Climate Change Facilitates the Formation of Natural Barriers in Low-Inflow Estuaries, Altering Environmental Conditions and Faunal Assemblages
Abstract
1. Introduction
2. Study Area
3. Types of Barriers
3.1. Sand Bar at the Mouth of the Estuary
3.2. Barriers in Riverine Reaches
4. Effects of Barriers
4.1. Impediments to Movement
4.2. Hypersalinity
4.3. Drying
4.4. Nutrient Levels
4.5. Low Dissolved Oxygen Concentrations
5. Management
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elliott, M.; McLusky, D.S. The need for definitions in understanding estuaries. Estuar. Coast. Shelf Sci. 2002, 55, 815–827. [Google Scholar] [CrossRef]
- McLusky, D.S.; Elliott, M. Transitional waters: A new approach, semantics or just muddying the waters? Estuar. Coast. Shelf Sci. 2007, 71, 359–363. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models: Conceptual models and stratigraphic implications. J. Sediment. Petrol. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Morales, J.A. Fluvial-Influenced Systems I: Estuaries. In Coastal Geology; Springer Nature: Cham, Switzerland, 2022; pp. 309–327. [Google Scholar]
- Pritchard, D.W. What is an estuary: A physical viewpoint. Am. Assoc. Adv. Sci. 1967, 83, 3–5. [Google Scholar]
- Fairbridge, R.W. The estuary: Its definition and geodynamic cycle. In Chemistry and Biogeography of Estuaries; Olausson, E., Cato, I., Eds.; Wiley: New York, NY, USA, 1980; pp. 1–35. [Google Scholar]
- Pritchard, D.W. Estuarine circulation. Proc. Am. Soc. Civ. Eng. 1955, 81, 1–11. [Google Scholar]
- Davies, J.L. A morphogenic approach to world shorelines. Z. Geomorphol. 1964, 8, 27–42. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Warwick, R.M.; Potter, I.C. The contrasting ecology of temperate macrotidal and microtidal estuaries. Oceanogr. Mar. Biol. Annu. Rev. 2016, 54, 73–172. [Google Scholar] [CrossRef]
- Rich, A.; Keller, E.A. A hydrologic and geomorphic model of estuary breaching and closure. Geomorphology 2013, 191, 64–74. [Google Scholar] [CrossRef]
- Cooper, J.A.G. Geomorphological variability among microtidal estuaries from the wave-dominated South African coast. Geomorphology 2001, 40, 99–122. [Google Scholar] [CrossRef]
- Roy, P.S.; Williams, R.J.; Jones, A.R.; Yassini, I.; Gibbs, P.J.; Coates, B.; West, R.J.; Scanes, P.R.; Hudson, J.P.; Nichol, S. Structure and function of south-east Australian estuaries. Estuar. Coast. Shelf Sci. 2001, 53, 351–384. [Google Scholar] [CrossRef]
- van Niekerk, L.; Adams, J.B.; James, N.C.; Lamberth, S.J.; MacKay, C.F.; Turpie, J.K.; Rajkaran, A.; Weerts, S.P.; Whitfield, A.K. An Estuary Ecosystem Classification that encompasses biogeography and a high diversity of types in support of protection and management. Afr. J. Aquat. Sci. 2020, 45, 199–216. [Google Scholar] [CrossRef]
- McSweeney, S.L.; Kennedy, D.M.; Rutherfurd, I.D.; Stout, J.C. Intermittently closed/open lakes and lagoons: Their global distribution and boundary conditions. Geomorphology 2017, 292, 142–152. [Google Scholar] [CrossRef]
- Khojasteh, D.; Rao, S.; McSweeney, S.; Ibaceta, R.; Nicholls, R.J.; French, J.; Glamore, W.; Largier, J.L.; Adams, J.; Hughes, M.G.; et al. Intermittent estuaries deserve global attention as vulnerable and vital ecosystems. Commun. Earth Environ. 2025, 6, 443. [Google Scholar] [CrossRef]
- Largier, J.L. Recognizing low-inflow estuaries as a common estuary paradigm. Estuaries Coasts 2023, 46, 1949–1970. [Google Scholar] [CrossRef]
- Whitfield, A.K. The characterization of southern African estuarine systems. S. Afr. J. Aquat. Sci. 1992, 26, 31–38. [Google Scholar] [CrossRef]
- Potter, I.C.; Hyndes, G.A. Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia: A review. Austral Ecol. 1999, 24, 395–421. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Adams, J.B.; Bate, G.C.; Bezuidenhout, K.; Bornman, T.G.; Cowley, P.D.; Froneman, P.W.; Gama, P.T.; James, N.C.; Mackenzie, B.; et al. A multidisciplinary study of a small, temporarily open/closed South African estuary, with particular emphasis on the influence of mouth state on the ecology of the system. Afr. J. Mar. Sci. 2008, 30, 453–473. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Biguino, B.; Haigh, I.D.; Dias, J.M.; Brito, A.C. Climate change in estuarine systems: Patterns and gaps using a meta-analysis approach. Sci. Total Environ. 2023, 858, 159742. [Google Scholar] [CrossRef]
- Warwick, R.M.; Tweedley, J.R.; Potter, I.C. Microtidal estuaries warrant special management measures that recognise their critical vulnerability to pollution and climate change. Mar. Pollut. Bull. 2018, 135, 41–46. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Warwick, R.M.; Hallett, C.S.; Potter, I.C. Fish-based indicators of estuarine condition that do not require reference data. Estuar. Coast. Shelf Sci. 2017, 191, 209–220. [Google Scholar] [CrossRef]
- Hodgkin, E.P.; Hesp, P. Estuaries to salt lakes: Holocene transformation of the estuarine ecosystems of south-western Australia. Mar. Freshw. Res. 1998, 49, 183–201. [Google Scholar] [CrossRef]
- Hallett, C.S.; Hobday, A.J.; Tweedley, J.R.; Thompson, P.A.; McMahon, K.; Valesini, F.J. Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change 2018, 18, 1357–1373. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Klausmeyer, K.R.; Shaw, M.R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 2009, 4, e6392. [Google Scholar] [CrossRef] [PubMed]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. In Developments in Earth and Environmental Sciences; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 1–26. [Google Scholar]
- Giorgi, F.; Bi, X. Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys. Res. Lett. 2005, 32, L21715. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Urdiales-Flores, D.; Zittis, G.; Hadjinicolaou, P.; Osipov, S.; Klingmüller, K.; Mihalopoulos, N.; Kanakidou, M.; Economou, T.; Lelieveld, J. Drivers of accelerated warming in Mediterranean climate-type regions. npj Clim. Atmos. Sci. 2023, 6, 97. [Google Scholar] [CrossRef]
- Hoeksema, S.D.; Chuwen, B.M.; Tweedley, J.R.; Potter, I.C. Factors influencing marked variations in the frequency and timing of bar breaching and salinity and oxygen regimes among normally-closed estuaries. Estuar. Coast. Shelf Sci. 2018, 208, 205–218. [Google Scholar] [CrossRef]
- Rauniyar, S.P.; Hope, P.; Power, S.B.; Grose, M.; Jones, D. The role of internal variability and external forcing on southwestern Australian rainfall: Prospects for very wet or dry years. Sci. Rep. 2023, 13, 21578. [Google Scholar] [CrossRef]
- Brearley, A. Ernest Hodgkin’s Swanland, 1st ed.; University of Western Australia Press: Crawley, UK, 2005; p. 550. [Google Scholar]
- Petrone, K.C.; Hughes, J.D.; Van Niel, T.G.; Silberstein, R.P. Streamflow decline in southwestern Australia, 1950–2008. Geophys. Res. Lett. 2010, 37, L11401. [Google Scholar] [CrossRef]
- Silberstein, R.P.; Aryal, S.K.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S.P.; Boniecka, L.; Hodgson, G.A.; Bari, M.A.; Viney, N.R.; et al. Climate change and runoff in south-western Australia. J. Hydrol. 2012, 475, 441–455. [Google Scholar] [CrossRef]
- Smith, I.; Power, S. Past and future changes to inflows into Perth (Western Australia) dams. J. Hydrol. Reg. Stud. 2014, 2, 84–96. [Google Scholar] [CrossRef]
- Andrys, J.; Kala, J.; Lyons, T.J. Regional climate projections of mean and extreme climate for the southwest of Western Australia (1970–1999 compared to 2030–2059). Clim. Dyn. 2017, 48, 1723–1747. [Google Scholar] [CrossRef]
- Pearce, A.; Feng, M. Observations of warming on the Western Australian continental shelf. Mar. Freshw. Res. 2007, 58, 914–920. [Google Scholar] [CrossRef]
- BOM. Climate Data Online. Available online: http://www.bom.gov.au/climate/data/index.shtml (accessed on 7 October 2025).
