Eng. 2018, 163, 264–274. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Ji, X.; Wang, X.; Wang, Y. Loading Noise Induced by Cavitating Flow and Its Simplified Model Prediction. Ocean. Eng. 2023, 280, 114584. [Google Scholar] [CrossRef]
- Zhao, M.S.; Zhao, W.W.; Wan, D.C. Numerical Simulations of Propeller Cavitation Flows Based on OpenFOAM. J. Hydrodyn. 2020, 32, 1071–1079. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Yu, B.; Ren, Y.; Chen, B. Calculation of Cavitation Evolution and Associated Turbulent Kinetic Energy Transport around a NACA66 Hydrofoil. J. Mech. Sci. Technol. 2019, 33, 1231–1241. [Google Scholar] [CrossRef]
- Li, D.Q.; Grekula, M.; Lindell, P. Towards Numerical Prediction of Unsteady Sheet Cavitation on Hydrofoils. J. Hydrodyn. 2010, 22, 741–746. [Google Scholar] [CrossRef]
- Coutier-Delgosha, O.; Fortes-Patella, R.; Reboud, J.L. Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation. J. Fluids Eng. Trans. ASME 2003, 125, 38–45. [Google Scholar] [CrossRef]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A Two-Phase Flow Model for Predicting Cavitation Dynamics. In Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan, 30 May–4 June 2004; Volume 152, p. 152. [Google Scholar]
- Xing, T.; Stern, F. Factors of Safety for Richardson Extrapolation. J. Fluids Eng. Trans. ASME 2010, 132, 0614031–0640313. [Google Scholar] [CrossRef]
- Wilson, R.; Shao, J.; Stern, F. Discussion: Criticisms of the “Correction Factor” Verification Method. J. Fluids Eng. 2004, 126, 704–706. [Google Scholar] [CrossRef]
- Stern, F.; Wilson, R.V.; Coleman, H.W.; Paterson, E.G. Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures. J. Fluids Eng. 2001, 123, 793–802. [Google Scholar] [CrossRef]
- Roache, P. Verification and Validation in Computational Science and Engineering; Hermosa: Albuquerque, NM, USA, 1998. [Google Scholar]
- Wang, B.; Lin, R.; Liu, D.; Xu, J.; Feng, B. Investigation of the Effect of Humidity at Both Electrode on the Performance of PEMFC Using Orthogonal Test Method. Int. J. Hydrogen Energy 2019, 44, 13737–13743. [Google Scholar] [CrossRef]
- Shi, G.; Li, H.; Liu, X.; Liu, Z.; Wang, B. Transport Performance Improvement of a Multiphase Pump for Gas–Liquid Mixture Based on the Orthogonal Test Method. Processes 2021, 9, 1402. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, H.; Zhou, L.; Liu, Z.; Zeng, Y. Optimization Design of the Unsmooth Bionic Structure of a Hydrofoil Leading Edge Based on the Grey–Taguchi Method. J. Eng. Marit. Environ. 2022, 237, 971–985. [Google Scholar] [CrossRef]
- Mohanta, D.K.; Sahoo, B.; Mohanty, A.M. Optimization of Process Parameter in AI7075 Turning Using Grey Relational, Desirability Function and Metaheuristics. Mater. Manuf. Process. 2023, 38, 1615–1625. [Google Scholar] [CrossRef]
- Yan, H.; Li, J.; Wu, M.; Xie, C.; Liu, C.; Qi, F. Study on the Influence of Active Jet Parameters on the Cavitation Performance of Clark-Y Hydrofoil. Ocean. Eng. 2022, 261, 111900. [Google Scholar] [CrossRef]
- Correction Ji, B.; Luo, X.; Arndt, R.E.A.; Wu, Y. Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics with Special Emphasis on Cavitation–Vortex Interaction. Ocean. Eng. 2014, 87, 64–77. [Google Scholar] [CrossRef]
