Strategy and Impact of Liner Shipping Schedule Recovery under ECA Regulation and Disruptive Events
Abstract
:1. Introduction
2. Literature Review
2.1. Schedule Recovery in Liner Shipping
2.2. Liner Ship Operations under ECA Regulations
3. Problem Description and Modeling
3.1. Problem Description
3.1.1. Liner Transportation Routes
3.1.2. Port Skipping Operations
3.1.3. Voyage Leg Path Selection
3.1.4. Sailing Time Distribution
3.2. Modeling
4. Solution Algorithm
4.1. The Solution to the Voyage Leg Path Decision
4.2. The Solution to the Port Skipping Decision
4.3. Bi-Objective Particle Swarm Optimization Algorithm
5. Case Study
5.1. Bi-Objective Function Value
5.2. Shipping Schedule Recovery Decision-Making
5.2.1. Speed Adjustment inside and outside ECA
5.2.2. Voyage Leg Paths and Port Skipping
5.3. Results Impact for Different Scenarios
5.3.1. Impact of Initial Delay Time
5.3.2. Impact of Port Skipping Penalty
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elmay, F.K.; Salah, K.; Jayaraman, R.; Omar, I.A. Using NFTs and Blockchain for Traceability and Auctioning of Shipping Containers and Cargo in Maritime Industry. IEEE Access 2022, 10, 124507–124522. [Google Scholar] [CrossRef]
- Rebelo, P. Green Shipping: A Legal Evaluation of the Contractual Mechanisms by Private Industry Actors to Achieve a Sectoral Transition. Ph.D. Thesis, University of London, London, UK, 2021. [Google Scholar]
- Elmi, Z.; Singh, P.; Meriga, V.K.; Goniewicz, K.; Borowska-Stefanska, M.; Wisniewski, S.; Dulebenets, M.A. Uncertainties in Liner Shipping and Ship Schedule Recovery: A State-of-the-Art Review. J. Mar. Sci. Eng. 2022, 10, 563. [Google Scholar] [CrossRef]
- Soltani, H.; Al-e-Hashem, S. Robust maritime disruption management with a combination of speedup, skip, and port swap strategies. Transp. Res. Part C-Emerg. Technol. 2023, 153, 104146. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.N.; Xu, L. Manufacturers’ emission-reduction investments in competing supply chains with Prisoner’s Dilemma: The economic and environmental impacts of Retailer(s) capital Constraint(s). Transp. Res. Part E-Logist. Transp. Rev. 2024, 187, 103602. [Google Scholar] [CrossRef]
- Jiang, R.; Zhao, L.J. Effects of IMO sulphur limits on the international shipping companys operations: From a game theory perspective. Comput. Ind. Eng. 2022, 173, 108707. [Google Scholar] [CrossRef]
- Sheng, D.; Meng, Q.; Li, Z.C. Optimal vessel speed and fleet size for industrial shipping services under the emission control area regulation. Transp. Res. Part C-Emerg. Technol. 2019, 105, 37–53. [Google Scholar] [CrossRef]
- Bergqvist, R.; Turesson, M.; Weddmark, A. Sulphur emission control areas and transport strategies -the case of Sweden and the forest industry. Eur. Transp. Res. Rev. 2015, 7, 10. [Google Scholar] [CrossRef]
- Dulebenets, M.A.; Pasha, J.; Abioye, O.F.; Kavoosi, M. Vessel scheduling in liner shipping: A critical literature review and future research needs. Flex. Serv. Manuf. J. 2021, 33, 43–106. [Google Scholar] [CrossRef]
- Christiansen, M.; Fagerholt, K.; Ronen, D. Ship routing and scheduling: Status and perspectives. Transp. Sci. 2004, 38, 1–18. [Google Scholar] [CrossRef]
- Christiansen, M.; Fagerholt, K.; Nygreen, B.; Ronen, D. Ship routing and scheduling in the new millennium. Eur. J. Oper. Res. 2013, 228, 467–483. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, S.A.A.; Andersson, H.; Thun, K. Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions. Transp. Sci. 2014, 48, 265–280. [Google Scholar] [CrossRef]
- Notteboom, T.E. The time factor in liner shipping services. Marit. Econ. Logist. 2006, 8, 19–39. [Google Scholar] [CrossRef]
