Analyses of Different Approaches for Virtual Towing Tank Uncertainty Assessment
Abstract
1. Introduction
2. Verification, Validation and Uncertainty Assessment (VVUA)
2.1. Uncertainty Assessment
2.2. Verification
- Monotonic convergence if ;
- Oscillatory convergence if ;
- Divergence if ;
- Oscillatory divergence if and .
2.3. Validation
3. CFD Numerical Set-Up and Simulations
4. Results for Verification and Validation (V&V)
4.1. Verification
4.2. Validation
5. Conclusions
- Three solutions methodologies, where three results are required to begin the analysis.
- Eça and Hoekstra methodology, where at least four results are required to perform the assessment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| American Institute of Aeronautics and Astronautics | |
| Apparent order of accuracy | |
| Boundary layer | |
| Breadth at design WL, Maximum moulded [m] | |
| Block coefficient [adim] | |
| Computational Fluid Dynamics | |
| Correction Factor | |
| Draught at midship | |
| Error | |
| Error estimate (numerical) | |
| Error contribution for grid size | |
| Error contribution for the iteration number | |
| Error contribution for the step | |
| Error contribution for other parameters | |
| Experimental Fluid Dynamics | |
| Factor of safety | |
| Froude number | |
| Grid Convergence Index | |
| Grid ratio parameter | |
| International Towing Tank Conference | |
| Length of waterline [m] | |
| model value | |
| Modelling Uncertainty | |
| Modelling simulation error | |
| Number of cells inside the domain | |
| Numerical Uncertainty | |
| Numerical simulation error | |
| Numerical simulation error estimate of sign and magnitude | |
| Open Field Operation And Manipulation | |
| Ratio of solution change | |
| Resistance of advance for the model evaluated by CFD [N] | |
| Resistance of advance for the model evaluated by EFD [N] | |
| Reynolds number [adim] | |
| Scale ratio [adim] | |
| Simulation Uncertainty | |
| Simulation correct uncertainty | |
| Simulation error | |
| Simulation result | |
| Simulation correct value | |
| Simulation 1 value, Simulation 2 value, …, Simulation n value | |
| Solution extrapolated from solution 1 and solution 2 | |
| True value | |
| ∇ | Volume, displacement [m3] |
| Uncertainty | |
| Uncertainty Assessment | |
| Wetted surface area [m2] | |
| Verification and Validation | |
| Verification, Validation and Uncertainty Assessment |
References
- Lewis, E.V. Principles of Naval Architecture: Resistance, Propulsion and Vibration, 2nd ed.; Society of Naval Architects and Marine Engineer: Jersey City, NJ, USA, 1988; p. 5. ISBN 0-939773-01-5. [Google Scholar]
- History of ITTC. Available online: https://ittc.info/about-ittc/history (accessed on 15 September 2025).
- ITTC Quality System Manual Recommended Procedures and Guidelines. Register. Available online: https://ittc.info/media/11718/0_0.pdf (accessed on 15 September 2025).
- Runchal, A.K. Evolution of CFD as an engineering science. A personal perspective with emphasis on the finite volume method. Comptes Rendus Mécanique 2022, 350, 233–258. [Google Scholar] [CrossRef]
- Larsson, L.; Stern, F.; Visonneau, M. CFD in Ship Hydrodynamics—Results of the Gothenburg 2010 Workshop. In MARINE 2011, IV International Conference on Computational Methods in Marine Engineering; Springer: Dordrecht, The Netherlands, 2013; pp. 237–259. [Google Scholar] [CrossRef]
- Lopes, R.; Eslamdoost, A.; Everyd Bensow, R.; Ponkratov, D.; Kömpe, A.; Geremia, P.; Birant Pekküçük, Ç.; Aydin, C.; Villa, D.; Ntouras, D.; et al. A Summary of the Lucy Ashton Resistance Prediction Workshop. In Proceedings of the MARINE 2025, XI International Conference on Computational Methods in Marine Engineering, Edinburgh, UK, 23–25 June 2025; Preprint submitted to Ocean Engineering: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Islam, H.; Guedes Soares, C. Uncertainty analysis in ship resistance prediction using OpenFOAM. Ocean. Eng. 2019, 191, 105805. [Google Scholar] [CrossRef]
- Celik, I.; Ghia, U.; Roache, P.J.; Freitas, C.; Coloman, H.; Raad, P. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar] [CrossRef]
- Stern, F.; Wilson, R.; Coleman, H.; Paterson, E. Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures. J. Fluids Eng. 2001, 123, 793–802. [Google Scholar] [CrossRef]
- Xing, T.; Stern, F. Factors of Safety for Richardson Extrapolation; IIHR—Hydroscience & Engineering: Iowa City, IA, USA, 2010. [Google Scholar] [CrossRef]
- Eça, L.; Hoekstra, M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. J. Comput. Phys. 2014, 262, 104–130. [Google Scholar] [CrossRef]
- Diez, M.; Broglia, R.; Durante, D.; Olivieri, A.; Campana, E.; Stern, F. Validation of Uncertainty Quantification Methods for High-Fidelity CFD of Ship Response in Irregular Waves. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- ITTC Quality System Manual Recommended Procedures and Guidelines. Uncertainty Analysis in CFD Verification and Validation, Methodology and Procedures 7.5-03-01-01. Available online: https://www.ittc.info/media/11950/75-03-01-01.pdf (accessed on 15 September 2025).