- Stephens, C.M.; McVicar, T.R.; Johnson, F.M.; Marshall, L.A. Revisiting pan evaporation trends in Australia a decade on. Geophys. Res. Lett. 2018, 45, 11164–11172. [Google Scholar] [CrossRef]
- Church, J.A.; Hunter, J.R.; McInnes, K.; White, N.J. Sea-level rise around the Australian coastline and the changing frequency of extreme events. Aust. Meteorol. Mag. 2006, 55, 253–260. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Morgan, D.A.; Unmack, P.J.; Beatty, S.J.; Ebner, B.C.; Allen, M.G.; Donaldson, J.A.; Murphy, J. An overview of the ‘freshwater fishes’ of Western Australia. J. R. Soc. West. Aust. 2014, 97, 263–278. [Google Scholar]
- Tittensor, D.P.; Mora, C.; Jetz, W.; Lotze, H.K.; Ricard, D.; Berghe, E.V.; Worm, B. Global patterns and predictors of marine biodiversity across taxa. Nature 2010, 466, 1098–1101. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Harrison, T.D.; Tweedley, J.R. Comparisons between estuary-associated ichthyofaunas in ecoregions around the Indian Ocean. Estuar. Coast. Shelf Sci. 2025, 321, 109335. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Warwick, R.M.; Clarke, K.R.; Potter, I.C. Family-level AMBI is valid for use in the north-eastern Atlantic but not for assessing the health of microtidal Australian estuaries. Estuar. Coast. Shelf Sci. 2014, 141, 85–96. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Pattiaratchi, C.; Masselink, G. A morphodynamic model to simulate the seasonal closure of tidal inlets. Coast. Eng. 1999, 37, 1–36. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Pattiaratchi, C. The seasonal closure of tidal inlets: Wilson Inlet—A case study. Coast. Eng. 1999, 37, 37–56. [Google Scholar] [CrossRef]
- Potter, I.C.; Chuwen, B.M.; Hoeksema, S.D.; Elliott, M. The concept of an estuary: A definition that incorporates systems which can become closed to the ocean and hypersaline. Estuar. Coast. Shelf Sci. 2010, 87, 497–500. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef]
- Mueller, N. Geoscience Australia Landsat Water Observation Statistics Collection 3. Available online: https://researchdata.edu.au/geoscience-australia-landsat-collection-3/3423147 (accessed on 16 September 2025).
- Whitfield, A.K.; Bate, G.C. A Review of Information on Temporarily Open/Closed Estuaries in the Warm and Cool Temperate Biogeographic Regions of South Africa, with Particular Emphasis on the Influence of River Flow on These Systems; Water Research Commission: Pretoria, South Africa, 2007; p. 214. [Google Scholar]
- Chuwen, B.M.; Hoeksema, S.D.; Potter, I.C. The divergent environmental characteristics of permanently-open, seasonally-open and normally-closed estuaries of south-western Australia. Estuar. Coast. Shelf Sci. 2009, 85, 12–21. [Google Scholar] [CrossRef]
- DoE. Jerdacuttup River Action Plan; Water and Rivers Commission: New Delhi, India, 2004; p. 49. [Google Scholar]
- Lane, J.A.K.; Pearson, G.B.; Clarke, A.G.; Winchcombe, Y.C.; Munro, D.R. Depths and Salinities of Wetlands in South-Western Australia: 1977–2000; Department of Conservation and Land Management: Busselton, Australia, 2004; p. 129. [Google Scholar]
- Hodgkin, E.P. Culham Inlet: The history and management of a coastal salt lake in southwestern Australia. J. R. Soc. West. Aust. 1998, 80, 239–247. [Google Scholar]
- Tweedley, J.R.; Dittmann, S.R.; Whitfield, A.K.; Withers, K.; Hoeksema, S.D.; Potter, I.C. Hypersalinity: Global distribution, causes, and present and future effects on the biota of estuaries and lagoons. In Coasts and Estuaries; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 523–546. [Google Scholar]
- Tweedley, J.R.; Krispyn, K.N. Protracted bar closure temporarily transforms an estuary into a salt lake. Pac. Conserv. Biol. 2024, 30, PC24007. [Google Scholar] [CrossRef]
- Pen, L.J. Managing Our Rivers; Waters and Rivers Commission: Perth, WA, Australia, 1999. [Google Scholar]
- Krispyn, K.N.; Loneragan, N.R.; Whitfield, A.K.; Tweedley, J.R. Salted mullet: Protracted occurrence of Mugil cephalus under extreme hypersaline conditions. Estuar. Coast. Shelf Sci. 2021, 261, 107533. [Google Scholar] [CrossRef]
- Mayer, X.M.; Ruprecht, J.K.; Bari, M.A. Stream Salinity Status and Trends in South-West Western Australia; Department of Environment: Perth, WA, Australia, 2005; p. 176. [Google Scholar]
- Valesini, F.J.; Hallett, C.S.; Hipsey, M.R.; Kilminster, K.L.; Huang, P.; Hennig, K. Peel-Harvey Estuary, Western Australia. In Coasts and Estuaries; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–120. [Google Scholar]
- Hodgkin, E.P.; Clark, R. Stokes Inlet and Other Estuaries of the Shire of Esperance. Estuaries and Coastal Lagoons of South Western Australia; Environmental Protection Authority: Perth, WA, Australia, 1989. [Google Scholar]
- Jones, R.; Bicknell, C.; Ilich, K. The reinstatement of Bandy Creek boat harbour, Esperance. In Coasts and Ports 2009: In a Dynamic Environment; Engineers Australia: Wellington, New Zealand, 2009. [Google Scholar]
- Hodgkin, E.P.; Clark, R. Estuaries of the Shire of Albany. Estuaries and Coastal Lagoons of South Western Australia; Environmental Protection Authority: Perth, WA, Australia, 1990. [Google Scholar]
- van Niekerk, L.; Lamberth, S.J.; James, N.C.; Taljaard, S.; Adams, J.B.; Theron, A.K.; Krug, M. The vulnerability of South African estuaries to climate change: A review and synthesis. Diversity 2022, 14, 697. [Google Scholar] [CrossRef]
- Quammen, M.L.; Onuf, C.P. Laguna Madre: Seagrass changes continue decades after salinity reduction. Estuaries 1993, 16, 302–310. [Google Scholar] [CrossRef]
- Hope, P.; Abbs, D.; Bhend, J.; Chiew, F.; Church, J.; Ekström, M.; Kirono, D.; Lenton, A.; Lucas, C.; McInnes, K.; et al. Southern and South-Western Flatlands Cluster Report. Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports; CSIRO and Bureau of Meteorology: Canberra, ACT, Australia, 2015. [Google Scholar]
- Aschoff, J.L.; Olariu, C.; Steel, R.J. Recognition and significance of bayhead delta deposits in the rock record: A comparison of modern and ancient systems. Sedimentology 2018, 65, 62–95. [Google Scholar] [CrossRef]
- Simms, A.R.; Rodriguez, A.B.; Anderson, J.B. Bayhead deltas and shorelines: Insights from modern and ancient examples. Sediment. Geol. 2018, 374, 17–35. [Google Scholar] [CrossRef]