- Svanberg, M.; Holm, H.; Cullinane, K. Assessing the Impact of Disruptive Events on Port Performance and Choice: The Case of Gothenburg. J. Mar. Sci. Eng. 2021, 9, 145. [Google Scholar] [CrossRef]
- Abioye, O.F.; Dulebenets, M.A.; Pasha, J.; Kavoosi, M. A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas. Energies 2019, 12, 2380. [Google Scholar] [CrossRef]
- Chang, C.H.; Xu, J.; Song, D.P. An analysis of safety and security risks in container shipping operations: A case study of Taiwan. Safety. Science 2014, 63, 168–178. [Google Scholar] [CrossRef]
- Notteboom, T.; Pallis, T.; Rodrigue, J.P. Disruptions and resilience in global container shipping and ports: The COVID-19 pandemic versus the 2008–2009 financial crisis. Marit. Econ. Logist. 2021, 23, 179–210. [Google Scholar] [CrossRef]
- Huang, L.L.; Tan, Y.; Guan, X. Hub-and-spoke network design for container shipping considering disruption and congestion in the post COVID-19 era. Ocean Coast. Manag. 2022, 225, 106230. [Google Scholar] [CrossRef]
- Wan, C.P.; Tao, J.L.; Yang, Z.L.; Zhang, D. Evaluating recovery strategies for the disruptions in liner shipping networks: A resilience approach. Int. J. Logist. Manag. 2022, 33, 389–409. [Google Scholar] [CrossRef]
- Brouer, B.D.; Dirksen, J.; Pisinger, D.; Plum, C.E.M.; Vaaben, B. The Vessel Schedule Recovery Problem (VSRP)—A MIP model for handling disruptions in liner shipping. Eur. J. Oper. Res. 2013, 224, 362–374. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, H.L.; Zhang, J.H. The impact of slow ocean steaming on delivery reliability and fuel consumption. Transp. Res. Part E-Logist. Transp. Rev. 2015, 76, 176–190. [Google Scholar] [CrossRef]
- Li, C.; Qi, X.T.; Song, D.P. Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events. Transp. Res. Part B-Methodol. 2016, 93, 762–788. [Google Scholar] [CrossRef]
- Xing, J.; Wang, Y. Disruption Management in Liner Shipping: A Service-Cost Trade-off Model for Vessel Schedule Recovery Problem. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019. [Google Scholar]
- Li, S.H.; Tang, L.; Liu, J.G.; Zhao, T.C.; Xiong, X.X. Vessel schedule recovery strategy in liner shipping considering expected disruption. Ocean Coast. Manag. 2023, 237, 106514. [Google Scholar] [CrossRef]
- Abadie, L.M.; Goicoechea, N. Powering newly constructed vessels to comply with ECA regulations under fuel market prices uncertainty: Diesel or dual fuel engine? Transp. Res. Part D-Transp. Environ. 2019, 67, 433–448. [Google Scholar] [CrossRef]
- Fan, L.X.; Gu, B.M.; Luo, M.F. A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case. Transp. Policy 2020, 99, 336–344. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Fan, Y.J.; Fagerholt, K.; Zhou, J.M. Reducing sulfur and nitrogen emissions in shipping economically. Transp. Res. Part D-Transp. Environ. 2021, 90, 102641. [Google Scholar] [CrossRef]
- Dulebenets, M.A. The green vessel scheduling problem with transit time requirements in a liner shipping route with Emission Control Areas. Alex. Eng. J. 2018, 57, 331–342. [Google Scholar] [CrossRef]
- Theocharis, D.; Rodrigues, V.S.; Pettit, S.; Haider, J. Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship size for the product tanker market. Transp. Res. Part E-Logist. Transp. Rev. 2019, 129, 111–135. [Google Scholar] [CrossRef]
- Li, L.Y.; Gao, S.X.; Yang, W.G.; Xiong, X. Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection. Transp. Res. Part E-Logist. Transp. Rev. 2020, 133, 101835. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Fan, Y.J.; Zhou, J.M.; Kuang, H.B. Bi-Objective Optimization of Vessel Speed and Route for Sustainable Coastal Shipping under the Regulations of Emission Control Areas. Sustainability 2019, 11, 6281. [Google Scholar] [CrossRef]
