Previous Issue
Volume 13, September
 
 

J. Mar. Sci. Eng., Volume 13, Issue 10 (October 2025) – 40 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 2254 KB  
Article
Life-Cycle Assessment of an Ammonia-Fueled SOFC Container Ship: Identifying Key Impact Drivers and Environmental Advantages over Diesel-Powered Vessels
by Yupeng Li, Fenghui Han, Meng Wang, Daan Cui, Yulong Ji and Zhe Wang
J. Mar. Sci. Eng. 2025, 13(10), 1873; https://doi.org/10.3390/jmse13101873 (registering DOI) - 27 Sep 2025
Abstract
The use of ammonia-fueled solid oxide fuel cells (NH3-SOFC) in shipping has emerged as a key area of research for advancing zero-carbon transportation. This study integrates and analyzes a novel ship design powered by NH3-SOFCs to quantify its environmental impact across its entire [...] Read more.
The use of ammonia-fueled solid oxide fuel cells (NH3-SOFC) in shipping has emerged as a key area of research for advancing zero-carbon transportation. This study integrates and analyzes a novel ship design powered by NH3-SOFCs to quantify its environmental impact across its entire life-cycle, from production to disposal. A 200 TEU ammonia-fueled container ship operating on the Yangtze River is used as the reference vessel. Comprehensive technical analysis and modeling of the ship’s construction, operation, and Decommissioning stages are conducted. By utilizing life-cycle assessment and the ReCiPe 2016 method for calculations, 19 environmental impact indicators were obtained, weighted, and normalized. Life-cycle characterization results reveal that ecosystem and human health impacts are predominantly influenced by the operation stage. Thus, focusing on environmental protection measures and technological innovations during operation is crucial to mitigate these impacts. Conversely, resource depletion is mainly driven by the construction stage, underscoring the need for optimized design, production processes, and the use of eco-friendly materials to reduce resource consumption. A comparative analysis between diesel-powered and ammonia-powered ships shows that while ammonia SOFC ships have a slightly higher environmental load in terms of metal consumption, diesel-powered ships exhibit higher overall environmental loads in other impact indicators. This demonstrates the superior environmental and social benefits of ammonia SOFC ships compared to traditional diesel power systems. Full article
(This article belongs to the Section Ocean Engineering)
24 pages, 4883 KB  
Article
Causal Matrix Long Short-Term Memory Network for Interpretable Significant Wave Height Forecasting
by Mingshen Xie, Wenjin Sun, Ying Han, Shuo Ren, Chunhui Li, Jinlin Ji, Yang Yu, Shuyi Zhou and Changming Dong
J. Mar. Sci. Eng. 2025, 13(10), 1872; https://doi.org/10.3390/jmse13101872 (registering DOI) - 27 Sep 2025
Abstract
This study proposes a novel causality-structured matrix long short-term memory (C-mLSTM) model for significant wave height (SWH) forecasting. The framework incorporates a two-stage causal feature selection methodology using cointegration testing and Granger causality testing to identify long-term stable causal relationships among variables. These [...] Read more.
This study proposes a novel causality-structured matrix long short-term memory (C-mLSTM) model for significant wave height (SWH) forecasting. The framework incorporates a two-stage causal feature selection methodology using cointegration testing and Granger causality testing to identify long-term stable causal relationships among variables. These relationships are embedded within the C-mLSTM architecture, enabling the model to effectively capture both temporal dependencies and causal information within the data. Furthermore, the model integrates Bayesian optimization (BO) and twin delayed deep deterministic policy gradient (TD3) algorithms for synergistic optimization. This combined TD3-BO approach achieves an 11.11% improvement in the mean absolute percentage error (MAPE) on average compared to the base model without optimization. For 1–24 h SWH forecasts, the proposed TD3-BO-C-mLSTM outperforms the benchmark models TD3-BO-LSTM and TD3-BO-mLSTM in prediction accuracy. Finally, a Shapley additive explanations (SHAP) analysis was conducted on the input features of the BO-C-mLSTM model, which reveals interpretability patterns consistent with the two-stage causal feature selection methodology. This research demonstrates that integrating causal modeling with optimization strategies significantly enhances time-series forecasting performance. Full article
(This article belongs to the Special Issue AI-Empowered Marine Energy)
Show Figures

Figure 1

20 pages, 7202 KB  
Article
A Novel Sorting Route Planning Method for Irregular Sheet Parts in the Shipbuilding Process
by Hongyan Xing, Cheng Luo, Jichao Song and Yansong Zhang
J. Mar. Sci. Eng. 2025, 13(10), 1871; https://doi.org/10.3390/jmse13101871 (registering DOI) - 27 Sep 2025
Abstract
Due to the complexity of shipyards’ operating scenes and the inconsistency of ship parts’ type and size, current sorting operations for ship parts mainly rely on laborers, resulting in weak control over the production process and key nodes. With the gradual advancement of [...] Read more.
Due to the complexity of shipyards’ operating scenes and the inconsistency of ship parts’ type and size, current sorting operations for ship parts mainly rely on laborers, resulting in weak control over the production process and key nodes. With the gradual advancement of intelligent manufacturing technology in the shipbuilding process, the trend of machines replacing humans is obvious. In order to promote the automation of the sorting process, intelligent scene recognition and route planning algorithms are needed. In this work, we introduce a localization method based on a laser line profile sensor and ship parts layout analysis algorithm, aiming at obtaining the information needed for sorting route planning. In addition, a heuristic-based route planning algorithm is proposed to solve the built mathematical model of the ship part sorting process. The proposed method can optimize the sorting order of parts, realize stable stacking, shorten sorting distance (taking about 490 m for 43 parts), and thereby improve operation efficiency. These results show that the proposed approach can make intelligent and comprehensible sorting route planning for the ship parts layout. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 784 KB  
Article
Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea
by Chae-ho Kim and Dong-chul Shin
J. Mar. Sci. Eng. 2025, 13(10), 1870; https://doi.org/10.3390/jmse13101870 (registering DOI) - 27 Sep 2025
Abstract
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis [...] Read more.
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis and utilizing the product as a core material for eco-friendly marine buoys. Biochars were produced at pyrolysis temperatures ranging from 300 °C to 700 °C and characterized for elemental composition, FT-IR spectra, leachability (CODcr), and biodegradability. Higher pyrolysis temperatures resulted in lower H/C and O/C molar ratios, indicating enhanced aromaticity and hydrophobicity. The biochar produced at 700 °C (SFBW-700) exhibited the highest structural and environmental stability, with minimal leachability and resistance to microbial degradation. A composite buoy was fabricated by mixing SFBW-700 with natural binders (beeswax and rosin), forming solid specimens without synthetic polymers or foaming agents. The optimized composition (biochar:beeswax:rosin = 85:10:5) showed excellent performance in density, buoyancy, and impact resistance, while fully meeting the Korean eco-friendly buoy certification criteria. This work presents a circular and scalable approach to mitigating marine macroalgal blooms and replacing plastic-based marine infrastructure with biochar-based eco-friendly composite alternatives. The findings suggest strong potential for the deployment of SH-derived biochar in marine engineering applications. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