- Szupiany, R.N.; Amsler, M.L.; Hernandez, J.; Parsons, D.R.; Best, J.L.; Fornari, E.; Trento, A. Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river. Water Resour. Res. 2012, 48, W11515. [Google Scholar] [CrossRef]
- Rodrigues, S.; Mosselman, E.; Claude, N.; Wintenberger, C.L.; Juge, P. Alternate bars in a sandy gravel bed river: Generation, migration and interactions with superimposed dunes. Earth Surf. Process. Landf. 2015, 40, 610–628. [Google Scholar] [CrossRef]
- Bonada, N.; Cañedo-Argüelles, M.; Gallart, F.; von Schiller, D.; Fortuño, P.; Latron, J.; Llorens, P.; Múrria, C.; Soria, M.; Vinyoles, D.; et al. Conservation and management of isolated pools in temporary rivers. Water 2020, 12, 2870. [Google Scholar] [CrossRef]
- Hodgkin, E.P.; Clark, R. Estuaries of the Shire of Ravensthorpe and the Fitzgerald River National Park. Estuaries and Coastal Lagoons of South Western Australia; Environmental Protection Authority: Perth, WA, Australia, 1990. [Google Scholar]
- Hoeksema, S.D.; Chuwen, B.M.; Tweedley, J.R.; Potter, I.C. Ichthyofaunas of nearshore, shallow waters of normally-closed estuaries are highly depauperate and influenced markedly by salinity and oxygen concentration. Estuar. Coast. Shelf Sci. 2023, 291, 108410. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Krispyn, K.N. Fish and salinities of low-inflow estuaries in the Fitzgerald Biosphere. FiSHMED Fishes Mediterr. Environ. 2025, 1, 1–14. [Google Scholar] [CrossRef]
- Potter, I.C.; Tweedley, J.R.; Elliott, M.; Whitfield, A.K. The ways in which fish use estuaries: A refinement and expansion of the guild approach. Fish Fish. 2015, 16, 230–239. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Able, K.W.; Blaber, S.J.M.; Elliott, M.; Franco, A.; Harrison, T.D.; Potter, I.C.; Tweedley, J.R. Fish assemblages and functional groups. In Fish and Fisheries in Estuaries; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 16–59. [Google Scholar]
- Macey, D.J.; Potter, I.C. Lethal temperatures of ammocoetes of the Southern Hemisphere lamprey, Geotria australis Gray. Environ. Biol. Fishes 1978, 3, 241–243. [Google Scholar] [CrossRef]
- Clemens, B.J. Warmwater temperatures (≥20 °C) as a threat to Pacific lamprey: Implications of climate change. J. Fish Wildl. Manag. 2022, 13, 591–598. [Google Scholar] [CrossRef]
- Miller, A.K.; Baker, C.; Kitson, J.C.; Yick, J.L.; Manquel, P.E.I.; Alexander, A.; Gemmell, N.J. The Southern Hemisphere lampreys (Geotriidae and Mordaciidae). Rev. Fish Biol. Fish. 2021, 31, 201–232. [Google Scholar] [CrossRef]
- Paton, K.R.; Cake, M.H.; Potter, I.C. Metabolic responses to exhaustive exercise change markedly during the protracted non-trophic spawning migration of the lamprey Geotria australis. J. Comp. Physiol. B 2011, 181, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Loneragan, N.R.; Potter, I.C.; Lenanton, R.C.J.; Caputi, N. Influence of environmental variables on the fish fauna of the deeper waters of a large Australian estuary. Mar. Biol. 1987, 94, 631–641. [Google Scholar] [CrossRef]
- Loneragan, N.R.; Potter, I.C.; Lenanton, R.C.J. Influence of site, season and year on contributions made by marine, estuarine, diadromous and freshwater species to the fish fauna of a temperate Australian estuary. Mar. Biol. 1989, 103, 461–479. [Google Scholar] [CrossRef]
- Chuwen, B.M.; Hoeksema, S.D.; Potter, I.C. Factors influencing the characteristics of the fish faunas in offshore, deeper waters of permanently-open, seasonally-open and normally-closed estuaries. Estuar. Coast. Shelf Sci. 2009, 81, 279–295. [Google Scholar] [CrossRef]
- Koster, W.; Church, B.; Crook, D.; Dawson, D.; Fanson, B.; O’Connor, J.; Stuart, I. Factors influencing migration of short-finned eels (Anguilla australis) over 3 years from a wetland system, Lake Condah, south-east Australia, downstream to the sea. J. Fish Biol. 2024, 104, 1824–1835. [Google Scholar] [CrossRef]
- Barbee, N.; Hale, R.; Hicks, A.; Semmens, D.; Downes, B.; Swearer, S. Large-scale variation in life history traits of the widespread diadromous fish, Galaxias maculatus, reflects geographic differences in local environmental conditions. Mar. Freshw. Res. 2011, 62, 790–800. [Google Scholar] [CrossRef]
- Chapman, A.; Morgan, D.L.; Beatty, S.J.; Gill, H.S. Variation in life history of land-locked lacustrine and riverine populations of Galaxias maculatus (Jenyns 1842) in Western Australia. Environ. Biol. Fishes 2006, 77, 21–37. [Google Scholar] [CrossRef]
- Chubb, C.F.; Potter, I.C.; Grant, C.J.; Lenanton, R.C.J.; Wallace, J. Age, stucture, growth rates and movements of sea mullet, Mugil cephalus L., and Yellow-eye Mullet, Aldrichetta forsteri (Valenciennes), in the Swan-Avon river system, Western Australia. Mar. Freshw. Res. 1981, 32, 605–628. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Panfili, J.; Durand, J.D. A global review of the cosmopolitan flathead mullet Mugil cephalus Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspects of this apparent species complex. Rev. Fish Biol. Fish. 2012, 22, 641–681. [Google Scholar] [CrossRef]
- Wallace, J.H. The Estuarine Fishes of the East Coast of South Africa; Part 3. Reproduction; Investigative Report of the Oceanographic Research Institute: Durban, South Africa, 1975; Volume 41, pp. 1–48. [Google Scholar]
- Taylor, M.D. Preliminary evaluation of the costs and benefits of prawn stocking to enhance recreational fisheries in recruitment limited estuaries. Fish. Res. 2017, 186 Pt 2, 478–487. [Google Scholar] [CrossRef]
- Vivier, L.; Cyrus, D.P.; Owen, R.K.; Jerling, H.L. Fish assemblages in the Mfolozi–Msunduzi estuarine system, KwaZulu-Natal, South Africa, when not linked to the St Lucia mouth. Afr. J. Aquat. Sci. 2010, 35, 141–154. [Google Scholar] [CrossRef]
- Chuwen, B.M. Characteristics of the Ichthyofaunas of Offshore Waters in Different Types of Estuary in Western Australia, Including the Biology of Black Bream Acanthopagrus butcheri; Murdoch University: Perth, WA, Australia, 2009. [Google Scholar]
- Hoeksema, S.D.; Chuwen, B.M.; Potter, I.C. Comparisons between the characteristics of ichthyofaunas in nearshore waters of five estuaries with varying degrees of connectivity with the ocean. Estuar. Coast. Shelf Sci. 2009, 85, 22–35. [Google Scholar] [CrossRef]