- Yang, B.; Zou, J. Optimization of Liner Operations and Fuel Selection considering Emission Control Areas. J. Environ. Public Health 2023, 2023, 6351337. [Google Scholar] [CrossRef]
- Tan, Z.J.; Liu, H.Y.; Shao, S.; Liu, J.G.; Chen, J.H. Efficiency of Chinese ECA policy on the coastal emission with evasion behavior of ships. Ocean Coast. Manag. 2021, 208, 105635. [Google Scholar] [CrossRef]
- Fagerholt, K.; Psaraftis, H.N. On two speed optimization problems for ships that sail in and out of emission control areas. Transp. Res. Part D-Transp. Environ. 2015, 39, 56–64. [Google Scholar] [CrossRef]
- Chen, L.Y.; Yip, T.L.; Mou, J.M. Provision of Emission Control Area and the impact on shipping route choice and ship emissions. Transp. Res. Part D-Transp. Environ. 2018, 58, 280–291. [Google Scholar] [CrossRef]
- Zhen, L.; Li, M.; Hu, Z.; Lv, W.Y.; Zhao, X. The effects of emission control area regulations on cruise shipping. Transp. Res. Part D-Transp. Environ. 2018, 62, 47–63. [Google Scholar] [CrossRef]
- Zhen, L.; Hu, Z.; Yan, R.; Dan, Z.G.; Wang, S.A. Route and speed optimization for liner ships under emission control policies. Transp. Res. Part C-Emerg. Technol. 2020, 110, 330–345. [Google Scholar] [CrossRef]
- Wen, X.; Chen, Q.; Yin, Y.Q.; Lau, Y.Y. Green Vessel Scheduling with Weather Impact and Emission Control Area Consideration. Mathematics 2023, 11, 4874. [Google Scholar] [CrossRef]
- Elmi, Z.; Li, B.K.; Fathollahi-Fard, A.M.; Tian, G.D.; Borowska-Stefanska, M.; Wisniewski, S.; Dulebenets, M.A. Ship schedule recovery with voluntary speed reduction zones and emission control areas. Transp. Res. Part D-Transp. Environ. 2023, 125, 103957. [Google Scholar] [CrossRef]
- Brouer, B.D.; Alvarez, J.F.; Plum, C.E.M.; Pisinger, D.; Sigurd, M.M. A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design. Transp. Sci. 2014, 48, 281–312. [Google Scholar] [CrossRef]
Author | ECA Regulations | Schedule Recovery | Port Skipping | Voyage Leg Path Selection | Speed Adjustment | Model |
---|---|---|---|---|---|---|
Chen et al. [35] | ✓ | ✘ | ✘ | ✓ | ✘ | Discrete Choice Model (DCM) |
Zhen et al. [36] | ✓ | ✘ | ✘ | ✘ | ✓ | Mixed Integer Programming |
Zhao et al. [31] | ✓ | ✘ | ✘ | ✓ | ✓ | Bi-objective Programming |
Zhen et al. [37] | ✓ | ✘ | ✘ | ✓ | ✓ | Bi-objective Mixed Integer Programming |
Abioye et al. [15] | ✘ | ✓ | ✓ | ✘ | ✓ | Mixed Integer Nonlinear Programming |
Wen et al. [38] | ✓ | ✘ | ✘ | ✓ | ✓ | Bi-objective Fuzzy Programming |
Li et al. [24] | ✘ | ✓ | ✓ | ✘ | ✓ | Mixed Integer Programming |
Elmi et al. [39] | ✓ | ✓ | ✓ | ✘ | ✓ | Multi-objective Programming |
This paper | ✓ | ✓ | ✓ | ✓ | ✓ | Bi-objective Programming |
Nested Traversal for Voyage Leg Path Decision. |
---|
|
Nested Traversal of Port Skipping Decision |
---|
|
Parameters | Value | Unit |
---|---|---|
ECA fuel price (MGO) [a] | 1280 | USD/ton |
Non-ECA fuel price [a] | 700 | USD/ton |
Ship rental fee [a] | 35,500 | USD/day |
Port loading fee [b] | 42 | USD/20 TEU |
Port unloading fee [b] | 42 | USD/20 TEU |
Port waiting fee per week [c] | 250–300 | USD/20 TEU |
Pilotage and port fees [b] | 2250 | USD |
Initial delay parameter | 24 | Hour |
Speed range parameter [a] | 15–25 | Knots |
Port late penalties [24] | 300–500 | USD/hour |
Ports | Container Types | Container Terminal Handling Charges/USD | ||
---|---|---|---|---|
20 TEU | 40 TEU | 45 TEU | ||
Shanghai | Dry Cargo Container | 76 | 116 | 143 |
Dangerous Goods Container | 98 | 152 | 186 | |
Refrigerated Container | 113 | 173 | ||
Ningbo | Dry Cargo Container | 77 | 120 | 174 |
Dangerous Goods Container | 145 | 225 | 331 | |
Refrigerated Container | 114 | 187 | ||
Guangdong | Dry Cargo Container | 109 | 170 | 221 |
Dangerous Goods Container | 148 | 257 | 325 | |
