Impact of Coastal Squeeze Induced by Erosion and Land Reclamation on Salt Marsh Wetlands
Abstract
:1. Introduction
2. Methods
2.1. Study Areas
2.2. Remote Sensing Analysis
3. Results
3.1. Changes in Artificial Coastlines
3.2. Changes in Water Boundary
3.3. Changes in Vegetation Front Edge
3.4. Salt Marsh Vegetation and Its Topographic Variations
4. Discussion
4.1. Response of Salt Marsh Vegetation to Coastal Erosion
4.1.1. Reduction in Salt Marsh Distribution Width
4.1.2. Decline in Elevation of Salt Marsh Edge
4.1.3. Increase in Slope Steepness of Salt Marsh Edge
4.2. Response of Salt Marsh Vegetation to Reclamation
4.2.1. Seaward Movement of Vegetation Front Edge
4.2.2. Reduction in Vegetation Area and Width
4.2.3. Changes in Plant Species Composition
4.3. Mitigation Strategies to Coastal Squeeze
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silliman, B.R. Salt marshes. Curr. Biol. 2014, 24, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Boorman, L.A. Salt Marsh Review: An Overview of Coastal Saltmarshes, Their Dynamic and Sensitivity Characteristics for Conservation and Management; JNCC Report; JNCC: Peterborough, UK, 2003. [Google Scholar]
- Fagherazzi, S.; FitzGerald, D.M.; Fulweiler, R.W.; Hughes, Z.; Wiberg, P.L.; McGlathery, K.J.; Morris, J.T.; Tolhurst, T.J.; Deegan, L.A.; Johnson, D.S.; et al. Ecogeomorphology of Salt Marshes. In Treatise on Geomorphology, 2nd ed.; Shroder, J.F., Ed.; Academic Press: Palm Bay, FL, USA, 2022; Volume 8, pp. 445–464. [Google Scholar]
- D’Alpaos, A. The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology 2011, 126, 269–278. [Google Scholar] [CrossRef]
- Silvestri, S.; Marani, M.; Marani, A. Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography. Phys. Chem. Earth Parts A/B/C 2003, 28, 15–25. [Google Scholar] [CrossRef]
- Pontee, N. Defining coastal squeeze: A discussion. Ocean Coast. Manag. 2013, 84, 204–207. [Google Scholar] [CrossRef]
- Leo, K.L.; Gillies, C.L.; Fitzsimons, J.A.; Hale, L.Z.; Beck, M.W. Coastal habitat squeeze: A review of adaptation solutions for saltmarsh, mangrove and beach habitats. Ocean Coast. Manag. 2019, 175, 180–190. [Google Scholar] [CrossRef]
- Chen, G.W.; Jin, R.J.; Ye, Z.J.; Li, Q.; Gu, J.L.; Luo, M.; Luo, Y.M.; Christakos, G.; Morris, J.; He, J.Y.; et al. Spatiotemporal mapping of salt marshes in the intertidal zone of China during 1985–2019. J. Remote Sens. 2022, 2022, 9793626. [Google Scholar] [CrossRef]
- Campbell, A.D.; Fatoyinbo, L.; Goldberg, L.; Lagomasino, D. Global hotspots of salt marsh change and carbon emissions. Nature 2022, 612, 701–706. [Google Scholar] [CrossRef]
- Gu, J.L.; Luo, M.; Zhang, X.J.; Christakos, G.; Agusti, S.; Duarte, C.M.; Wu, J.P. Losses of salt marsh in China: Trends, threats and management. Estuar. Coast. Shelf Sci. 2018, 214, 98–109. [Google Scholar] [CrossRef]
- Sun, Z.G.; Sun, W.G.; Tong, C.; Zeng, C.S.; Yu, X.; Mou, X.J. China’s coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 2015, 79, 25–41. [Google Scholar] [CrossRef]
- Sengupta, D.; Choi, Y.R.; Tian, B.; Brown, S.; Meadows, M.; Hackney, C.R.; Banerjee, A.; Li, Y.J.; Chen, R.S.; Zhou, Y.X. Mapping 21st century global coastal land reclamation. Earths Future 2023, 11, e2022EF002927. [Google Scholar] [CrossRef]
- Third Institute of Oceanography, Ministry of Natural Resources. The Special Results of China’s Coastal Marine Comprehensive Investigation and Evaluation—The General Report on the Evaluation of the Current Situation of Coastal Erosion and the Research on Prevention and Control Technology; Third Institute of Oceanography, Ministry of Natural Resources: Xiamen, China, 2010. (In Chinese) [Google Scholar]