- Valesini, F.J.; Tweedley, J.R.; Clarke, K.R.; Potter, I.C. The importance of regional, system-wide and local spatial scales in structuring temperate estuarine fish communities. Estuaries Coasts 2014, 37, 525–547. [Google Scholar] [CrossRef]
- James, N.C.; Cowley, P.D.; Whitfield, A.K.; Lamberth, S.J. Fish communities in temporarily open/closed estuaries from the warm- and cool-temperate regions of South Africa: A review. Rev. Fish Biol. Fish. 2007, 17, 565–580. [Google Scholar] [CrossRef]
- Bennett, B.A. A comparison of the fish communities in nearby permanently open, seasonally open and normally closed estuaries in the south-western Cape, South Africa. S. Afr. J. Mar. Sci. 1989, 8, 43–55. [Google Scholar] [CrossRef]
- Vorwerk, P.D.; Whitfield, A.K.; Cowley, P.D.; Paterson, A.P. The influence of selected environmental variables on fish assemblage structure in a range of southeast African estuaries. Environ. Biol. Fishes 2003, 66, 237–247. [Google Scholar] [CrossRef]
- Hoeksema, S.D.; Chuwen, B.M.; Hesp, S.A.; Hall, N.G.; Potter, I.C. Impact of Environmental Changes on the Fish Faunas of Western Australian South-Coast Estuaries; Centre for Fish and Fisheries Research, Murdoch University: Perth, WA, Australia, 2006; p. 190. [Google Scholar]
- Krispyn, K.N. The Fish Faunas of Estuaries in the Albany Region of South-Western Australia. Bachelor’s Thesis, Murdoch University, Perth, WA, Australia, 2021. [Google Scholar]
- Valesini, F.J.; Coen, N.J.; Wildsmith, M.D.; Hourston, M.; Tweedley, J.R.; Hallett, C.S.; Linke, T.E.; Potter, I.C. Relationships Between Fish Faunas and Habitat Type in South-Western Australian Estuaries; Project 2004/045; Draft Final Report for Fisheries Research and Development Corporation; Murdoch University: Perth, WA, Australia, 2009. [Google Scholar]
- Young, G.C.; Potter, I.C.; Hyndes, G.A.; de Lestang, S. The ichthyofauna of an intermittently open estuary: Implications of bar breaching and low salinities on faunal composition. Estuar. Coast. Shelf Sci. 1997, 45, 53–68. [Google Scholar] [CrossRef]
- Tweedley, J.R. The Relationships Between Habitat Types and Faunal Community Structure in Broke Inlet, Western Australia. Ph.D. Thesis, Murdoch University, Perth, WA, Australia, 2011. [Google Scholar]
- Yeoh, D.E. Understanding the Dynamics of Fish Ecology and Movements: Implications for Management of a Temperate Estuarine Marine Park. Ph.D. Thesis, Murdoch University, Perth, WA, Australia, 2018. [Google Scholar]
- Tweedley, J.R.; Keleher, J.; Cottingham, A.; Beatty, S.J.; Lymbery, A.J. The Fish Fauna of the Vasse-Wonnerup and the Impact of a Substantial Fish Kill Event; Murdoch University: Perth, WA, Australia, 2014; p. 113. [Google Scholar]
- Valesini, F.J.; Potter, I.C.; Platell, M.E.; Hyndes, G.A. Icthyofaunas of a temperate estuary and adjacent marine embayment. Implications regarding choice of nursery area and influence of environmental changes. Mar. Biol. 1997, 128, 317–328. [Google Scholar]
- Veale, L.; Tweedley, J.R.; Clarke, K.R.; Hallett, C.S.; Potter, I.C. Characteristics of the ichthyofauna of a temperate microtidal estuary with a reverse salinity gradient, including inter-decadal comparisons. J. Fish Biol. 2014, 85, 1320–1354. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.H.; Tweedley, J.R.; Warwick, R.M.; Potter, I.C. Influences of microtidal regime and eutrophication on estuarine zooplankton. Estuar. Coast. Shelf Sci. 2020, 238, 106689. [Google Scholar] [CrossRef]
- Rose, T.H.; Tweedley, J.R.; Warwick, R.M.; Potter, I.C. Zooplankton dynamics in a highly eutrophic microtidal estuary. Mar. Pollut. Bull. 2019, 142, 433–451. [Google Scholar] [CrossRef]
- Wells, F.E.; Threlfall, T.J. Reproductive strategies of Hydrococcus brazeri (Tenison Woods, 1876) and Arthritica semen (Menke, 1843) in Peel Inlet Western Australia. J. Malacol. Soc. Aust. 1982, 5, 157–166. [Google Scholar]
- Fourie, S.A. Benthic Macroinvertebrate Faunas of Microtidal Estuaries in Albany, South-Western Australia. Bachelor’s Thesis, Murdoch University, Perth, WA, Australia, 2024. [Google Scholar]
- Cronin-O’Reilly, S.; Krispyn, K.N.; Maus, C.; Standish, R.J.; Loneragan, N.R.; Tweedley, J.R. Empirical evidence of alternative stable states in an estuary. Sci. Total Environ. 2024, 954, 176356. [Google Scholar] [CrossRef]
- Dye, A.H.; Barros, F. Spatial patterns of macrofaunal assemblages in intermittently closed/open coastal lakes in New South Wales, Australia. Estuar. Coast. Shelf Sci. 2005, 64, 357–371. [Google Scholar] [CrossRef]
- Teske, P.R.; Wooldridge, T.H. A comparison of the macrobenthic faunas of permanently open and temporarily open/closed South African estuaries. Hydrobiologia 2001, 464, 227–243. [Google Scholar] [CrossRef]
- Wildsmith, M.D.; Rose, T.H.; Potter, I.C.; Warwick, R.M.; Clarke, K.R. Benthic macroinvertebrates as indicators of environmental deterioration in a large microtidal estuary. Mar. Pollut. Bull. 2011, 62, 525–538. [Google Scholar] [CrossRef]
- Lim, R. Multidecadal Changes in the Benthic Macroinvertebrates Assemblages of the Swan-Canning Estuary. Master’s Thesis, Murdoch University, Perth, WA, Australia, 2025. [Google Scholar]
- Stout, E. Benthic Macroinvertebrate Communities of the Swan Estuary Marine Park. Master’s Thesis, Murdoch University, Perth, WA, Australia, 2025. [Google Scholar]
- Wildsmith, M.D.; Rose, T.H.; Potter, I.C.; Warwick, R.M.; Clarke, K.R.; Valesini, F.J. Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following extreme modifications aimed at reducing eutrophication. Mar. Pollut. Bull. 2009, 58, 1250–1262. [Google Scholar] [CrossRef]
- Cronin-O’Reilly, S. Benthic Community Structure, Health and Function of a Microtidal Estuary in South-Western Australia. Ph.D. Thesis, Murdoch University, Perth, WA, Australia, 2021. [Google Scholar]
- Semeniuk, V.; Semeniuk, T.A.; Unno, J. The Leschenault Inlet estuary: An overview. J. R. Soc. West. Aust. 2000, 83, 207–228. [Google Scholar]
- Wallace, J. The Macrobenthic Fauna of the Blackwood River Estuary; 1976; p. 43. Available online: https://library.dbca.wa.gov.au/FullTextFiles/002184.pdf (accessed on 16 September 2025).