Levels | Jet Angle αjet (°) Factor A | Jet Location Ljet (C) Factor B | Jet Velocity Ujet (m/s) Factor C |
---|---|---|---|
Level 1 | −60 | 0.19 | 2.60 |
Level 2 | −30 | 0.30 | 2.74 |
Level 3 | 0 | 0.45 | 2.89 |
Level 4 | +30 | 0.60 | 3.25 |
Level 5 | +60 | / | / |
Item | Total Number of Cells | Spanwise × Chordwise Nodes | Cells of Each Jet Hole |
---|---|---|---|
Original hydrofoil | 6,566,400 | 60 × 220 | / |
Jet hydrofoils | 13,828,200 | 92 × 270 | 3875 |
V1 | V2 | V3 | V4 | V5 | |
---|---|---|---|---|---|
UCF | 0.022 | 0.031 | 0.047 | 0.114 | 0.135 |
UFS | 0.017 | 0.035 | 0.048 | 0.092 | 0.103 |
UGCI | 0.035 | 0.042 | 0.056 | 0.089 | 0.122 |
Series | Jet Angle (°) | Jet Location (C) | Jet Velocity (m/s) | ηcav | ηeng |
---|---|---|---|---|---|
H01 | −60 | 0.19 | 2.60 | −37.71% | −4.62% |
H02 | −60 | 0.30 | 2.74 | −38.23% | −4.85% |
H03 | −60 | 0.45 | 2.89 | −38.34% | −8.94% |
H04 | −60 | 0.60 | 3.25 | −44.46% | −9.47% |
H05 | −30 | 0.19 | 3.25 | −47.18% | −4.77% |
H06 | −30 | 0.30 | 2.89 | −45.86% | −4.27% |
H07 | −30 | 0.45 | 2.74 | −42.94% | −4.78% |
H08 | −30 | 0.60 | 2.60 | −39.21% | −18.23% |
H09 | 0 | 0.19 | 2.89 | −49.09% | −3.69% |
H10 | 0 | 0.30 | 3.25 | −48.82% | −2.31% |
H11 | 0 | 0.45 | 2.60 | −42.34% | +1.33% |
H12 | 0 | 0.60 | 2.74 | −36.74% | −17.41% |
H13 | +30 | 0.19 | 2.74 | −47.51% | −3.12% |
H14 | +30 | 0.30 | 2.60 | −45.64% | +0.35% |
H15 | +30 | 0.45 | 3.25 | −48.38% | +2.28% |
H16 | +30 | 0.60 | 2.89 | −34.18% | +1.95% |
H17 | +60 | 0.19 | 2.60 | −48.78% | −0.41% |
H18 | +60 | 0.30 | 2.74 | −48.54% | +3.27% |
H19 | +60 | 0.45 | 2.89 | −46.12% | +5.59% |
H20 | +60 | 0.60 | 3.25 | −33.02% | +3.28% |
Levels | Jet Angle αjet Factor A | Jet Location Ljet Factor B | Jet Velocity Ujet Factor C |
---|---|---|---|
−39.69% | −46.05% | −42.74% | |
−43.80% | −45.42% | −42.79% | |
−44.25% | −43.62% | −42.72% | |
−43.93% | −37.52% | −44.37% | |
−44.12% | / | / | |
Rj | 4.56% | 8.53% | 1.65% |
Levels | Jet Angle αjet Factor A | Jet Location Ljet Factor B | Jet Velocity Ujet Factor C |
---|---|---|---|
−6.97% | −3.32% | −4.32% | |
−8.01% | −1.56% | −5.38% | |
−5.52% | −0.90% | −1.87% | |
0.37% | −7.98% | −2.20% | |
2.93% | / | / | |
Rj | 10.95% | 7.07% | 3.51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, Z.; Ji, X.; Wang, Y.; Wang, X. Water Injection for Cloud Cavitation Suppression: Analysis of the Effects of Injection Parameters. J. Mar. Sci. Eng. 2024, 12, 1277. https://doi.org/10.3390/jmse12081277
Wang W, Li Z, Ji X, Wang Y, Wang X. Water Injection for Cloud Cavitation Suppression: Analysis of the Effects of Injection Parameters. Journal of Marine Science and Engineering. 2024; 12(8):1277. https://doi.org/10.3390/jmse12081277
Chicago/Turabian StyleWang, Wei, Zhijian Li, Xiang Ji, Yun Wang, and Xiaofang Wang. 2024. "Water Injection for Cloud Cavitation Suppression: Analysis of the Effects of Injection Parameters" Journal of Marine Science and Engineering 12, no. 8: 1277. https://doi.org/10.3390/jmse12081277
APA StyleWang, W., Li, Z., Ji, X., Wang, Y., & Wang, X. (2024). Water Injection for Cloud Cavitation Suppression: Analysis of the Effects of Injection Parameters. Journal of Marine Science and Engineering, 12(8), 1277. https://doi.org/10.3390/jmse12081277