22 pages, 2538 KB  
Article
Assessment of the Offshore Migration of Mussel Production Based on an Aquaculture Similarity Index (ASI)
by Nicolás G. deCastro, Maite deCastro, Marisela Des, Xurxo Costoya and Moncho Gómez-Gesteira
J. Mar. Sci. Eng. 2025, 13(10), 1869; https://doi.org/10.3390/jmse13101869 (registering DOI) - 26 Sep 2025
Abstract
Climate change is increasingly affecting the aquaculture sector, particularly in estuarine systems that support high-value production. In the Galician Rías Baixas, where shellfish farming is a cornerstone of the coastal economy, rising sea temperatures, sea-level rise, and changing precipitation patterns pose significant risks [...] Read more.
Climate change is increasingly affecting the aquaculture sector, particularly in estuarine systems that support high-value production. In the Galician Rías Baixas, where shellfish farming is a cornerstone of the coastal economy, rising sea temperatures, sea-level rise, and changing precipitation patterns pose significant risks to mussel aquaculture. This study presents a spatially explicit Aquaculture Suitability Similarity Index (ASI) designed to identify alternative cultivation areas that replicate the environmental and logistical characteristics of historically successful mussel farms. The ASI integrates a set of environmental variables (water temperature, salinity, biogeochemical quality, current velocity, and wave height) and technical constraints (depth and distance to port), with factor weights derived via expert elicitation using the Delphi method. Results show that most waters are highly similar to current farming areas, suggesting strong potential for spatial expansion or relocation. In contrast, areas near the mouths of the rías and the adjacent continental shelf show lower suitability due to greater oceanic exposure and associated logistical challenges. The ASI provides a robust, transferable tool to inform aquaculture spatial planning and climate adaptation strategies. Its methodological framework can be adapted to other regions and species, supporting evidence-based decision-making for sustainable aquaculture development. Full article
Show Figures