- Leal, I.; Rule, M.J.; Lavery, P.S.; Wilson, S.K. Drivers of benthic invertebrate diversity in the protected Walpole-Nornalup Estuary, southwest Australia. Biodivers. Conserv. 2025, 34, 1449–1469. [Google Scholar] [CrossRef]
- Kohn, A.J.; Blahm, A.M. Anthropogenic effects on marine invertebrate diversity and abundance: Intertidal infauna along an environmental gradient at Esperance, Western Australia. In The Marine Flora and Fauna of Esperance, Western Australia; Wells, F.E., Walker, D.I., Kendrick, G.A., Eds.; Western Australian Museum: Perth, WA, Australia, 2005; pp. 1–24. [Google Scholar]
- Tweedley, J.R.; Warwick, R.M.; Valesini, F.J.; Platell, M.E.; Potter, I.C. The use of benthic macroinvertebrates to establish a benchmark for evaluating the environmental quality of microtidal, temperate southern hemisphere estuaries. Mar. Pollut. Bull. 2012, 64, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Platell, M.E.; Potter, I.C. Influence of water depth, season, habitat and estuary location on the macrobenthic fauna of a seasonally closed estuary. J. Mar. Biol. Assoc. UK 1996, 76, 1–21. [Google Scholar] [CrossRef]
- Forbes, V. The Role of Benthic Vegetation in the Ecology of South Coast Estuaries in Western Australia. Ph.D. Thesis, University of Western Australia, Crawley, WA, Australia, 2004. [Google Scholar]
- Water and Rivers Commission. Bremer River Foreshore Condition; Water and Rivers Commission: New Delhi, India, 2001; p. 87. [Google Scholar]
- Hodgkin, E.P.; Clark, R. Wellstead Estuary, the Estuary of the Bremer River. Estuaries and Coastal Lagoons of South Western Australia; Environmental Protection Authority: Perth, WA, Australia, 1987. [Google Scholar]
- Hodgkin, E.P.; Clark, R. Beaufort Inlet and Gordon Inlet, Estuaries of the Jerramungup Shire. Estuaries and Coastal Lagoons of South Western Australia; Environmental Protection Authority: Perth, WA, Australia, 1988. [Google Scholar]
- Hallett, C.S.; Valesini, F.J.; Clarke, K.R.; Hoeksema, S.D. Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary. Hydrobiologia 2016, 763, 267–284. [Google Scholar] [CrossRef]
- Beatty, S.J.; Tweedley, J.R.; Cottingham, A.; Ryan, T.; Williams, J.; Lynch, K.; Morgan, D.L. Entrapment of an estuarine fish associated with a coastal surge barrier can increase the risk of mass mortalities. Ecol. Eng. 2018, 122, 229–240. [Google Scholar] [CrossRef]
- Lane, J.A.; Hardcastle, K.A.; Tregonning, R.J.; Holtfreter, S. Management of the Vasse-Wonnerup Wetland System in Relation to Sudden, Mass Fish Deaths; Vasse Estuary Technical Working Group: Busselton, WA, Australia, 1997; p. 55. [Google Scholar]
- Hoeksema, S.D.; Chuwen, B.M.; Potter, I.C. Massive mortalities of Black Bream, Acanthopagrus butcheri (Sparidae) in two normally-closed estuaries, following extreme increases in salinity. J. Mar. Biol. Assoc. UK 2006, 86, 893–897. [Google Scholar] [CrossRef]
- de Graaf, M.; Beatty, S.; Molony, B.M. Evaluation of the Recreational Marron Fishery Against Environmental Change and Human Interaction; Final report to Fisheries Research and Development Corporation on Project No. 2003/027; Department of Fisheries, Western Australia: Perth, WA, Australia, 2010; p. 188. [Google Scholar]
- Tweedley, J.R.; Krispyn, K.N.; Bowe, B.E.; Weibel, A.; Roots, B.; Cottingham, A. Bindjareb Djilba (Peel-Harvey Estuary) Condition Assessment Based on Fish Communities—2023; Final report to the Peel Harvey Catchment Council; Murdoch University: Perth, WA, Australia, 2025; p. 62. [Google Scholar]
- Loneragan, N.R.; Potter, I.C.; Lenanton, R.C.J.; Caputi, N. Spatial and seasonal differences in the fish fauna in the shallows of a large Australian estuary. Mar. Biol. 1986, 92, 575–586. [Google Scholar] [CrossRef]
- Young, G.C.; Potter, I.C. Influence of exceptionally high salinities, marked variations in freshwater discharge and opening of estuary mouth on the characteristics of the ichthyofauna of a normally-closed estuary. Estuar. Coast. Shelf Sci. 2002, 55, 223–246. [Google Scholar] [CrossRef]
- Kim, D.H.; Aldridge, K.T.; Brookes, J.D.; Ganf, G.G. The effect of salinity on the germination of Ruppia tuberosa and Ruppia megacarpa and implications for the Coorong: A coastal lagoon of southern Australia. Aquat. Bot. 2013, 111, 81–88. [Google Scholar] [CrossRef]
- Webster, C.L.; Lavery, P.S.; Strydom, S.; Billinghurst, J.; McMahon, K. The ability of Ruppia polycarpa to regenerate from seed depends on seasonal porewater salinity dynamics and declining winter rainfall could delay recruitment. Estuaries Coasts 2023, 46, 1239–1252. [Google Scholar] [CrossRef]
- Ontoria, Y.; Webster, C.; Said, N.; Ruiz, J.M.; Pérez, M.; Romero, J.; McMahon, K. Positive effects of high salinity can buffer the negative effects of experimental warming on functional traits of the seagrass Halophila ovalis. Mar. Pollut. Bull. 2020, 158, 111404. [Google Scholar] [CrossRef]
- Whitfield, A.K. Estuaries—How challenging are these constantly changing aquatic environments for associated fish species? Environ. Biol. Fishes 2021, 104, 517–528. [Google Scholar] [CrossRef]
- Thabet, R.; Ayadi, H.; Koken, M.; Leignel, V. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia 2017, 799, 1–20. [Google Scholar] [CrossRef]
- Lam-Gordillo, O.; Baring, R.; Dittmann, S. Taxonomic and functional patterns of benthic communities in southern temperate tidal flats. Front. Mar. Sci. 2021, 8, 723749. [Google Scholar] [CrossRef]
- Whitfield, A.; Taylor, R.; Fox, C.; Cyrus, D. Fishes and salinities in the St Lucia estuarine system—A review. Rev. Fish Biol. Fish. 2006, 16, 1–20. [Google Scholar] [CrossRef]
- Kantoussan, J.; Ecoutin, J.M.; Simier, M.; Tito de Morais, L.; Laë, R. Effects of salinity on fish assemblage structure: An evaluation based on taxonomic and functional approaches in the Casamance estuary (Senegal, West Africa). Estuar. Coast. Shelf Sci. 2012, 113, 152–162. [Google Scholar] [CrossRef]
- Dittmann, S.; Baring, R.; Baggalley, S.; Cantin, A.; Earl, J.; Gannon, R.; Keuning, J.; Mayo, A.; Navong, N.; Nelson, M.; et al. Drought and flood effects on macrobenthic communities in the estuary of Australia’s largest river system. Estuar. Coast. Shelf Sci. 2015, 165, 36–51. [Google Scholar] [CrossRef]
- Mosley, L.M.; Priestley, S.; Brookes, J.; Dittmann, S.; Farkaš, J.; Farrell, M.; Ferguson, A.J.; Gibbs, M.; Hipsey, M.; Huang, J.; et al. Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia’s largest river basin (Murray-Darling). Mar. Pollut. Bull. 2023, 188, 114648. [Google Scholar] [CrossRef]