- Sadrehaghighi, I. Computational Error and Uncertainty Quantification in CFD; CFD Open Series: Annapolis, MD, USA, 2021. [Google Scholar] [CrossRef]
- American Institute of Aeronautics and Astronautics (AIAA). Guide for the Verification and Validation of Computational Fluid Dynamics Simulations; AIAA G-077-1998; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998. [Google Scholar]
- Coleman, H.W.; Steele, W.G. Experimentation and Uncertainty Analysis for Engineers; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef]
- Richardson, L.F.; Gaunt, J.A., VIII. The deferred approach to the limit. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1997, 226, 299–361. [Google Scholar] [CrossRef]
- Wilson, R.; Stern, F.; Coleman, H.; Paterson, E. Comprehensive Approach to Verification and Validation of CFD Simulations—Part 2: Application for Rans Simulation of a Cargo/Container Ship. J. Fluids Eng. 2001, 123, 803–810. [Google Scholar] [CrossRef]
- Huang, S.; Jiao, J.; Guedes Soares, C. Uncertainty analyses on the CFD–FEA co-simulations of ship wave loads and whipping responses. Mar. Struct. 2022, 82, 103129. [Google Scholar] [CrossRef]
- Lakatoš, M.; Mancini, S.; Niazmand Bilandi, R.; Tabri, K. Verification and validation of hard-chine hull performance in calm water: Effects of numerical setups and hull configurations. Ocean. Eng. 2025, 329, 121056. [Google Scholar] [CrossRef]
- Coleman, H.; Stern, F.; Di Mascio, A.; Campana, E. The Problem with Oscillatory Behavior in Grid Convergence Studies. J. Fluids Eng. 2001, 123, 438–439. [Google Scholar] [CrossRef]
- Roache, P.J. Verification and Validation in Computational Science and Engineering; Hermosa Publishers: Socorro, NM, USA, 1998. [Google Scholar]
- Villa, D.; Furcas, F.; Pralits, J.; Vernengo, G.; Gaggero, S. An Effective Mesh Deformation Approach for Hull Shape Design by Optimization. J. Mar. Sci. Eng. 2021, 9, 1107. [Google Scholar] [CrossRef]
- ITTC Quality System Manual Recommended Procedures and Guidelines. Practical Guidelines for Ship Resistance CFD. 7.5-03-03-04. Available online: https://www.ittc.info/media/9775/75-03-02-04.pdf (accessed on 15 September 2025).
- Greenshields, C.; Weller, H. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Ltd.: Reading, UK, 2022. [Google Scholar]
- Gaggero, S.; Villa, D.; Viviani, M. The Kriso container ship (KCS) test case: An open source overview. In Proceedings of the MARINE 2015—VI International Computational Methods in Marine Engineering, Rome, Italy, 15–17 June 2015; CIMNE: Barcelona, Spain, 2015; pp. 735–749. [Google Scholar]
- Chiroșcă, A.; Rusu, L. Comparison between Model Test and Three CFD Studies for a Benchmark Container Ship. J. Mar. Sci. Eng. 2021, 9, 62. [Google Scholar] [CrossRef]
- Leroyer, A.; Wackers, J.; Queutey, P.; Guilmineau, E. Numerical strategies to speed up CFD computations with free surface—Application to the dynamic equilibrium of hulls. Ocean. Eng. 2011, 38, 2070–2076. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Bozzo, S.; Villa, D. A Fast Numerical Procedure to Design the Shaftline Struts. In Proceedings of the 13th Symposium on High Speed Marine Vehicles (HSMV), Naples, Italy, 23–25 October 2023; IOS Press Ebooks: Amsterdam, The Netherlands, 2023; pp. 42–52. [Google Scholar] [CrossRef]
- Bozzo, S.; Ferrando, M.; Villa, D. Analysis of the virtual towing tank accuracy by means of a new EFD database. In Proceedings of the 21st International Conference on Ships and Maritime Research (NAV 2025), Messina, Italy, 18–20 June 2025; IOS Press Ebooks: Amsterdam, The Netherlands, 2025; pp. 241–251. [Google Scholar]
- Levin, O. Discrete Mathematics: An Open Introduction, 4th ed.; Oscar Levin: Greeley, CO, USA, 2025; Available online: https://discrete.openmathbooks.org (accessed on 15 September 2025).