Figure 1

24 pages, 7205 KB  
Article
Response of Residence Time to Coastline Change in Xiamen Bay, China
by Cui Wang, Jianwei Wu, Haiyan Wu and Shang Jiang
J. Mar. Sci. Eng. 2025, 13(10), 1868; https://doi.org/10.3390/jmse13101868 (registering DOI) - 26 Sep 2025
Abstract
Xiamen Bay (XMB), a representative semi-enclosed bay, demonstrates hydrodynamic conditions and water exchange characteristics that are significantly influenced by alterations in the coastline. The three-dimensional hydrodynamic model and remote sensing interpretation techniques were utilized to examine coastline changes and evaluated the spatio-temporal variations [...] Read more.
Xiamen Bay (XMB), a representative semi-enclosed bay, demonstrates hydrodynamic conditions and water exchange characteristics that are significantly influenced by alterations in the coastline. The three-dimensional hydrodynamic model and remote sensing interpretation techniques were utilized to examine coastline changes and evaluated the spatio-temporal variations in water residence time in XMB from 1955 to 2021. The results indicate that the coastline of the XMB has been considerably modified by extensive reclamation activities. The total reclaimed area reached up to 188.08 km2 during the period of 1955–2021, resulting in a 17.8% reduction in the total bay area. The average residence time increased from 13.28 days in 1955 to 16.94 days in 2003 and then decreased to 16.12 days because of ecological restoration initiatives. Spatially, water residence time increased from the outer sea towards the inner bay, with the high value observed in the northwest part of XMB while the low value was observed in the southeastern region. Among the various sub-regions, Tong’an Bay experienced the most significant change in residence time, followed by the West Sea. Conversely, the Dadeng Waters and Jiulong River Estuary showed relatively minor increases in residence time. The primary factors influencing variations in water residence time are large-scale reclamation projects and ecological restoration measures. These findings provide a significant scientific foundation and technical support for the integrated management of the coastal zone and ecological restoration construction in XMB. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 4247 KB  
Article
Numerical Analysis of Thermal–Structural Coupling for Subsea Dual-Channel Connector
by Feihong Yun, Yuming Du, Dong Liu, Xiaofei Wu, Minggang Tang, Qiuying Yan, Peng Gao, Yu Chen, Xu Zhai, Hanyu Sun, Songlin Zhang, Shuqi Lin and Haiyang Xu
J. Mar. Sci. Eng. 2025, 13(10), 1867; https://doi.org/10.3390/jmse13101867 (registering DOI) - 26 Sep 2025
Abstract
In deep-sea oil and gas development scenarios, deep-sea dual-channel connectors often face the risk of seal failure due to internal and external temperature difference loads. To address this issue, this paper systematically establishes equivalent heat transfer models for the key parts of the [...] Read more.
In deep-sea oil and gas development scenarios, deep-sea dual-channel connectors often face the risk of seal failure due to internal and external temperature difference loads. To address this issue, this paper systematically establishes equivalent heat transfer models for the key parts of the connector based on the third-type boundary condition. On this basis, the quantitative correlation between the equivalent thermal conductivity, composite heat transfer coefficient and temperature of each part is explored. Using the finite element numerical simulation method, the transient temperature field of the connector under three working conditions (heating, cooling and temperature shock) is simulated and analyzed, revealing the temperature distribution characteristics and temperature change trends of the maximum temperature difference of each key component of the connector; combined with thermal–structural coupling simulation, the temperature field is converted into static load, to determine the behavior of the contact stress on the sealing surface under different temperature–pressure coupling working conditions; in addition, by placing the test prototype in a high-low temperature cycle chamber, the seal performance tests under pressurized and non-pressurized working conditions are carried out to verify the reliable sealing performance of the connector under variable temperature conditions. The results of this paper provide comprehensive theoretical support and an experimental basis for the thermodynamic optimization design of deep-sea connectors and the improvement of the reliability of the sealing system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 5176 KB  
Article
Coupled Burst and Fracture Failure Characteristics of Unbonded Flexible Riser Under Internal Pressure and Axial Tension
by Yi Liu, Qitao Wu, Jiawei He, Qingsheng Liu, Ming Li and Gang Wang
J. Mar. Sci. Eng. 2025, 13(10), 1866; https://doi.org/10.3390/jmse13101866 - 26 Sep 2025
Abstract
Unbonded flexible risers, which can experience large bending deformation, are key equipment in advancing deep-sea exploration for marine resources. However, the riser experiences coupled loading effects from ocean environment. This results in complex response characteristics, leading to potential damage or even destruction. By [...] Read more.
Unbonded flexible risers, which can experience large bending deformation, are key equipment in advancing deep-sea exploration for marine resources. However, the riser experiences coupled loading effects from ocean environment. This results in complex response characteristics, leading to potential damage or even destruction. By presenting an analytical–numerical framework, this study uncovers the mechanism underlying the coupled failure of the pressure- and tensile-armor layers, furnishes a new tension–pressure coupled failure boundary for the ultimate-limit-state design of deep-water risers, and supplies the corresponding theoretical verification. Firstly, based on the axisymmetric load assumption, a theoretical model is proposed based on principle of functionality; afterwards, the failure model is defined by considering the material elastoplasticity. Secondly, a full-layered numerical model with detailed geometric properties is established; meanwhile, a simplified 7-layer model without a carcass layer is constructed for comparison. Finally, after verified through experimental data and interactive verification of theoretical and numerical methods, the simplified numerical model is proved to have calculation accuracy and validity. The characteristics are studied by the proposed methods. The comparison results show that the pre-applied internal pressure has limited influence on the axial stiffness of unbonded flexible rise. The initial axial tension would enhance the anti-burst failure ability of unbonded flexible riser, the failure pressure increases by 35% when the tensile force is 500 kN. Full article
(This article belongs to the Special Issue Advanced Research in Flexible Riser and Pipelines)
27 pages, 12166 KB  
Article
Optimization of Maritime Target Element Resolution Strategies for Non-Uniform Sampling Based on Large Language Model Fine-Tuning
by Ziheng Han, Huapeng Yu and Qinyuan He
J. Mar. Sci. Eng. 2025, 13(10), 1865; https://doi.org/10.3390/jmse13101865 - 26 Sep 2025
Abstract
Traditional maritime target element resolution, relying on manual experience and uniform sampling, lacks accuracy and efficiency in non-uniform sampling, missing data, and noisy scenarios. While large language models (LLMs) offer a solution, their general knowledge gaps with maritime needs limit direct application. This [...] Read more.
Traditional maritime target element resolution, relying on manual experience and uniform sampling, lacks accuracy and efficiency in non-uniform sampling, missing data, and noisy scenarios. While large language models (LLMs) offer a solution, their general knowledge gaps with maritime needs limit direct application. This paper proposes a fine-tuned LLM-based adaptive optimization method for non-uniform sampling maritime target element resolution, with three key novelties: first, selecting Doubao-Seed-1.6 as the base model and conducting targeted preprocessing on maritime multi-source data to address domain adaptation gaps; second, innovating a “Prefix tuning + LoRA” hybrid strategy (encoding maritime rules via Prefix tuning, freezing 95% of base parameters via LoRA to reduce trainable parameters to <0.5%) to balance cost and performance; third, building a non-uniform sampling-model collaboration mechanism, where the fine-tuned model dynamically adjusts the sampling density via semantic understanding to solve random sampling’s “structural information imbalance”. Experiments in close, away, and avoid scenarios (vs. five control models including original LLMs, rule-only/models, and ChatGPT-4.0) show that the proposed method achieves a comprehensive final score of 0.8133—37.1% higher than the sub-optimal data-only model (0.5933) and 87.7% higher than the original general model (0.4333). In high-risk avoid scenarios, its Top-1 Accuracy (0.7333) is 46.7% higher than the sub-optimal control, and Scene-Sensitive Recall (0.7333) is 2.2 times the original model; in close and away scenarios, its Top-1 Accuracy reaches 0.8667 and 0.9000, respectively. This method enhances resolution accuracy and adaptability, promoting LLM applications in navigation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 3650 KB  
Article
Navigational Risk Evaluation of One-Way Channels: Modeling and Application to the Suez Canal
by Jiaxuan Yang, Wenzhen Xie, Hongbin Xie, Yao Sun and Xinjian Wang
J. Mar. Sci. Eng. 2025, 13(10), 1864; https://doi.org/10.3390/jmse13101864 - 26 Sep 2025
Abstract
Navigating ships through one-way channels introduces significant uncertainties due to their unique navigational constraints, yet a comprehensive and tailored risk evaluation system for such channels remains notably underdeveloped. Recognizing its critical role as a global maritime artery, this study selects the Suez Canal [...] Read more.
Navigating ships through one-way channels introduces significant uncertainties due to their unique navigational constraints, yet a comprehensive and tailored risk evaluation system for such channels remains notably underdeveloped. Recognizing its critical role as a global maritime artery, this study selects the Suez Canal as the case study to address this gap. The study begins by analyzing the navigational characteristics of one-way channels, systematically identifying key risk factors such as channel width, traffic density, and environmental conditions. Building on this, a novel risk evaluation model is developed, integrating the entropy weight method to assign objective weights, fuzzy logic to handle uncertainty, and Evidential Reasoning (ER) to aggregate multi-criteria assessments. The Suez Canal is then utilized as a case study to demonstrate the model’s effectiveness and practical applicability. The results reveal that Channel C exhibits the highest risk utility value, consistent with its history of the most grounding incidents, including the notable “Ever Given” event during 2021–2023. These findings not only provide valuable insights for enhancing Suez Canal management strategies but also contribute to filling the existing void in risk evaluation frameworks for one-way channels, paving the way for future research into dynamic risk assessment methodologies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 1383 KB  
Article
Dijkstra and A* Algorithms for Algorithmic Optimization of Maritime Routes and Logistics of Offshore Wind Farms
by Vice Milin, Tatjana Stanivuk, Ivica Skoko and Toma Bulić
J. Mar. Sci. Eng. 2025, 13(10), 1863; https://doi.org/10.3390/jmse13101863 - 26 Sep 2025
Abstract
Shipping in complex marine environments requires a balance between navigational safety, minimising travel time and optimising logistics management, which is particularly challenging in areas with geometric obstructions and Offshore Wind Farms (OWFs). This study focuses on the maritime route networks in the Croatian [...] Read more.
Shipping in complex marine environments requires a balance between navigational safety, minimising travel time and optimising logistics management, which is particularly challenging in areas with geometric obstructions and Offshore Wind Farms (OWFs). This study focuses on the maritime route networks in the Croatian ports of Pula and Rijeka, including the main access routes to OWFs and zones characterised by multiple navigational challenges. The aim of the research is to develop an empirically based and practically applicable framework for the optimisation of sea routes that combines analytical precision with operational efficiency. The parallel application of Dijkstra and A* algorithms enables a comparative analysis between deterministic and heuristic approaches in terms of reducing navigation risk, optimising route costs and ensuring fast logistical access to OWFs. The applied methods include the analysis of real and simulated route networks, the evaluation of statistical route parameters and the visualisation of the results for the evaluation of logistical and operational efficiency. Adaptive heuristic modifications of the A* algorithm, combined with the parallel implementation of Dijkstra’s algorithm, enable dynamic route planning that takes into account real-world conditions, including variations in wind speed and direction. The results obtained provide a comprehensive framework for safe, efficient and logistically optimised navigation in complex marine environments, with direct applications in the maintenance, inspection and operational management of OWFs. Full article
(This article belongs to the Section Ocean Engineering)
21 pages, 31648 KB  
Article
Deformable USV and Lightweight ROV Collaboration for Underwater Object Detection in Complex Harbor Environments: From Acoustic Survey to Optical Verification
by Yonghang Li, Mingming Wen, Peng Wan, Zelin Mu, Dongqiang Wu, Jiale Chen, Haoyi Zhou, Shi Zhang and Huiqiang Yao
J. Mar. Sci. Eng. 2025, 13(10), 1862; https://doi.org/10.3390/jmse13101862 - 26 Sep 2025
Abstract
As crucial transportation hubs and economic nodes, the underwater security and infrastructure maintenance of harbors are of paramount importance. Harbors are characterized by high vessel traffic and complex underwater environments, where traditional underwater inspection methods, such as diver operations, face challenges of low [...] Read more.
As crucial transportation hubs and economic nodes, the underwater security and infrastructure maintenance of harbors are of paramount importance. Harbors are characterized by high vessel traffic and complex underwater environments, where traditional underwater inspection methods, such as diver operations, face challenges of low efficiency, high risk, and limited operational range. This paper introduces a collaborative survey and disposal system that integrates a deformable unmanned surface vehicle (USV) with a lightweight remotely operated vehicle (ROV). The USV is equipped with a side-scan sonar (SSS) and a multibeam echo sounder (MBES), enabling rapid, large-area searches and seabed topographic mapping. The ROV, equipped with an optical camera system, forward-looking sonar (FLS), and a manipulator, is tasked with conducting close-range, detailed observations to confirm and dispose of abnormal objects identified by the USV. Field trials were conducted at an island harbor in the South China Sea, where simulated underwater objects, including an iron drum, a plastic drum, and a rubber tire, were deployed. The results demonstrate that the USV-ROV collaborative system effectively meets the demands for underwater environmental measurement, object localization, identification, and disposal in complex harbor environments. The USV acquired high-resolution (0.5 m × 0.5 m) three-dimensional topographic data of the harbor, effectively revealing its topographical features. The SSS accurately localized and preliminarily identified all deployed simulated objects, revealing their acoustic characteristics. Repeated surveys revealed a maximum positioning deviation of 2.2 m. The lightweight ROV confirmed the status and location of the simulated objects using an optical camera and an underwater positioning system, with a maximum deviation of 3.2 m when compared to the SSS locations. The study highlights the limitations of using either vehicle alone. The USV survey could not precisely confirm the attributes of the objects, whereas a full-area search of 0.36 km2 by the ROV alone would take approximately 20 h. In contrast, the USV-ROV collaborative model reduced the total time to detect all objects to 9 h, improving efficiency by 55%. This research offers an efficient, reliable, and economical practical solution for applications such as underwater security, topographic mapping, infrastructure inspection, and channel dredging in harbor environments. Full article
Show Figures