- Huang, J.; Lam-Gordillo, O.; Mosley, L.M.; Keneally, C.; Brookes, J.; Welsh, D.T. Understanding sediment nutrient cycling in a hypersaline coastal lagoon using hydrogel-based passive sampling techniques. Mar. Pollut. Bull. 2025, 214, 117714. [Google Scholar] [CrossRef]
- Gonzalez, R.J. The physiology of hyper-salinity tolerance in teleost fish: A review. J. Comp. Physiol. B 2012, 182, 321–329. [Google Scholar] [CrossRef]
- Thompson, G.G.; Withers, P.C. Osmoregulatory adjustments by three atherinids (Leptatherina presbyteroides; Craterocephalus mugiloides; Leptatherina wallacei) to a range of salinities. Comp. Biochem. Physiol. Part A Physiol. 1992, 103, 725–728. [Google Scholar] [CrossRef]
- Chessman, B.C.; Williams, W.D. Salinity tolerance and osmoregulatory ability of Galaxias maculatus (Jenyns) (Pisces, Salmoniformes, Galaxiidae). Freshw. Biol. 1975, 5, 135–140. [Google Scholar] [CrossRef]
- Lim, R.; Fourie, S.A.; Stout, E.J.; Roots, B.J.; Cronin-O’Reilly, S.; Rodgers, E.M.; Tweedley, J.R. Testing the Remane diagram: Occurrences of benthic macroinvertebrates in oligohaline to hyperhaline salinities. Water 2025, 17, 1642. [Google Scholar] [CrossRef]
- Roots, B.J.; Lim, R.; Cronin-O’Reilly, S.; Fourie, S.A.; Rodgers, E.M.; Stout, E.J.; Tweedley, J.R. Hypersalinity leads to dramatic shifts in the invertebrate fauna of estuaries. Animals 2025, 15, 1629. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, A.K.; Elliott, M.; Basset, A.; Blaber, S.J.M.; West, R.J. Paradigms in estuarine ecology—A review of the Remane diagram with a suggested revised model for estuaries. Estuar. Coast. Shelf Sci. 2012, 97, 78–90. [Google Scholar] [CrossRef]
- Hedgpeth, J.W. Ecological aspects of the Laguna Madre, a hypersaline estuary. In Estuaries; Lauff, G.H., Ed.; AAAS Publication 83; American Association for the Advancement of Science: Washington, DC, USA, 1967; pp. 408–419. [Google Scholar]
- Khlebovich, V.V. Aspects of animal evolution related to critical salinity and internal state. Mar. Biol. 1969, 2, 338–345. [Google Scholar] [CrossRef]
- Hodgkin, E.P. The future of the estuaries of south-western Australia. J. R. Soc. West. Aust. 1998, 81, 225–228. [Google Scholar]
- Lane, J.A.K.; Clarke, A.G.; Pearson, G.B. Waterbirds of the Vasse-Wonnerup Wetlands in 1998–2000 and Some Comparisons with Earlier Data; Western Australian Department of Environment and Conservation: Busselton, WA, Australia, 2007; p. 51. [Google Scholar]
- Atkins, R.; Rose, T.; Brown, R.S.; Robb, M. The Microcystis cyanobacteria bloom in the Swan River—February 2000. Water Sci. Technol. 2001, 43, 107–114. [Google Scholar] [CrossRef]
- Robson, B.J.; Hamilton, D.P. Summer flow event induces a cyanobacterial bloom in a seasonal Western Australian estuary. Mar. Freshw. Res. 2003, 54, 139–151. [Google Scholar] [CrossRef]
- Robson, B.J.; Hamilton, D.P. Three-dimensional modelling of a Microcystis bloom event in the Swan River Estuary, Western Australia. Ecol. Model. 2004, 174, 203–222. [Google Scholar] [CrossRef]
- Lukatelich, R.J.; Schofield, N.J.; McComb, A.J. Nutrient loading and macrophyte growth in Wilson Inlet, a bar-built southwestern Australian estuary. Estuar. Coast. Shelf Sci. 1987, 24, 141–165. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Chambers, J.M.; Paice, R. Sediment Accumulation and Resuspension in the Vasse-Wonnerup Wetlands and Its Relationship to Internal Nutrient Cycling; Report for South West Catchments Council; Murdoch University: Perth, WA, Australia, 2013; p. 54. [Google Scholar]
- McCallum, R.; Eyre, B.; Hyndes, G.; McMahon, K.; Oakes, J.M.; Wells, N.S. Importance of internal dissolved organic nitrogen loading and cycling in a small and heavily modified coastal lagoon. Biogeochemistry 2021, 155, 237–261. [Google Scholar] [CrossRef]
- Nel, M.; Adams, J.B.; Human, L.R.D.; Nunes, M.; Van Niekerk, L.; Lemley, D.A. Ineffective artificial mouth-breaching practices and altered hydrology confound eutrophic symptoms in a temporarily closed estuary. Mar. Freshw. Res. 2023, 74, 1519–1535. [Google Scholar] [CrossRef]
- McComb, A.J.; Atkins, R.P.; Birch, P.B.; Gordon, D.M.; Lukatelich, R.J. Eutrophication in the Peel-Harvey estuarine system, Western Australia. In Estuaries and Nutrients; Neilson, B., Cronin, L., Eds.; Contemporary Issues in Science and Society; Humana Press: Totowa, NJ, USA, 1981; pp. 323–342. [Google Scholar]
- Potter, I.C.; Rose, T.H.; Huisman, J.M.; Hall, N.G.; Denham, A.; Tweedley, J.R. Large variations in eutrophication among estuaries reflect massive differences in composition and biomass of macroalgal drift. Mar. Pollut. Bull. 2021, 167, 112330. [Google Scholar] [CrossRef] [PubMed]
- Potter, I.C.; Loneragan, N.R.; Lenanton, R.C.J.; Chrystal, P.J. Blue-green algae and fish population changes in a eutrophic estuary. Mar. Pollut. Bull. 1983, 14, 228–233. [Google Scholar] [CrossRef]
- Ruibal-Conti, A. Connecting Land to the Ocean: A Retrospective Analysis of Nutrient Flux Pathways Within the Peel-Harvey Catchment-Estuary System. Ph.D. Thesis, University of Western Australia, Perth, WA, Australia, 2014. [Google Scholar]
- Elliott, M.; Mander, L.; Mazik, K.; Simenstad, C.; Valesini, F.; Whitfield, A.; Wolanski, E. Ecoengineering with ecohydrology: Successes and failures in estuarine restoration. Estuar. Coast. Shelf Sci. 2016, 176, 12–35. [Google Scholar] [CrossRef]
- Potter, I.C.; Veale, L.J.; Tweedley, J.R.; Clarke, K.R. Decadal changes in the ichthyofauna of a eutrophic estuary following a remedial engineering modification and subsequent environmental shifts. Estuar. Coast. Shelf Sci. 2016, 181, 345–363. [Google Scholar] [CrossRef]
- Huang, P.; Hennig, K.; Busch, B.; Hipsey, M.R. The Changing Hydrology of the Peel-Harvey Estuary: Past, Present and Future. Balancing Estuarine and Societal Health in a Changing Environment; The University of Western Australia: Perth, WA, Australia, 2019. [Google Scholar]
- Kurup, R.G.; Hamilton, D.P. Flushing of dense, hypoxic water from a cavity of the Swan River Estuary, Western Australia. Estuaries 2002, 25, 908–915. [Google Scholar] [CrossRef]
- Cronin-O’Reilly, S.; Cottingham, A.; Kalnejais, L.H.; Lynch, K.; Tweedley, J.R. Tidal exclusion barriers fragment an invertebrate community into taxonomically and functionally distinct estuarine and wetland assemblages. J. Mar. Sci. Eng. 2025, 13, 635. [Google Scholar] [CrossRef]