Refrigerated Container | 194 | 300 | ||
Fujian | Dry Cargo Container | 74 | 116 | 141 |
Dangerous Goods Container | 99 | 153 | 187 | |
Refrigerated Container | 81 | 125 |
Port | Average Demurrage Fee per Standard Container after a Week (USD/TEU) |
---|---|
Singapore | 240 |
Cai Mep | 240 |
Hongkong | 350 |
Shekou | 350 |
Ningbo | 600 |
Shanghai | 800 |
Busan | 240 |
Panama Canal | 240 |
Pareto Solution Number | Objective Function 1: Total Cost (Million USD) | Objective Function 2: Delay Degree (Hours) |
---|---|---|
1 | 3.70 | 7.68 |
95 | 3.35 | 23.91 |
Pareto Solution Number | Sailing Speed Inside ECA (Knots) | Sailing Speed Outside ECA (Knots) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
1 | 15.05 | 21.50 | 25.00 | 17.13 | 15.00 | - | 21.41 | 25.00 | 21.41 | 21.21 |
2 | 22.84 | 23.36 | 20.97 | 22.49 | 15.00 | - | 16.02 | 25.00 | 25.00 | 21.45 |
3 | 25.00 | 22.15 | 15.54 | 16.02 | 18.43 | - | 25.00 | 25.00 | 25.00 | 21.63 |
4 | 23.40 | 23.38 | 15.62 | 15.00 | 20.77 | - | 24.85 | 24.69 | 24.94 | 21.32 |
5 | 19.19 | 22.40 | 21.16 | 21.68 | 15.91 | - | 24.78 | 25.00 | 25.00 | 21.46 |
91 | 19.00 | 19.68 | 15.00 | 18.78 | 15.77 | - | 23.64 | 21.31 | 22.54 | 19.95 |
92 | 19.55 | 21.32 | 18.27 | 23.21 | 15.25 | - | 24.71 | 24.22 | 21.66 | 19.79 |
93 | 19.28 | 22.00 | 16.96 | 19.13 | 16.46 | - | 21.91 | 24.12 | 21.11 | 20.06 |
94 | 25.00 | 21.66 | 15.15 | 17.46 | 15.70 | - | 23.06 | 23.61 | 21.54 | 19.84 |
95 | 19.82 | 22.69 | 19.60 | 23.15 | 15.64 | - | 22.95 | 23.72 | 21.19 | 19.89 |
Average value | 20.81 | 22.01 | 17.98 | 19.41 | 16.39 | - | 22.83 | 23.81 | 22.94 | 20.66 |
Pareto Solution Number | Delay Degree (Hours) | Recovery Cost (Million USD) | Skipped Ports |
---|---|---|---|
1 | 7.68 | 3.71 | Xiamen |
2 | 7.82 | 3.61 | No |
3 | 8.36 | 3.60 | No |
4 | 8.51 | 3.58 | No |
5 | 8.57 | 3.57 | No |
91 | 23.45 | 3.35 | No |
92 | 23.56 | 3.35 | No |
93 | 23.68 | 3.35 | No |
94 | 23.91 | 3.35 | No |
95 | 23.91 | 3.35 | No |
Initial Delay Time (Hours) | Delay Degree (Hours) | Recovery Cost (Million USD) | Number of Pareto Effective Solutions | Number of Solutions Port Skipping | Percentage of Solutions Port Skipping |
---|---|---|---|---|---|
12 | 3.06–11.92 | 3.36–3.49 | 42 | 0 | 0% |
24 | 7.68–23.91 | 3.35–3.71 | 95 | 1 | 1% |
36 | 7.16–35.90 | 3.36–3.84 | 74 | 9 | 12% |
Port skipping Penalty (USD per Standard Container) | Delay Degree (Hours) | Recovery Cost (Million USD) | Number of Pareto Effective Solutions | Number of Solutions Port Skipping | Percentage of Solutions Port Skipping |
---|---|---|---|---|---|
140 | 7.16–23.94 | 3.40–3.49 | 47 | 41 | 87% |
175 | 7.16–23.67 | 3.44–3.66 | 31 | 14 | 45% |
210 | 7.68–23.91 | 3.35–3.71 | 95 | 1 | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhao, Y.; Yan, X.; Wang, M. Strategy and Impact of Liner Shipping Schedule Recovery under ECA Regulation and Disruptive Events. J. Mar. Sci. Eng. 2024, 12, 1405. https://doi.org/10.3390/jmse12081405
Zhou J, Zhao Y, Yan X, Wang M. Strategy and Impact of Liner Shipping Schedule Recovery under ECA Regulation and Disruptive Events. Journal of Marine Science and Engineering. 2024; 12(8):1405. https://doi.org/10.3390/jmse12081405
Chicago/Turabian StyleZhou, Jingmiao, Yuzhe Zhao, Xinran Yan, and Meican Wang. 2024. "Strategy and Impact of Liner Shipping Schedule Recovery under ECA Regulation and Disruptive Events" Journal of Marine Science and Engineering 12, no. 8: 1405. https://doi.org/10.3390/jmse12081405
APA StyleZhou, J., Zhao, Y., Yan, X., & Wang, M. (2024). Strategy and Impact of Liner Shipping Schedule Recovery under ECA Regulation and Disruptive Events. Journal of Marine Science and Engineering, 12(8), 1405. https://doi.org/10.3390/jmse12081405