Figure 1

29 pages, 5526 KB  
Article
Design of UUV Underwater Autonomous Recovery System and Controller Based on Mooring-Type Mobile Docking Station
by Peiyu Han, Wei Zhang, Qiyang Wu and Yefan Shi
J. Mar. Sci. Eng. 2025, 13(10), 1861; https://doi.org/10.3390/jmse13101861 - 26 Sep 2025
Abstract
This study addresses autonomous underwater vehicle (UUV) recovery onto dynamic docking stations by proposing a fork-column recovery control system with a segmented docking strategy (long-distance approach + guided descent). To enhance model fidelity, transmission lag of actuators is captured by a specified transfer [...] Read more.
This study addresses autonomous underwater vehicle (UUV) recovery onto dynamic docking stations by proposing a fork-column recovery control system with a segmented docking strategy (long-distance approach + guided descent). To enhance model fidelity, transmission lag of actuators is captured by a specified transfer function, and nonlinear dynamics are characterized as an improved quasi-linear parameter-varying (QLPV) model. An adaptive variable–prediction–step mechanism was designed to accommodate different phases of acoustic–optical guided recovery. A model predictive controller (MPC) was developed based on an improved dynamic model to effectively handle complex constraints during the recovery process. Simulation and physical experiments demonstrated that the proposed system significantly reduces errors, among which the control accuracy (tracking error under disturbance < 0.3 m) and docking success rate (>95%) are notably superior to traditional methods, providing a reliable solution for the dynamic recovery of unmanned underwater vehicles (UUVs). Full article
(This article belongs to the Special Issue Design and Application of Underwater Vehicles)
Show Figures

Figure 1

25 pages, 5282 KB  
Article
Research on Non-Stationary Tidal Level Prediction Based on SVMD and BiLSTM
by Lingkun Zeng, Chunlin Ning, Yue Fang, Chao Li, Yonggang Ji, Huanyong Li and Wenmiao Shao
J. Mar. Sci. Eng. 2025, 13(10), 1860; https://doi.org/10.3390/jmse13101860 - 26 Sep 2025
Abstract
Abnormal tidal levels pose a serious threat to maritime navigation, coastal infrastructure, and human life and property. Therefore, it is crucial to accurately predict tidal levels. However, due to the influence of topography and meteorology, tidal levels exhibit complex and non-stationary characteristics, making [...] Read more.
Abnormal tidal levels pose a serious threat to maritime navigation, coastal infrastructure, and human life and property. Therefore, it is crucial to accurately predict tidal levels. However, due to the influence of topography and meteorology, tidal levels exhibit complex and non-stationary characteristics, making high-precision prediction a significant challenge. This study proposes a tidal prediction model, named SVMD-BiLSTM-Residual Decomposition (SBRD), which combines Successive Variational Mode Decomposition (SVMD) and Bidirectional Long Short-Term Memory (BiLSTM) networks. SBRD decomposes non-stationary tidal signals into simpler intrinsic mode functions (IMFs) using SVMD. Each IMF is then independently predicted using a BiLSTM network, and the final prediction is obtained through signal reconstruction. Experimental results show that SBRD accurately predicts tidal levels within a 24 h horizon and maintains robust performance during abnormal tidal events, such as acqua alta. Compared to other models, SBRD achieves the highest prediction accuracy and the lowest error, with a Coefficient of Determination (R2) exceeding 99%, a Mean Absolute Error (MAE) of 1.33 cm or less, and a Root Mean Square Error (RMSE) within 2.13 cm for tidal forecasts within a 24 h horizon. These results demonstrate that SBRD effectively enhances the accuracy of tidal level prediction, contributing to the advancement of marine economic technologies and the prevention and mitigation of marine disasters. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 508 KB  
Article
Research on Ship Type Decision-Making for General Cargo Ship Owners Under Capacity Iteration: A TOPSIS Method Based on Agent Scoring
by Wenjun Han, Xianhua Wu and Huai Deng
J. Mar. Sci. Eng. 2025, 13(10), 1859; https://doi.org/10.3390/jmse13101859 - 25 Sep 2025
Abstract
This study quantifies ship-type performance indicators by training intelligent agents to evaluate and score vessels. The Analytic Hierarchy Process (AHP) is then applied to assess the internal consistency of the collected data, ensuring its authenticity and validity. Subsequently, the entropy weight method is [...] Read more.
This study quantifies ship-type performance indicators by training intelligent agents to evaluate and score vessels. The Analytic Hierarchy Process (AHP) is then applied to assess the internal consistency of the collected data, ensuring its authenticity and validity. Subsequently, the entropy weight method is employed to objectively determine the significance of each indicator in ship-type decision-making. Finally, COSCO (China COSCO Shipping Corporation Limited) Shipping’s capacity gap reflects the results of the methodology: the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) technique ranks all feasible ship-type combinations, presenting their relative merits through quantitative results. A standardized grading system is further proposed to evaluate these combinations systematically. Ultimately, the 10 most suitable solutions are identified—none achieving the theoretical maximum rating of Grade 10—demonstrating room for improvement in vessel performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1032 KB  
Article
Modeling Growth, Mortality, and Detachment of Sessile Marine Organisms: An Integrated DEB-Statistical Approach
by Teng Tu, Jinxin Zhou, Daisuke Kitazawa, Akane Takahashi, Yoshinobu Yoneyama and Masanobu Hasebe
J. Mar. Sci. Eng. 2025, 13(10), 1858; https://doi.org/10.3390/jmse13101858 - 25 Sep 2025
Abstract
Sessile marine organisms form the foundation of many coastal ecosystems, playing crucial roles in functions like water filtration and habitat provision. Understanding their population dynamics—particularly the interplay of growth, reproduction, and detachment under environmental stress—is essential for both ecological research and effective coastal [...] Read more.
Sessile marine organisms form the foundation of many coastal ecosystems, playing crucial roles in functions like water filtration and habitat provision. Understanding their population dynamics—particularly the interplay of growth, reproduction, and detachment under environmental stress—is essential for both ecological research and effective coastal management. This work presents a comprehensive numerical model for simulating the growth, reproduction, mortality and detachment of sessile organisms using a hybrid dynamic energy budget (DEB)–statistical approach. Our model incorporates bioenergetic processes, environmental stress responses, space competition, and layering dynamics. The simulation framework considers the effects of temperature, salinity, dissolved oxygen, and food availability on organism physiology while tracking growth, reproduction, and mortality and detachment. Model validation was performed using field data collected from sessile invertebrate populations around a floating platform in the estuary of the Sumida River in Tokyo, Japan, from September 2002 to September 2003. Our approach successfully reproduced observed patterns with high accuracy. The model revealed that temperature stress and salinity fluctuations interact synergistically, amplifying mortality and detachment rates beyond what would be predicted by each factor independently. Comparative analyses with reduced models lacking either mortality or detachment components demonstrated the importance of including both processes for the accurate prediction of population dynamics. Our case study provides a robust framework for predicting sessile organism responses to environmental variability and highlights key areas for future research in benthic ecosystem modeling. Full article
(This article belongs to the Section Marine Biology)
17 pages, 8174 KB  
Article
Calculation and Analysis of Rolling Hydrodynamic Coefficients of Free-Flooding Ship Based on CFD
by Chaofan Li, Yuehu Teng, Min Xu and Renchuan Zhu
J. Mar. Sci. Eng. 2025, 13(10), 1857; https://doi.org/10.3390/jmse13101857 (registering DOI) - 25 Sep 2025
Abstract
As free-flooding ships are a type of vessel with openings on their hull surfaces, accurately calculating and analyzing their roll hydrodynamic coefficients is of great significance for ship motion prediction. Based on the STAR CCM+ platform that employs the computational fluid dynamics (CFD) [...] Read more.
As free-flooding ships are a type of vessel with openings on their hull surfaces, accurately calculating and analyzing their roll hydrodynamic coefficients is of great significance for ship motion prediction. Based on the STAR CCM+ platform that employs the computational fluid dynamics (CFD) method, this paper first conducts numerical simulations of the forced roll motion of a damaged DTMB-5415 ship model. The applicability of this method to side-opening ship types is verified by comparing with experimental results. Subsequently, this numerical method is applied to simulate the forced roll of a free-flooding aquaculture ship under different working conditions, and the roll hydrodynamic coefficients of its hull and internal compartments are calculated and analyzed. The roll hydrodynamic coefficients of the intact ship and the free-flooding ship are compared. The results indicate the characteristics of roll hydrodynamic coefficients of free-flooding ships, and this research will facilitate the prediction of roll motion for this ship type. Full article
(This article belongs to the Special Issue Advancements in Marine Hydrodynamics and Structural Optimization)
Show Figures