- Becker, A.; Laurenson, L.J.B.; Bishop, K. Artificial mouth opening fosters anoxic conditions that kill small estuarine fish. Estuar. Coast. Shelf Sci. 2009, 82, 566–572. [Google Scholar] [CrossRef]
- Weiss, R.F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 721–735. [Google Scholar] [CrossRef]
- Sherwood, J.E.; Stagnitti, F.; Kokkinn, M.J.; Williams, W.D. Dissolved oxygen concentrations in hypersaline waters. Limnol. Oceanogr. 1991, 36, 235–250. [Google Scholar] [CrossRef]
- Hutchings, A.M.; de Vries, C.S.; Hayes, N.R.; Orr, H.G. Temperature and dissolved oxygen trends in English estuaries over the past 30 years. Estuar. Coast. Shelf Sci. 2024, 306, 108892. [Google Scholar] [CrossRef]
- Scanes, E.; Scanes, P.R.; Ross, P.M. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 2020, 11, 1803. [Google Scholar] [CrossRef]
- Cronin-O’Reilly, S.; Wells, N.S.; McCallum, R.; Hallett, C.S.; Tweedley, J.R.; Valesini, F.J.; Eyre, B.D. Defaunation by deoxygenation: Efficacy and divergent responses of estuarine macroinvertebrates. Mar. Ecol. Prog. Ser. 2022, 701, 17–24. [Google Scholar] [CrossRef]
- Bazzanti, M.; Seminara, M.; Baldoni, S. Chironomids (Diptera: Chironomidae) from three temporary ponds of different wet phase duration in Central Italy. J. Freshw. Ecol. 1997, 12, 89–99. [Google Scholar] [CrossRef]
- Bonada, N.; Rieradevall, M.; Prat, N. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 2007, 589, 91–106. [Google Scholar] [CrossRef]
- Gill, H.S.; Potter, I.C. Spatial segregation amongst goby species within an Australian estuary, with a comparison of the diets and salinity tolerance of the two most abundant species. Mar. Biol. 1993, 117, 515–526. [Google Scholar] [CrossRef]
- Hogan-West, K.; Tweedley, J.R.; Coulson, P.G.; Poh, B.; Loneragan, N.R. Abundance and distribution of the non-indigenous Acentrogobius pflaumii and native gobiids in a temperate Australian estuary. Estuaries Coasts 2019, 42, 1612–1631. [Google Scholar] [CrossRef]
- Gee, J.H.; Gee, P.A. Reactions of gobioid fishes to hypoxia: Buoyancy control and aquatic surface respiration. Copeia 1991, 1991, 17–28. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Beatty, S.J.; Cottingham, A.; Morgan, D.L.; Lynch, K.; Lymbery, A.J. Spatial and temporal changes in the fish fauna of a low-inflow estuary following a mass mortality event and natural and artificial bar breaches. Coasts 2024, 4, 366–391. [Google Scholar] [CrossRef]
- Addicoat, R.; Tweedley, J.R.; Ryan, T.; Cottingham, A.; Morgan, D.L.; Lynch, K.; Beatty, S.J. Determining the fine-scale movement of an estuarine fish through a tidal-exclusion barrier improves the understanding of mass fish mortality risk. Estuar. Coast. Shelf Sci. 2025, 313, 109085. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Hallett, C.S.; Warwick, R.M.; Clarke, K.R.; Potter, I.C. The hypoxia that developed in a microtidal estuary following an extreme storm produced dramatic changes in the benthos. Mar. Freshw. Res. 2016, 67, 327–341. [Google Scholar] [CrossRef]
- Vaquer-Sunyer, R.; Duarte, C.M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef]
- Warwick, R.M.; Clarke, K.R. Comparing the severity of disturbance: A meta-analysis of marine macrobenthic community data. Mar. Ecol. Prog. Ser. 1993, 92, 221–231. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 1995, 33, 245–303. [Google Scholar]
- Cronin-O’Reilly, S.; Wells, N.S.; McCallum, R.; Hallett, C.S.; Tweedley, J.R.; Valesini, F.J.; Eyre, B.D. Chronically stressed benthic macroinvertebrate communities exhibit limited effects on ecosystem function in a microtidal estuary. Mar. Ecol. Prog. Ser. 2022, 701, 1–16. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Poh, B.; Crisp, J.; Loneragan, N. Changes in the Abundance of the Western School Prawn (2013–2018) in Association with a Restocking Program; Murdoch University: Perth, WA, Australia, 2019. [Google Scholar]
- Silva, L.G.M.; Doyle, K.E.; Duffy, D.; Humphries, P.; Horta, A.; Baumgartner, L.J. Mortality events resulting from Australia’s catastrophic fires threaten aquatic biota. Glob. Change Biol. 2020, 26, 5345–5350. [Google Scholar] [CrossRef]
- Gomez Isaza, D.F.; Cramp, R.L.; Franklin, C.E. Fire and rain: A systematic review of the impacts of wildfire and associated runoff on aquatic fauna. Glob. Change Biol. 2022, 28, 2578–2595. [Google Scholar] [CrossRef]
- Glasby, T.M.; Gibson, P.T.; Laird, R.; Swadling, D.S.; West, G. Black summer bushfires caused extensive damage to estuarine wetlands in New South Wales, Australia. Ecol. Manag. Restor. 2023, 24, 27–35. [Google Scholar] [CrossRef]
- Elliott, M.; Quintino, V. The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar. Pollut. Bull. 2007, 54, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Peirson, W.; Davey, E.; Jones, A.; Hadwen, W.; Bishop, K.; Beger, M.; Capon, S.; Fairweather, P.; Creese, B.; Smith, T.F.; et al. Opportunistic management of estuaries under climate change: A new adaptive decision-making framework and its practical application. J. Environ. Manag. 2015, 163, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Deitch, M.J.; Gancel, H.N.; Croteau, A.C.; Caffrey, J.M.; Scheffel, W.; Underwood, B.; Muller, J.W.; Boudreau, D.; Cantrell, C.G.; Posner, M.J.; et al. Adaptive management as a foundational framework for developing collaborative estuary management programs. J. Environ. Manag. 2021, 295, 113107. [Google Scholar] [CrossRef]
- Saylam, K.; Briseno, A.; Averett, A.R.; Andrews, J.R. Analysis of depths derived by airborne lidar and satellite imaging to support bathymetric mapping efforts with varying environmental conditions: Lower Laguna Madre, Gulf of Mexico. Remote Sens. 2023, 15, 5754. [Google Scholar] [CrossRef]
- Kujawa, P.; Remondino, F. A review of image- and LiDAR-based mapping of shallow water scenarios. Remote Sens. 2025, 17, 2086. [Google Scholar] [CrossRef]
- Taveneau, A.; Almar, R.; Bergsma, E.W.J.; Cissé, C.O.; Sy, B.A.; Ndour, A. Monitoring temporal sandbar and shoreline changes at Saint Louis, Senegal: Using Sentinel-2 imagery (2015–2022). Remote Sens. 2024, 16, 3551. [Google Scholar] [CrossRef]
- Payne, S.A.R.; Alvarez, K.; Bruce, M.; Darling, R.; Gunnerson, A.; Ly, R.; Stonebrook, S.; Carcelen, E.; Holt, B.; Chapman, B.; et al. Bar-built estuary breach detection with remote sensing: An automated tool to inform management practices. Estuaries Coasts 2025, 48, 119. [Google Scholar] [CrossRef]