- DaSilva, M.D.; Hesp, P.A.; Bruce, D.; Downes, J.; da Silva, G.M. Coastal transgressive dunefield evolution as a response to multi-decadal shoreline erosion. Geomorphology 2024, 455, 109165. [Google Scholar] [CrossRef]
- Valiela, I.; Lloret, J.; Bowyer, T.; Miner, S.; Remsen, D.; Elmstrom, E.; Cogswell, C.; Thieler, E.R. Transient coastal landscapes: Rising sea level threatens salt marshes. Sci. Total Environ. 2018, 640, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Raposa, K.B.; Weber, R.L.J.; Ekberg, M.C.; Ferguson, W. Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuaries Coasts 2017, 40, 640–650. [Google Scholar] [CrossRef]
- Donatelli, C.; Ganju, N.K.; Zhang, X.; Fagherazzi, S.; Leonardi, N. Salt marsh loss affects tides and the sediment budget in shallow bays. J. Geophys. Res. Earth Surf. 2018, 123, 2647–2662. [Google Scholar] [CrossRef]
- Luo, S.X.; Shao, D.D.; Long, W.; Liu, Y.J.; Sun, T.; Cui, B.S. Assessing ‘coastal squeeze’ of wetlands at the Yellow River Delta in China: A case study. Ocean Coast. Manag. 2018, 153, 193–202. [Google Scholar] [CrossRef]
- Wu, W.T.; Zhi, C.; Gao, Y.W.; Chen, C.P.; Chen, Z.Q.; Su, H.; Lu, W.F.; Tian, B. Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, and sustainable protection from the perspective of remote sensing. Sci. Total Environ. 2022, 811, 152339. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.L.; Jin, R.J.; Chen, G.W.; Ye, Z.J.; Li, Q.; Wang, H.W.; Li, D.; Christakos, G.; Agusti, S.; Duarte, C.M.; et al. Areal extent, species composition, and spatial distribution of coastal saltmarshes in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7085–7094. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.L.; Liu, Y.C.; Zhao, S.S.; Zheng, J.H.; Zhang, S. Tracking annual changes in the distribution and composition of saltmarsh vegetation on the Jiangsu coast of China using Landsat time series-based phenological parameters. Remote Sens. Environ. 2023, 284, 113370. [Google Scholar] [CrossRef]
- Lin, S.W.; Li, X.Z.; Yang, B.; Ma, Y.X.; Jiang, C.; Xue, L.M.; Wang, J.J.; Yan, Z.Z. Systematic assessments of tidal wetlands loss and degradation in Shanghai, China: From the perspectives of area, composition and quality. Glob. Ecol. Conserv. 2021, 25, e01450. [Google Scholar] [CrossRef]
- Liu, Y.C.; Li, J.L.; Sun, C.; Wang, X.X.; Tian, P.; Chen, L.M.; Zhang, H.T.; Yang, X.D.; He, G.L. Thirty-year changes of the coastlines, wetlands, and ecosystem services in the Asia major deltas. J. Environ. Manag. 2023, 326, 116675. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Evans, B. Coupling between tidal mudflats and salt marshes affects marsh morphology. Mar. Geol. 2019, 412, 95–106. [Google Scholar] [CrossRef]
- Goodwin, G.C.H.; Mudd, S.M. Detecting the morphology of prograding and retreating marsh margins-Example of a mega-tidal bay. Remote Sens. 2020, 12, 13. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, M.J.; Chen, L.; Xu, M.P.; Chen, X.; Geng, G.; Li, H.; Serrano, D.; Zhang, H.Y.; Gong, Z.; et al. Processes, feedbacks, and morphodynamic evolution of tidal flat–marsh systems: Progress and challenges. Water Sci. Eng. 2022, 15, 89–102. [Google Scholar] [CrossRef]
- Bouma, T.J.; van Belzen, J.; Balke, T.; van Dalen, J.; Klaassen, P.; Hartog, A.M.; Callaghan, D.P.; Hu, Z.; Stive, M.J.F.; Temmerman, S.; et al. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnol. Oceanogr. 2016, 61, 2261–2275. [Google Scholar] [CrossRef]
- Fan, X.Z.; Huang, H.M.; Zhang, Q.L.; Sun, N.; Wang, Y.G. Response of tidal creek networks and tidal connectivity to coastal squeeze of saltmarshes in the southern Bohai Bay. N. Z. J. Mar. Freshw. Res. 2022, 56, 617–631. [Google Scholar] [CrossRef]