Figure 1

18 pages, 1860 KB  
Article
Acoustic Scattering Characteristics of Micropterus salmoides Using a Combined Kirchhoff Ray-Mode Model and In Situ Measurements
by Wenzhuo Wang, Meiping Sheng, Zhiwei Guo and Minqing Wang
J. Mar. Sci. Eng. 2025, 13(10), 1856; https://doi.org/10.3390/jmse13101856 - 25 Sep 2025
Abstract
Effective management of Micropterus salmoides resources requires accurate assessment of their abundance and distribution. Fisheries acoustics is a key method for such evaluations, yet its application is limited by insufficient target strength (TS) data. This study combines the Sobel edge detection [...] Read more.
Effective management of Micropterus salmoides resources requires accurate assessment of their abundance and distribution. Fisheries acoustics is a key method for such evaluations, yet its application is limited by insufficient target strength (TS) data. This study combines the Sobel edge detection technique with the Kirchhoff ray-mode model to estimate the TS of Micropterus salmoides cultured in Guangdong, China, and validates the results through in situ measurements. The relationships between TS and fish body length were established at 38 kHz, 70 kHz, 120 kHz, and 200 kHz. At 200 kHz, the average in situ TS was –42.41 dB, with a fitted formula of TS = 32.00 lgL − 88.24. Further validation was performed using time- and frequency-domain analyses of echo signals. The results show that TS increases with swim bladder volume, indicating its dominant influence. The relationship between TS and frequency is nonlinear and affected by the swim bladder angle, swimming posture, and behavioral patterns. This study also improves the computational efficiency of the Kirchhoff ray-mode model. Overall, it provides essential parameters for acoustic stock assessment of Micropterus salmoides, providing a scientific basis for their sustainable management and conservation. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

43 pages, 3352 KB  
Review
Inductive Wireless Power Transfer for Autonomous Underwater Vehicles: A Comprehensive Review of Technological Advances and Challenges
by Han Xu, Rong Zheng, Bo Yang and Wei Ning
J. Mar. Sci. Eng. 2025, 13(10), 1855; https://doi.org/10.3390/jmse13101855 - 25 Sep 2025
Abstract
The endurance of autonomous underwater vehicles (AUVs) has long been constrained by limited energy replenishment. Underwater inductive wireless power transfer (UIWPT), with its contactless power transfer capability, offers an innovative solution for efficient underwater charging of AUVs. This paper provides a systematic review [...] Read more.
The endurance of autonomous underwater vehicles (AUVs) has long been constrained by limited energy replenishment. Underwater inductive wireless power transfer (UIWPT), with its contactless power transfer capability, offers an innovative solution for efficient underwater charging of AUVs. This paper provides a systematic review of the architecture of UIWPT systems, analyzes key power loss mechanisms and corresponding optimization strategies, and summarizes the latest research progress in magnetic coupler design, compensation circuit topologies, control methods, simultaneous power and data transfer, and seawater-induced eddy current losses. Representative cases of UIWPT system integration on AUV platforms are also reviewed, with particular emphasis on environmental factors such as salinity variation, biofouling, and deep-sea pressure, as well as EMC, which critically constrain engineering applications. Finally, this paper discusses development trends including high-efficiency power transfer, enhanced reliability under extreme environments, and practical deployment challenges, and it presents a forward-looking technical roadmap towards long-term, autonomous, and intelligent underwater wireless power transfer. Full article
(This article belongs to the Special Issue Advances in Recent Marine Engineering Technology)
Show Figures