- Van Niekerk, L.; Adams, J.B.; Bate, G.C.; Forbes, A.T.; Forbes, N.T.; Huizinga, P.; Lamberth, S.J.; MacKay, C.F.; Petersen, C.; Taljaard, S.; et al. Country-wide assessment of estuary health: An approach for integrating pressures and ecosystem response in a data limited environment. Estuar. Coast. Shelf Sci. 2013, 130, 239–251. [Google Scholar] [CrossRef]
- Claassens, L.; Adams, J.B.; de Villiers, N.M.; Wasserman, J.; Whitfield, A.K. Restoration of South African estuaries: Successes, failures and the way forward. Afr. J. Aquat. Sci. 2023, 48, 1–18. [Google Scholar] [CrossRef]
- Haines, P.E.; Tomlinson, R.B.; Thom, B.G. Morphometric assessment of intermittently open/closed coastal lagoons in New South Wales, Australia. Estuar. Coast. Shelf Sci. 2006, 67, 321–332. [Google Scholar] [CrossRef]
- Conde, D.; Solari, S.; de Álava, D.; Rodríguez-Gallego, L.; Verrastro, N.; Chreties, C.; Lagos, X.; Piñeiro, G.; Teixeira, L.; Seijo, L.; et al. Ecological and social basis for the development of a sand barrier breaching model in Laguna de Rocha, Uruguay. Estuar. Coast. Shelf Sci. 2019, 219, 300–316. [Google Scholar] [CrossRef]
- Mayjor, M.; Reichelt-Brushett, A.J.; Malcolm, H.A.; Page, A. Water quality fluctuations in small intermittently closed and open lakes and lagoons (ICOLLs) after natural and artificial openings. Estuar. Coast. Shelf Sci. 2023, 281, 108208. [Google Scholar] [CrossRef]
- Edwards, C.; McSweeney, S.; Downes, B.J. The influence of geomorphology and environmental conditions on stratification in Intermittently Open/Closed Estuaries. Estuar. Coast. Shelf Sci. 2023, 287, 108341. [Google Scholar] [CrossRef]
- Mpinga, M.S.; Kisten, Y.; Bornman, E.; Perissinotto, R.; Strydom, N.A. Ichthyofaunal community of the anthropogenically altered Seekoei Estuary in warm temperate, South Africa. Estuaries Coasts 2023, 46, 2159–2174. [Google Scholar] [CrossRef]
- Wooldridge, T.H.; Adams, J.B.; Schael, D.M. Seekoei Estuary Mouth Management Plan; Nelson Mandela University: Port Elizabeth, South Africa, 2018; p. 22. [Google Scholar]
- Chester, E.T.; Robson, B.J. Anthropogenic refuges for freshwater biodiversity: Their ecological characteristics and management. Biol. Conserv. 2013, 166, 64–75. [Google Scholar] [CrossRef]
- Xiang, H.; Li, X.; Xiao, R.; Chen, J.; Dai, W. Is dredging an effective ecological restoration method to improve water quality in freshwater ecosystems? Ecol. Eng. 2024, 209, 107425. [Google Scholar] [CrossRef]
- Dunalska, J.A. Lake restoration techniques: A review of methods and future pathways. Sci. Total Environ. 2025, 979, 179450. [Google Scholar] [CrossRef]
- Remaili, T.M.; Simpson, S.L.; Bennett, W.W.; King, J.J.; Mosley, L.M.; Welsh, D.T.; Jolley, D.F. Assisted natural recovery of hypersaline sediments: Salinity thresholds for the establishment of a community of bioturbating organisms. Environ. Sci. Process. Impacts 2018, 20, 1244–1253. [Google Scholar] [CrossRef]
- Lam-Gordillo, O.; Huang, J.; Barceló, A.; Kent, J.; Mosley, L.M.; Welsh, D.T.; Simpson, S.L.; Dittmann, S. Restoration of benthic macrofauna promotes biogeochemical remediation of hostile sediments; An in situ transplantation experiment in a eutrophic estuarine-hypersaline lagoon system. Sci. Total Environ. 2022, 833, 155201. [Google Scholar] [CrossRef]
- Cottingham, A.; Bossie, A.; Valesini, F.; Maus, C.; Cronin-O’Reilly, S.; Tweedley, J.R.; Galimany, E. Potential of mussel habitat enhancement to alleviate eutrophication in nutrient-enriched estuaries. Ecol. Manag. Restor. 2025, 26, e70004. [Google Scholar] [CrossRef]
- Maus, C.; Cottingham, A.; Bossie, A.; Tweedley, J.R. Assessing the efficacy of a bouchot-style shellfish reef as a restoration option in a temperate estuary. J. Mar. Sci. Eng. 2024, 12, 87. [Google Scholar] [CrossRef]
- Cottingham, A.; Bossie, A.; Valesini, F.; Tweedley, J.R.; Galimany, E. Quantifying the potential water filtration capacity of a constructed shellfish reef in a temperate hypereutrophic estuary. Diversity 2023, 15, 113. [Google Scholar] [CrossRef]
- Lenanton, R.C.J.; Ayvazian, S.G.; Dibden, C.J.; Jenkins, G.; Sarre, G. The use of stock enhancement to improve the catch rates of Black Bream, Acanthopagrus butcheri (Munro) for Western Australian recreational fishers. In Stock Enhancement and Sea Ranching; Howell, B.R., Moksness, E., Svåsand, T., Eds.; Fishing New Books: Oxford, UK, 1999; pp. 219–230. [Google Scholar]
- Cottingham, A.; Hall, N.G.; Loneragan, N.R.; Jenkins, G.I.; Potter, I.C. Efficacy of restocking an estuarine-resident species demonstrated by long-term monitoring of cultured fish with alizarin complexone-stained otoliths. A case study. Fish. Res. 2020, 227, 105556. [Google Scholar] [CrossRef]
- Cottingham, A.; Hall, N.G.; Potter, I.C. Performance and contribution to commercial catches and egg production by restocked Acanthopagrus butcheri (Sparidae) in an estuary. Estuar. Coast. Shelf Sci. 2015, 164, 194–203. [Google Scholar] [CrossRef]
- Crisp, J.A.; Loneragan, N.R.; Tweedley, J.R.; D’Souza, F.M.L.; Poh, B. Environmental factors influencing the reproduction of an estuarine penaeid population and implications for management. Fish. Manag. Ecol. 2018, 25, 203–219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, R.; Tweedley, J.R. Climate Change Facilitates the Formation of Natural Barriers in Low-Inflow Estuaries, Altering Environmental Conditions and Faunal Assemblages. J. Mar. Sci. Eng. 2025, 13, 1978. https://doi.org/10.3390/jmse13101978
Lim R, Tweedley JR. Climate Change Facilitates the Formation of Natural Barriers in Low-Inflow Estuaries, Altering Environmental Conditions and Faunal Assemblages. Journal of Marine Science and Engineering. 2025; 13(10):1978. https://doi.org/10.3390/jmse13101978
Chicago/Turabian StyleLim, Ruth, and James R. Tweedley. 2025. "Climate Change Facilitates the Formation of Natural Barriers in Low-Inflow Estuaries, Altering Environmental Conditions and Faunal Assemblages" Journal of Marine Science and Engineering 13, no. 10: 1978. https://doi.org/10.3390/jmse13101978
APA StyleLim, R., & Tweedley, J. R. (2025). Climate Change Facilitates the Formation of Natural Barriers in Low-Inflow Estuaries, Altering Environmental Conditions and Faunal Assemblages. Journal of Marine Science and Engineering, 13(10), 1978. https://doi.org/10.3390/jmse13101978