- Phan, L.K.; van Thiel de Vries, J.S.M.; Stive, M.J.F. Coastal mangrove squeeze in the Mekong Delta. J. Coast. Res. 2015, 31, 233–243. [Google Scholar] [CrossRef]
- Zhong, J.Q.; Liang, C.Q.; Zhao, Y.Q.; Wang, Y.Q.; Yan, X.L. Identifying loss threshold and migration trajectory in the management of Suaeda salsa wetland under coastal squeeze. Mar. Environ. Res. 2024, 194, 106329. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. Study on evolution characteristics and driving mechanism of tideland reclamation in Jiangsu from 1980 to 2014. Hei Long Jiang Environ. J. 2023, 36, 8–11. (In Chinese) [Google Scholar]
- Himmelstoss, E.A.; Henderson, R.E.; Farris, A.S.; Kratzmann, M.G.; Bartlett, M.K.; Ergul, A.; McAndrews, J.; Cibaj, R.; Zichichi, J.L.; Thieler, E.R. Digital Shoreline Analysis System; Version 6.0; U.S. Geological Survey Software Release; U.S. Geological Survey: Asheville, NC, USA, 2024. [Google Scholar] [CrossRef]
- Allen, J.R.L. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and southern North Sea coasts of Europe. Quat. Sci. Rev. 2000, 19, 1155–1231. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, J.; Saito, Y.; Zhang, Z.; Chu, H.; Hu, G. Coastal erosion as a major sediment supplier to continental shelves: Example from the abandoned Old Huanghe (Yellow River) delta. Cont. Shelf Res. 2014, 82, 43–59. [Google Scholar] [CrossRef]
- Xu, H.; Shi, F.; Song, X.; Bai, Y. Quantifying spatiotemporal variations in tidal flats and coastal land use in Jiangsu Radial Sandbars through remote sensing. Reg. Stud. Mar. Sci. 2024, 74, 103539. [Google Scholar] [CrossRef]
- Zhu, D.; Gao, S. The expansion of Spartina alterniflora marsh in response to tidal flat reclamation, central Jiangsu coast, eastern China. Geogr. Res. 2014, 33, 2382–2392. (In Chinese) [Google Scholar]
- Feagin, R.A.; Lozada-Bernard, S.M.; Ravens, T.M.; Möller, I.; Yeager, K.M.; Baird, A.H. Does vegetation prevent wave erosion of salt marsh edges? Proc. Natl. Acad. Sci. USA 2009, 106, 10109–10113. [Google Scholar] [CrossRef] [PubMed]
- Möller, I.; Kudella, M.; Rupprecht, F.; Spencer, T.; Paul, M.; van Wesenbeeck, B.K.; Wolters, G.; Jensen, K.; Bouma, T.J.; Miranda-Lange, M.; et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 2014, 7, 727–731. [Google Scholar] [CrossRef]
- Nepf, H.M.; Vivoni, E.R. Flow structure in depth-limited, vegetated flow. J. Geophys. Res.-Oceans 2000, 105, 28547–28557. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.C.; Ward, L.G.; Kearney, M.S. Vertical accretion in marshes with varying rates of sea level rise. In Estuarine Variability; Wolfe, D.A., Ed.; Academic Press: Palm Bay, FL, USA, 1986; pp. 241–259. [Google Scholar]
- Crosby, S.C.; Sax, D.F.; Palmer, M.E.; Booth, H.S.; Deegan, L.A.; Bertness, M.D.; Leslie, H.M. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 2016, 181, 93–99. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D’Alpaos, A.; Koppel, J.V.D.; Rybczyk, J.M.; Reyes, E.; Craft, C.; et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 2012, 50, 1–28. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, T.; Tao, J.; Ni, L. Response relationship of tidal flat profile and dynamic sediment along Jiangsu coast. J. Hohai Univ. (Nat. Sci.) 2020, 48, 245–251. (In Chinese) [Google Scholar]
- Wu, X.; Wang, A.; Zhang, J. Development and utilization of tidal mudflat resource of Sheyang County. Econ. Geogr. 2004, 2, 268–271. (In Chinese) [Google Scholar]
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Qiu, S.; Pan, L.; Ma, J.; Ju, R.; Wu, J.; Li, B. Continual expansion of Spartina alterniflora in the temperate and subtropical coastal zones of China during 1985–2020. Int. J. Appl. Earth Obs. 2023, 117, 103192. [Google Scholar] [CrossRef]