Figure 1

26 pages, 3429 KB  
Article
I-VoxICP: A Fast Point Cloud Registration Method for Unmanned Surface Vessels
by Qianfeng Jing, Mingwang Bai, Yong Yin and Dongdong Guo
J. Mar. Sci. Eng. 2025, 13(10), 1854; https://doi.org/10.3390/jmse13101854 - 25 Sep 2025
Abstract
The accurate positioning and state estimation of surface vessels are prerequisites to autonomous navigation. Recently, the rapid development of 3D LiDARs has promoted the autonomy of both land and aerial vehicles, which has attracted the interest of researchers in the maritime community. However, [...] Read more.
The accurate positioning and state estimation of surface vessels are prerequisites to autonomous navigation. Recently, the rapid development of 3D LiDARs has promoted the autonomy of both land and aerial vehicles, which has attracted the interest of researchers in the maritime community. However, in traditional maritime surface multi-scenario applications, LiDAR scan matching has low point cloud scanning and matching efficiency and insufficient positional accuracy when dealing with large-scale point clouds, so it has difficulty meeting the real-time demand of low-computing-power platforms. In this paper, we use ICP-SVD for point cloud alignment in the Stanford dataset and outdoor dock scenarios and propose an optimization scheme (iVox + ICP-SVD) that incorporates the voxel structure iVox. Experiments show that the average search time of iVox is 72.23% and 96.8% higher than that of ikd-tree and kd-tree, respectively. Executed on an NVIDIA Jetson Nano (four ARM Cortex-A57 cores @ 1.43 GHz) the algorithm processes 18 k downsampled points in 56 ms on average and 65 ms in the worst case—i.e., ≤15 Hz—so every scan is completed before the next 10–20 Hz LiDAR sweep arrives. During a 73 min continuous harbor trial the CPU temperature stabilized at 68 °C without thermal throttling, confirming that the reported latency is a sustainable, field-proven upper bound rather than a laboratory best case. This dramatically improves the retrieval efficiency while effectively maintaining the matching accuracy. As a result, the overall alignment process is significantly accelerated, providing an efficient and reliable solution for real-time point cloud processing. Full article
Show Figures

Figure 1

13 pages, 2151 KB  
Article
Low-Phase-Error Underwater Acoustic Spiral Wavefront Array and Phase Error Compensation
by Rongzhen Guo, Wei Lu and Yu Lan
J. Mar. Sci. Eng. 2025, 13(10), 1853; https://doi.org/10.3390/jmse13101853 - 24 Sep 2025
Viewed by 15
Abstract
Acoustic spiral wavefronts demonstrate linear phase directionality, facilitating precise azimuth estimation in underwater navigation through phase comparison with reference wavefronts characterized by constant phase directionality. The reliability of azimuth estimation depends on the phase directionality accuracy of both the spiral and reference wavefront [...] Read more.
Acoustic spiral wavefronts demonstrate linear phase directionality, facilitating precise azimuth estimation in underwater navigation through phase comparison with reference wavefronts characterized by constant phase directionality. The reliability of azimuth estimation depends on the phase directionality accuracy of both the spiral and reference wavefront sources. This study introduces a seven-element transmitting array, constructed using bender disk transducers, which is capable of generating both spiral and reference acoustic wavefronts with minimal phase directionality error. The array design was developed and evaluated using a point source array model and numerical simulations, followed by physical fabrication. To address the sensitivity of the phase–azimuth linearity to manufacturing imperfections in sound sources, a phase error compensation technique was implemented by adjusting the input signal parameters to the acoustic emitters. Experimental validation was conducted in an anechoic water tank, where both spiral and reference wavefronts were transmitted across multiple frequencies. The results reveal that the array prototype achieved sub-degree-level compensated phase directionality accuracy for both wavefront types at all the tested frequencies. Notably, at the resonance frequency of 7.3 kHz, the root-mean-square phase directionality error of the spiral wavefront was reduced to as low as 0.19°. Full article
(This article belongs to the Special Issue Advances in Underwater Positioning and Navigation Technology)
Show Figures