- ITTC. The Resistance Committee. In Proceedings of the 28th ITTC, Wuxi, China, 17–22 September 2017; Test Data. Volume I. Available online: https://www.ittc.info/media/7797/4-resistance-committee.pdf (accessed on 15 September 2025).













| Boundary | Position [m] | Type |
|---|---|---|
| Upstream | Velocity inlet | |
| Downstream | Pressure outlet | |
| Side | Symmetry plane | |
| Centre symmetry plane | Symmetry plane | |
| Bottom | Symmetry plane | |
| Top | Symmetry plane | |
| Ship model (half hull) | left side | Wall |
| Dimension for Model Hull | Symbol | HULL_A | HULL_B | UoM |
|---|---|---|---|---|
| Length of waterline | 5.5794 | 3.6074 | m | |
| Maximum moulded breadth at design WL | 0.8390 | 0.7715 | m | |
| Draught at midship | 0.2650 | 0.2830 | m | |
| Displacement volume | ∇ | 0.6585 | 0.4208 | m3 |
| Area of wetted surface | S | 4.9238 | 3.2950 | m2 |
| Ratio L/B | 6.6314 | 4.6755 | - | |
| Ratio B/T | 3.1662 | 2.7260 | - | |
| Block coefficient | 0.5309 | 0.5342 | - | |
| Scale ratio | 24.763 | 28.750 | - | |
| Froude number | 0.27 ÷ 0.34 | 0.22 ÷ 0.34 | - |
| Case_ID | Fr | Nr. Cells (106) | Nr. Sym | |
|---|---|---|---|---|
| Hull_A-1 | 0.276 | 0.7 ÷ 4.0 | 2.30% | 7 |
| Hull_A-2 | 0.314 | 0.7 ÷ 2.9 | 2.27% | 6 |
| Hull_A-3 | 0.342 | 0.7 ÷ 4.0 | 1.99% | 7 |
| Hull_B-1 | 0.158 | 0.9 ÷ 2.9 | 0.60% | 7 |
| Hull_B-2 | 0.222 | 0.7 ÷ 4.0 | 1.18% | 9 |
| Hull_B-3 | 0.285 | 0.9 ÷ 5.0 | 1.22% | 8 |
| Hull_B-3* | 0.285 (*) | 0.9 ÷ 4.8 | 1.82% | 7 |
| Hull_B-4 | 0.348 | 0.9 ÷ 5.0 | 1.26% | 8 |
| Hull_B-4* | 0.348 (*) | 0.6 ÷ 9.7 | 1.67% | 13 |
| Symbol [UoM] | Celik | Stern (2001) | Stern (ITTC) | Eça et al. (2014) 1 | ||||
|---|---|---|---|---|---|---|---|---|
| H_B-3 * | H_B-4 * | H_B-3 * | H_B-4 * | H_B-3 * | H_B-4 * | H_B-3 * | H_B-4 * | |
| [-] | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| R [-] | 0.303 | 0.190 | 0.303 | 0.190 | 0.303 | 0.190 | - | - |
| [-] | 5.558 | 4.544 | 3.035 | 2.437 | 3.922 | 3.102 | 2.000 | 1.820 |
| [%] | 0.685% | 2.067% | 0.319% | 1.948% | −0.160% | 1.777% | −1.078% | 0.745% |
[N /// %] | 0.002 0.19% | 0.000 0.04% | - | - | - | - | - | - |
| 0.002 0.24% | 0.001 0.05% | - | - | - | - | - | - | |
[N /// %] | - | - | 0.087 0.39% | 0.052 0.10% | - | - | - | - |
[N /// %] | - | - | 0.025 0.11% | 0.039 0.08% | - | - | - | - |
[N /// %] | - | - | - | - | 1.128 5.04% | 1.155 2.32% | - | |
[N /// %] | - | - | - | - | - | - | 1.270 5.67% | 4.891 9.81% |
| Symbol [UoM] | Celik | Stern (2001) | Stern (ITTC) | Eça et al. (2014) 1 |
|---|---|---|---|---|
| [-] | 2 | 2 | 2 | 2 |
| [-] | 0.377 | 0.377 | 0.377 | - |
| [-] | 2.700 | 5.129 | 4.104 | 2.000 |
| [%] | −0.230% | 0.459% | −0.707% | −1.078% |