- Mao, D.; Liu, M.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Zhang, Y. Rapid invasion of spartina alterniflora in the coastal zone of Mainland China: Spatiotemporal patterns and human prevention. Sensors 2019, 19, 2308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Gao, S.; Jia, J.J.; Thompson, C.E.L.; Gao, J.H.; Yang, Y. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Mar. Geol. 2012, 291–294, 147–161. [Google Scholar] [CrossRef]
- Huang, S.L.; Chen, Y.N.; Li, Y. Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species. Water Sci. Eng. 2020, 13, 34–44. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Lin, X. Protect China’s coastal salt marshes. Nature 2024, 386, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Jia, J.; Yang, Y.; Sheng, R.; Ren, L.; Ji, H.; Ye, S. Forty years of Spartina alterniflora in China: Cognitive revolution and governance strategies. Acta Ecol. Sin. 2024, 44, 8944–8956. (In Chinese) [Google Scholar]
- Chung, C.H. Forty years of ecological engineering with Spartina plantations in China. Ecol. Eng. 2006, 27, 49–57. [Google Scholar] [CrossRef]
- Miao, D.; Xue, Z. The current developments and impact of land reclamation control in China. Mar. Policy 2021, 134, 104782. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; Vriend, H.J.D. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Maximum Movement (m) | Annual Movement Rate (m/a) | |||||
---|---|---|---|---|---|---|
Sheyang Coast | North Sheyang | South Sheyang | Sheyang Coast | North Sheyang | South Sheyang | |
AC | 2~10,511 | 1238~3748 | 564~10,239 | −10~389 | 31~73 | 34~389 |
(2681 ± 2700) | (2523 ± 722) | (4874 ± 2788) | (85) | (51) | (184) | |
WB | 345~3295 | 683~1438 | 866~3007 | −55~56 | −35~−15 | −34~46 |
(1382 ± 533) | (1070 ± 156) | (1362 ± 485) | (−25) | (−27) | (−13) | |
VFE | 202~9123 | 288~837 | 1737~4502 | −30~358 | −8~13 | 46~113 |
(2074 ± 2123) | (574 ± 133) | (2697 ± 763) | (41) | (7) | (65) |
Year | Shuangyang Port to Yunliang Estuary | Yunliang Estuary to Sheyang Estuary | South of Sheyang Estuary | |||
---|---|---|---|---|---|---|
Elevation (m) | Slope (°) | Elevation (m) | Slope (°) | Elevation (m) | Slope (°) | |
2000 | 1.236 | 0.262 | 1.235 | 0.353 | 1.242 | 0.257 |
2005 | 1.222 | 0.411 | 1.198 | 0.433 | 1.221 | 0.200 |
2010 | 1.161 | 0.286 | 1.165 | 0.483 | 1.139 | 0.391 |
2015 | 1.149 | 0.333 | 1.142 | 0.449 | 1.152 | 0.503 |
2020 | 1.119 | 0.309 | 1.168 | 0.304 | 1.030 | 0.483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Gu, J.; Hu, H.; Sun, M.; Shao, J.; Dong, W.; Liang, L.; Zeng, J. Impact of Coastal Squeeze Induced by Erosion and Land Reclamation on Salt Marsh Wetlands. J. Mar. Sci. Eng. 2025, 13, 17. https://doi.org/10.3390/jmse13010017
Zhang G, Gu J, Hu H, Sun M, Shao J, Dong W, Liang L, Zeng J. Impact of Coastal Squeeze Induced by Erosion and Land Reclamation on Salt Marsh Wetlands. Journal of Marine Science and Engineering. 2025; 13(1):17. https://doi.org/10.3390/jmse13010017
Chicago/Turabian StyleZhang, Guangzhi, Jiali Gu, Hao Hu, Maoming Sun, Jie Shao, Weiliang Dong, Liang Liang, and Jian Zeng. 2025. "Impact of Coastal Squeeze Induced by Erosion and Land Reclamation on Salt Marsh Wetlands" Journal of Marine Science and Engineering 13, no. 1: 17. https://doi.org/10.3390/jmse13010017
APA StyleZhang, G., Gu, J., Hu, H., Sun, M., Shao, J., Dong, W., Liang, L., & Zeng, J. (2025). Impact of Coastal Squeeze Induced by Erosion and Land Reclamation on Salt Marsh Wetlands. Journal of Marine Science and Engineering, 13(1), 17. https://doi.org/10.3390/jmse13010017