Figure 1

25 pages, 958 KB  
Review
Survey on Multi-Source Data Based Application and Exploitation Toward Smart Ship Navigation
by Xuhong Tang, Jie Zhou, Shengjie Hou, Yang Sun and Kai Luo
J. Mar. Sci. Eng. 2025, 13(10), 1852; https://doi.org/10.3390/jmse13101852 - 24 Sep 2025
Viewed by 33
Abstract
Maritime ship transportation is not only the core infrastructure of the global logistics system but also is closely related to national security and sustainable development. However, the human factor remains the primary source of risk leading to maritime accidents during ship navigation. In [...] Read more.
Maritime ship transportation is not only the core infrastructure of the global logistics system but also is closely related to national security and sustainable development. However, the human factor remains the primary source of risk leading to maritime accidents during ship navigation. In recent years, multi-source data has been recognized as an important means to improve the efficiency of ship operations and navigation safety. In this paper, the major research methods and technical pathways of maritime multi-source data in recent years have been systematically reviewed, and a comprehensive technical framework from data acquisition and preprocessing to practical application has been constructed. Focusing on the data layer, application layer, and system layer, this paper comprehensively analyzes the key technologies of maritime navigation based on multi-source data. At the same time, this paper also highlights the advantages and cutting-edge methods of multi-source data in typical application scenarios—such as track extraction, target recognition, behavior detection, path planning, and collision avoidance—and analyzes their performance and adaptation strategies in different usage contexts. Through the combination of theory and engineering practice, this paper looks forward to the future development of ship intelligence and water transportation systems, providing a theoretical basis and technical support for the construction of intelligent shipping systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 6598 KB  
Article
Parametric Study on the Near-Wall Wake Flow of a Circular Cylinder: Influence of Gap Ratio and Reynolds Number
by Changjing Fu, Shunxin Yang and Tianlong Zhao
J. Mar. Sci. Eng. 2025, 13(10), 1851; https://doi.org/10.3390/jmse13101851 - 24 Sep 2025
Viewed by 74
Abstract
Near-wall flow around circular cylinders is commonly encountered in various engineering applications, such as submarine pipelines and river-crossing conduits. The wake structure significantly influences local flow stability and has become a critical focus in fluid dynamics research. Specifically, when the gap ratio ( [...] Read more.
Near-wall flow around circular cylinders is commonly encountered in various engineering applications, such as submarine pipelines and river-crossing conduits. The wake structure significantly influences local flow stability and has become a critical focus in fluid dynamics research. Specifically, when the gap ratio (G/D) ranges from 0.1 to 1.0, the interaction mechanism between the wall and the wake structure remains poorly understood. Moreover, the combined effects of the Reynolds number (Re) and gap ratio on the flow field require further investigation. In this study, a series of experimental measurements were conducted using two-dimensional, two-component particle image velocimetry (2D–2C PIV) to examine the influence of G/D and Re on the near-wall wake characteristics. The results indicate that, at a gap ratio of G/D = 0.1, the gap flow exhibits pronounced curling into the recirculation region, where the lower vortex is entrained and actively participates in wake evolution. When G/D ≥ 0.3, an increase in Re leads to a reduction in the lengths of both the upper and lower shear layers, a delayed attenuation of the wall-side shear layer, and a gradual symmetrization and contraction of the recirculation region behind the cylinder. Further analysis reveals that the evolution of the secondary vortex is strongly influenced by the combined effects of Re and G/D. Specifically, at Re = 3300 and G/D ≤ 0.3, the secondary vortex migrates away from the wall toward the upper shear layer, where it merges with the upper vortex. For 0.5 ≤ G/D ≤ 0.7, it interacts with the lower vortex, while at G/D = 1.0, it evolves independently downstream along the wall. At G/D = 0.5, the secondary vortex merges with the upper vortex at Re = 1100, whereas at Re = 5500, it interacts with the lower vortex instead. These findings contribute to a deeper understanding of the complex flow structures associated with near-wall cylinder wakes and offer valuable theoretical insights for engineering applications involving submarine pipelines in bottom-mounted or partially suspended configurations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 9227 KB  
Article
Influence of Marine Environmental Factors on Characteristics of Composite Magnetic Field of Underwater Vehicles
by Honglei Wang, Xinyu Dong and Yixin Yang
J. Mar. Sci. Eng. 2025, 13(10), 1850; https://doi.org/10.3390/jmse13101850 - 24 Sep 2025
Viewed by 39
Abstract
This research study investigated the composite magnetic fields of underwater vehicles in the presence of ocean waves under varying conductivity, analyzed their spatiotemporal characteristics, attenuation laws, and influence mechanism. We integrated the modeling of three types of magnetic fields to obtain a composite [...] Read more.
This research study investigated the composite magnetic fields of underwater vehicles in the presence of ocean waves under varying conductivity, analyzed their spatiotemporal characteristics, attenuation laws, and influence mechanism. We integrated the modeling of three types of magnetic fields to obtain a composite magnetic field: the magnetic anomaly field generated by a ferromagnetic vehicle was simulated with a hybrid ellipsoid–dipole model, the wake magnetic field generated by its motion, and the ocean wave magnetic field generated by wind-driven waves were derived from the velocity fields. Simulation results show that the magnetic anomaly and wake magnetic fields are mainly influenced by vehicle speed, course, and diving depth, while the ocean wave magnetic field is affected by wind speed and direction. The composite magnetic field’s intensity increases with vehicle and wind speed but decreases with the increase in diving depth. This study offers a comprehensive analysis of the composite magnetic fields of underwater vehicles in the presence of ocean waves, emphasizing the significant impact of vehicle motion and marine environmental parameters. These insights are essential to gaining a deeper understanding of the magnetic fields generated by underwater vehicles as they navigate ocean waves. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 1622 KB  
Article
Vessel Arrival Priority Determination in VTS Management: A Dynamic Scoring Approach Integrating Expert Knowledge
by Gil-Ho Shin and Chae-Uk Song
J. Mar. Sci. Eng. 2025, 13(10), 1849; https://doi.org/10.3390/jmse13101849 - 24 Sep 2025
Viewed by 107
Abstract
Vessel arrival priority determination is a critical factor affecting port safety and efficiency in maritime traffic management, yet existing approaches relying on First Come, First Served (FCFS) principles or empirical judgment have limitations in systematic decision-making. This study aims to develop a systematic [...] Read more.
Vessel arrival priority determination is a critical factor affecting port safety and efficiency in maritime traffic management, yet existing approaches relying on First Come, First Served (FCFS) principles or empirical judgment have limitations in systematic decision-making. This study aims to develop a systematic decision-making framework that overcomes these limitations by creating an automated, expert knowledge-based priority determination system for vessel traffic services. A dynamic score-based vessel arrival priority determination model was developed integrating the Delphi technique and Fuzzy Analytic Hierarchy Process (Fuzzy AHP). Basic score evaluation factors were derived through Delphi surveys conducted with 50 field experts, and weights were calculated by differentially applying Fuzzy AHP and conventional AHP according to hierarchical complexity. The proposed model consists of a dynamic scoring system integrating basic scores reflecting vessel characteristics and operational conditions, special situation scores considering emergency situations, and risk scores quantifying safety intervals between vessels. To validate the model performance, simulation-based evaluation with eight scenarios was conducted targeting experienced VTS (Vessel Traffic Services) officers, demonstrating strong agreement with expert judgment across diverse operational conditions. The developed algorithm processes real-time maritime traffic data to dynamically calculate priorities, providing port managers and maritime authorities with an automated decision support tool that enhances VTS management and coastal traffic operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 3476 KB  
Article
A Quantitative Evaluation Method for Navigation Safety in Coastal Waters Based on Unstructured Grids
by Panpan Zhang, Jinqiang Bi, Xin Teng and Kexin Bao
J. Mar. Sci. Eng. 2025, 13(10), 1848; https://doi.org/10.3390/jmse13101848 - 24 Sep 2025
Viewed by 101
Abstract
In this paper, we propose a quantitative evaluation method for navigation safety in coastal waters based on unstructured grids. Initially, a comprehensive analysis was conducted on various factors affecting navigation safety, including natural conditions, traffic conditions, and marine hydro-meteorological conditions, to construct a [...] Read more.
In this paper, we propose a quantitative evaluation method for navigation safety in coastal waters based on unstructured grids. Initially, a comprehensive analysis was conducted on various factors affecting navigation safety, including natural conditions, traffic conditions, and marine hydro-meteorological conditions, to construct a multi-source fused spatiotemporal dataset. Subsequently, channel boundary extraction was performed using Constrained Delaunay Triangle–Alpha-Shapes, and the precise extraction of ship navigation areas was performed based on Constrained Delaunay Triangle–Voronoi diagrams. Additionally, temporal feature grids were constructed based on the spatiotemporal characteristics of marine hydro-meteorological data. Finally, unstructured grids for evaluating navigation safety were established through spatial overlay analysis. Based on this foundation, a quantitative analysis and evaluation model for comprehensive navigation safety assessment was developed using the fuzzy evaluation method. By calculating the fuzzy relation matrix and weight vectors, quantitative assessments were conducted for each grid cell, yielding safety risk levels from both spatial and temporal dimensions. An analysis was performed using maritime data within the geographic boundaries of lon.119.17–120.41° E and lat.34.40–35.47° N. The results indicated that the unstructured grid division and channel boundary extraction in the demonstrated sea area were closely related to parameters such as the ship traffic flow patterns and the spatiotemporal characteristics of the marine environmental factors. A quantitative evaluation and analysis of the 186 unstructured grid cells revealed that the high risk levels primarily corresponded to restricted navigation areas, the higher-risk grid cells were mainly anchorages, and the low to lower risk levels were primarily associated with channels and navigable areas for ships. Full article
(This article belongs to the Special Issue Advancements in Maritime Safety and Risk Assessment)
Show Figures