[N /// %] | 0.011 1.11% | - | - | - |
| 0.014 1.37% | - | - | - | |
[N /// %] | - | 0.176 0.79% | - | - |
[N /// %] | - | 0.011 0.05% | - | - |
[N /// %] | - | - | 1.326 5.92% | |
[N /// %] | - | - | - | 1.270 5.67% |
| Symbol [UoM] | Celik | Stern (2001) | Stern (ITTC) | Eça et al. (2014) 1 |
|---|---|---|---|---|
| [-] | 2 | 2 | 2 | 2 |
| [-] | 0.478 | 0.478 | 0.478 | - |
| [-] | 1.821 | 2.149 | 2.004 | 1.640 |
| [%] | 0.329% (2.067%) 2 | 0.564% (1.948%) 2 | −0.959% (1.777%) 2 | 0.125% (0.745%) 2 |
[N /// %] | 0.011 1.13% | - | - | - |
| 0.014 1.39% (0.05%) 2 | - | - | - | |
[N /// %] | - | 0.051 0.10% (0.10%) 2 | - | - |
[N /// %] | - | 0.119 0.24% (0.08%) 2 | - | - |
[N /// %] | - | - | 0.860 1.74% (2.32%) 2 | |
[N /// %] | - | - | - | 1.749 3.53% (9.81%) 2 |
| Case_ID | Fr | Eça et al. | Celik 1 | Stern and Xing 1 | ||||
|---|---|---|---|---|---|---|---|---|
| GCI | ||||||||
| Hull_A-1 | 0.276 | 2.30% | −2.32% | 6.6% | −1.79% | 0.0% | −1.80% | 0.06% |
| Hull_A-2 | 0.314 | 2.27% | −4.49% | 11.1% | −0.27% | 0.0% | −0.29% | 0.06% |
| Hull_A-3 | 0.342 | 1.99% | −0.34% | 11.5% | - | - | - | - |
| Hull_B-1 | 0.158 | 0.60% | 1.22% | 3.7% | - | - | - | |
| Hull_B-2 | 0.222 | 1.18% | −0.01% | 6.9% | 1.28% | 0.00% | 1.27% | 0.05% |
| Hull_B-3 | 0.285 | 1.22% | 0.63% | 7.1% | 2.07% | 0.08% | 1.92% | 1.37% |
| Hull_B-3* | 0.285 * | 1.82% | −1.07% | 5.7% | 0.68% | 0.23% | −0.16% | 5.04% |
| Hull_B-3*_Filt | 0.285 * | 1.82% | 0.86% | 0.03% | −0.22% | 1.37% | −0.71% | 5.91% |
| Hull_B-4 | 0.348 | 1.26% | 2.41% | 7.2% | - | - | - | - |
| Hull_B-4* | 0.348 * | 1.67% | 0.75% | 9.8% | 2.06% | 0.05% | 1.77% | 2.32% |
| Hull_B-4*_Filt | 0.348 * | 1.64% | 0.12% | 3.5% | 0.33% | 1.39% | −0.96% | 1.74% |
| Mean | - | 1.62% | −0.20% | 6.65% | 0.52% | 0.39% | 0.13% | 2.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozzo, S.; Villa, D.; Mancini, S. Analyses of Different Approaches for Virtual Towing Tank Uncertainty Assessment. J. Mar. Sci. Eng. 2025, 13, 1882. https://doi.org/10.3390/jmse13101882
Bozzo S, Villa D, Mancini S. Analyses of Different Approaches for Virtual Towing Tank Uncertainty Assessment. Journal of Marine Science and Engineering. 2025; 13(10):1882. https://doi.org/10.3390/jmse13101882
Chicago/Turabian StyleBozzo, Simone, Diego Villa, and Simone Mancini. 2025. "Analyses of Different Approaches for Virtual Towing Tank Uncertainty Assessment" Journal of Marine Science and Engineering 13, no. 10: 1882. https://doi.org/10.3390/jmse13101882
APA StyleBozzo, S., Villa, D., & Mancini, S. (2025). Analyses of Different Approaches for Virtual Towing Tank Uncertainty Assessment. Journal of Marine Science and Engineering, 13(10), 1882. https://doi.org/10.3390/jmse13101882