Figure 1

23 pages, 17670 KB  
Article
UWS-YOLO: Advancing Underwater Sonar Object Detection via Transfer Learning and Orthogonal-Snake Convolution Mechanisms
by Liang Zhao, Xu Ren, Lulu Fu, Qing Yun and Jiarun Yang
J. Mar. Sci. Eng. 2025, 13(10), 1847; https://doi.org/10.3390/jmse13101847 - 24 Sep 2025
Viewed by 119
Abstract
Accurate and efficient detection of underwater targets in sonar imagery is critical for applications such as marine exploration, infrastructure inspection, and autonomous navigation. However, sonar-based object detection remains challenging due to low resolution, high noise, cluttered backgrounds, and the scarcity of annotated data. [...] Read more.
Accurate and efficient detection of underwater targets in sonar imagery is critical for applications such as marine exploration, infrastructure inspection, and autonomous navigation. However, sonar-based object detection remains challenging due to low resolution, high noise, cluttered backgrounds, and the scarcity of annotated data. To address these issues, we propose UWS-YOLO, a novel detection framework specifically designed for underwater sonar images. The model integrates three key innovations: (1) a C2F-Ortho module that enhances multi-scale feature representation through orthogonal channel attention, improving sensitivity to small and low-contrast targets; (2) a DySnConv module that employs Dynamic Snake Convolution to adaptively capture elongated and irregular structures such as pipelines and cables; and (3) a cross-modal transfer learning strategy that pre-trains on large-scale optical underwater imagery before fine-tuning on sonar data, effectively mitigating overfitting and bridging the modality gap. Extensive evaluations on real-world sonar datasets demonstrate that UWS-YOLO achieves a mAP@0.5 of 87.1%, outperforming the YOLOv8n baseline by 3.5% and seven state-of-the-art detectors in accuracy while maintaining real-time performance at 158 FPS with only 8.8 GFLOPs. The framework exhibits strong generalization across datasets, robustness to noise, and computational efficiency on embedded devices, confirming its suitability for deployment in resource-constrained underwater environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 4567 KB  
Article
Influence of Sea Level Rise on Tidal Waves of the Yangtze River Estuary
by Kai Yu, Wei Ding, Yunlin Ni, Wei Chen, Mingtao Jiang and Zili Dai
J. Mar. Sci. Eng. 2025, 13(10), 1846; https://doi.org/10.3390/jmse13101846 - 24 Sep 2025
Viewed by 114
Abstract
In order to study the influence of sea level rise (SLR) on tidal wave in tidal reach, a hydrodynamic numerical model of the Yangtze River Estuary was established using MIKE 21. The verified model was used to simulate tidal wave changes from Wuhu [...] Read more.
In order to study the influence of sea level rise (SLR) on tidal wave in tidal reach, a hydrodynamic numerical model of the Yangtze River Estuary was established using MIKE 21. The verified model was used to simulate tidal wave changes from Wuhu to the estuary under SLR scenarios of 0.5 m, 1.0 m, and 2.0 m. The results show the following: (1) The impact of SLR on water level within the tidal reach can be divided into two segments: from the estuary to approximately 35 km upstream of Xuliujing and from there further upstream to the tidal limit. (2) The average water level increase is less than the magnitude of SLR. The attenuation depends on both river discharge and location within the reach; higher river discharge and increasing proximity to inland areas reduce the influence of SLR. (3) Water level fluctuation amplitude increases with SLR, showing minimal sensitivity to river discharge within the estuarine section but significant sensitivity to discharge fluctuations in the upstream section. Finally, tidal current velocity generally increases in response to SLR, with the spatial extent of the increase controlled by river discharge. Full article
Show Figures

Figure 1

18 pages, 3597 KB  
Article
A Pipeline Hoop Stress Measurement Method Based on Propagation Path Correction of LCR Waves
by Bing Chen, Binbin Wang, Feifei Qiu, Chunlang Luo, Jiakai Chen and Guoqing Gou
J. Mar. Sci. Eng. 2025, 13(10), 1845; https://doi.org/10.3390/jmse13101845 - 24 Sep 2025
Viewed by 125
Abstract
Pipelines are extensively used in offshore equipment. Accurate and non-destructive measurement of hoop stress conditions within pipes is critical for ensuring the integrity of offshore structures. However, the existing technology to measure the hoop stress of the pipeline needs to planarize the surface [...] Read more.
Pipelines are extensively used in offshore equipment. Accurate and non-destructive measurement of hoop stress conditions within pipes is critical for ensuring the integrity of offshore structures. However, the existing technology to measure the hoop stress of the pipeline needs to planarize the surface of the pipeline, which greatly limits the detection efficiency. This study proposes a method for pipeline hoop stress measurement using a planar longitudinal critically refracted (LCR) probe, based on correcting LCR wave-propagation paths, which solves the problem of pipeline planarization in pipeline hoop stress measurement. First, a linear relationship between stress variations and ultrasonic time-of-flight changes in the material was established based on the acoustoelastic effect. Finite element analysis was then used to construct an acoustic simulation model for the hoop direction of the pipeline. Simulation results showed that LCR waves propagated within a wedge as quasi-plane waves and, upon oblique incidence into the pipeline, traveled along the chordal direction. Furthermore, using ray tracing methods, a mapping relationship between the pipeline geometry and the ultrasonic propagation path was established. Based on this, the LCR pipeline hoop stress measurement (LCR-HS) method was proposed. Finally, a C-shaped ring was employed to verify the measurement accuracy of the LCR-HS method. Experimental results indicated that the measurement error decreased with increasing pipe diameter and fell below 8% when the diameter exceeded 400 mm. This method enables precise measurement of hoop stress on curved surfaces by revealing the hoop propagation behavior of LCR waves in pipelines. The findings provide a technical reference for evaluating pipeline stress states, which is of significant importance for assessment of pipeline integrity. Full article
(This article belongs to the Special Issue Offshore Pipes and Energy Equipment)
Show Figures

Figure 1

18 pages, 6741 KB  
Article
Revealing Sea-Level Dynamics Driven by El Niño–Southern Oscillation: A Hybrid Local Mean Decomposition–Wavelet Framework for Multi-Scale Analysis
by Xilong Yuan, Shijian Zhou, Fengwei Wang and Huan Wu
J. Mar. Sci. Eng. 2025, 13(10), 1844; https://doi.org/10.3390/jmse13101844 - 24 Sep 2025
Viewed by 125
Abstract
Analysis of global mean sea-level (GMSL) variations provides insights into their spatial and temporal characteristics. To analyze the sea-level cycle and its correlation with the El Niño–Southern Oscillation (ENSO, represented by the Oceanic Niño Index), this study proposes an enhanced analytical framework integrating [...] Read more.
Analysis of global mean sea-level (GMSL) variations provides insights into their spatial and temporal characteristics. To analyze the sea-level cycle and its correlation with the El Niño–Southern Oscillation (ENSO, represented by the Oceanic Niño Index), this study proposes an enhanced analytical framework integrating Local Mean Decomposition with an improved wavelet thresholding technique and wavelet transform. The GMSL time series (January 1993 to July 2020) underwent multi-scale decomposition and noise reduction using Local Mean Decomposition combined with improved wavelet thresholding. Subsequently, the Morlet continuous wavelet transform was applied to analyze the signal characteristics of both GMSL and the Oceanic Niño Index. Finally, cross-wavelet transform and wavelet coherence analyses were employed to investigate their correlation and phase relationships. Key findings include the following: (1) Persistent intra-annual variability (8–16-month cycles) dominates the GMSL signal, superimposed by interannual fluctuations (4–8-month cycles) related to climatic and seasonal forcing. (2) Phase analysis reveals that GMSL generally leads the Oceanic Niño Index during El Niño events but lags during La Niña events. (3) Strong El Niño episodes (May 1997 to May 1998 and October 2014 to April 2016) resulted in substantial net GMSL increases (+7 mm and +6 mm) and significant peak anomalies (+8 mm and +10 mm). (4) Pronounced negative peak anomalies occur during La Niña events, though prolonged events are often masked by the long-term sea-level rise trend, whereas shorter events exhibit clearly discernible and rapid GMSL decline. The results demonstrate that the proposed framework effectively elucidates the multi-scale coupling between ENSO and sea-level variations, underscoring its value for refining the understanding and prediction of climate-driven sea-level changes. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop