Sediment Provenance and Distribution on the Northwest African Continental Shelf
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling of Sediment and Water Column Environment
3.2. Sedimentological Analysis
3.3. Geochemical Analysis
3.4. Statistical Analysis
4. Results
4.1. Hydrological Characteristics of the Bottom Water
4.2. Grain Size, Carbonates, and Organic Carbon
4.3. Geochemical Composition of the Bulk Sediment Fraction (<2 mm)
4.3.1. Non-Destructive Analysis (X-Ray Fluorescence)
4.3.2. Abundance of Quartz and Carbonate Minerals
5. Discussion
5.1. Correlations Between Variables and Between Surface Samples Using Normalized Principal Component Analysis (PCA)
5.2. Provenance of the Sediments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NW Africa | Northwest Africa |
SAL | Saharan Air Layer |
DO | Dissolved oxygen |
Sal | Salinity |
CaCO3 | Calcium carbonate |
Corg | Organic carbon |
CTD | Conductivity, Temperature, and Depth sensor |
XRD | X-ray diffraction |
XRF | X-ray fluorescence |
References
- Buhl-Mortensen, L.; Buhl-Mortensen, P.; Dolan, M.F.J.; Dannheim, J.; Bellec, V.; Holte, B. Habitat Complexity and Bottom Fauna Composition at Different Scales on the Continental Shelf and Slope of Northern Norway. Hydrobiologia 2012, 685, 191–219. [Google Scholar] [CrossRef]
- Borowski, C. Physically Disturbed Deep-Sea Macrofauna in the Peru Basin, Southeast Pacific, Revisited 7 Years after the Experimental Impact. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 3809–3839. [Google Scholar] [CrossRef]
- Davis, N.; VanBlaricom, G.R.; Dayton, P.K. Man-Made Structures on Marine Sediments: Effects on Adjacent Benthic Communities. Mar. Biol. 1982, 70, 295–303. [Google Scholar] [CrossRef]
- Buhl-Mortensen, L.; Houssa, R.; M’bengue, B.; Nyadjro, E.S.; Cervantes, D.; Idrissi, M.; Mahu, E.; Dia, A.S.; Olsen, M.; Mas, C.; et al. Lophelia Reefs off North and West Africa–Comparing Environment and Health. Mar. Biol. 2024, 171, 29. [Google Scholar] [CrossRef]
- Robledo Ardila, P.A.; Álvarez-Alonso, R.; Árcega-Cabrera, F.; Durán Valsero, J.J.; Morales García, R.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and Review of Heavy Metals Pollution in Sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Alonso, R.Á.; Valsero, J.J.D.; García, R.M.; Cabrera, F.Á.; Cosío, E.L.; Laforet, S.D. Assessment of Heavy Metal Pollution in Marine Sediments from Southwest of Mallorca Island, Spain. Environ. Sci. Pollut. Res. 2023, 30, 16852–16866. [Google Scholar] [CrossRef]
- Swift, D.J.P. Continental Shelf Sedimentation. In The Geology of Continental Margins; Burk, C.A., Drake, C.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 117–135. ISBN 978-3-662-01143-0. [Google Scholar]
- Lamarque, B.; Deflandre, B.; Schmidt, S.; Bernard, G.; Dubosq, N.; Diaz, M.; Lavesque, N.; Garabetian, F.; Grasso, F.; Sottolichio, A.; et al. Spatiotemporal Dynamics of Surface Sediment Characteristics and Benthic Macrofauna Compositions in a Temperate High-Energy River-Dominated Ocean Margin. Cont. Shelf Res. 2022, 247, 104833. [Google Scholar] [CrossRef]
- Hasemann, C.; Mokievsky, V.; Sablotny, B.; Tekman, M.B.; Soltwedel, T. Effects of Sediment Disturbance on Deep-Sea Nematode Communities: Results from an in-Situ Experiment at the Arctic LTER Observatory HAUSGARTEN. J. Exp. Mar. Biol. Ecol. 2020, 533, 151471. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Lèbre, É.; Kung, A.; Savinova, E.; Valenta, R.K. Mining on Land or in the Deep Sea? Overlooked Considerations of a Reshuffling in the Supply Source Mix. Resour. Conserv. Recycl. 2023, 191, 106898. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Mayall, M. Deep-Water Sedimentary Systems: New Models for the 21st Century. Mar. Pet. Geol. 2000, 17, 125–135. [Google Scholar] [CrossRef]
- Eberwein, A.; Mackensen, A. Regional Primary Productivity Differences off Morocco (NW-Africa) Recorded by Modern Benthic Foraminifera and Their Stable Carbon Isotopic Composition. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 1379–1405. [Google Scholar] [CrossRef]
- Lutze, G.F.; Coulbourn, W.T. Recent Benthic Foraminifera from the Continental Margin of Northwest Africa: Community Structure and Distribution. Mar. Micropaleontol. 1984, 8, 361–401. [Google Scholar] [CrossRef]
- McMaster, R.L.; Lachance, T.P. Northwestern African Continental Shelf Sediments. Mar. Geol. 1969, 7, 57–67. [Google Scholar] [CrossRef]
- Mhammdi, N.; Snoussi, M.; Medina, F.; Jaaïdi, E.B. Chapter 10 Recent Sedimentation in the NW African Shelf. Geol. Soc. Lond. Mem. 2014, 41, 131–146. [Google Scholar] [CrossRef]
- Milliman, J.D. Effects of Arid Climate and Upwelling upon the Sedimentary Regime off Southern Spanish Sahara. Deep Sea Res. 1977, 24, 95–103. [Google Scholar] [CrossRef]
- Sarnthein, M.; Thiede, J.; Pflaumann, U.; Erlenkeuser, H.; Fütterer, D.; Koopmann, B.; Lange, H.; Seibold, E. Atmospheric and Oceanic Circulation Patterns off Northwest Africa During the Past 25 Million Years. In Geology of the Northwest African Continental Margin; von Rad, U., Hinz, K., Sarnthein, M., Seibold, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 545–604. ISBN 978-3-642-68411-1. [Google Scholar]
- Seibold, E.; Diester-Hass, L.; Fütterer, D.; Hartmann, M.; Kögler, F.; Lange, H.; Müller, P.; Pflaumann, U.; Schrader, H.; Suess, E. Late Quaternary Sedimentation off the Western Sahara. An. Acad. Bras. Ciências = Ann. Braz. Acad. Sci. 1976, 48, 287–296. [Google Scholar]
- Seibold, E. The Northwest African Continental Margin—An Introduction. In Geology of the Northwest African Continental Margin; von Rad, U., Hinz, K., Sarnthein, M., Seibold, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 3–20. [Google Scholar]
- Siedler, G.; Seibold, E. Currents Related to Sediment Transportat the Ibero-Moroccan Continental Shelf. Meteor. Forschungsergebnisse Reihe A Allg. Phys. Chem. Meeres 1974, 14, 1–12. [Google Scholar]
- Summerhayes, C.P.; Nutter, A.H.; Tooms, J.S. The Distribution and Origin of Phosphate in Sediments off Northwest Africa. Sediment. Geol. 1972, 8, 3–28. [Google Scholar] [CrossRef]
- Refk, R. Synthèse Des Résultats Des Travaux Océanographiques Effectués Dans Les Eaux Atlantiques Marocaines Durant La Période 1947–1980; Technical Report; Institut National de Recherche Halieutique (INRH): Casablanca, Morocco, 1985. [Google Scholar]
- Summerhayes, C.P.; Milliman, J.D.; Briggs, S.R.; Bee, A.G.; Hogan, C. Northwest African Shelf Sediments: Influence of Climate and Sedimentary Processes. J. Geol. 1976, 84, 277–300. [Google Scholar] [CrossRef]
- Tooms, J.S.; Summerhayes, C.P.; McMaster, R.L. Marine Geological Studies on the North-West African Margin: Rabat-Dakar; H.M. Stationery Office (HMSO): London, UK, 1970. [Google Scholar]
- Griffiths, J.F. Climates of Africa; World Survey of Climatology; Elsevier Publishing Company: Amsterdam, The Netherlands, 1972; Volume 10, ISBN 0-444-41526-2. [Google Scholar]
- Maoulainine, C.M. Monographie Régionale de La Région Eddakhla—Oued Eddahab: 2018. Available online: http://www.abhatoo.net.ma/maalama-textuelle/developpement-economique-et-social/developpement-economique/reperes-du-developpement-economique/indicateurs-socio-economiques/monographie-regionale-de-la-region-eddakhla-oued-eddahab-2018 (accessed on 2 February 2025).
- Benazzouz, A.; Mordane, S.; Orbi, A.; Chagdali, M.; Hilmi, K.; Atillah, A.; Lluís Pelegrí, J.; Hervé, D. An Improved Coastal Upwelling Index from Sea Surface Temperature Using Satellite-Based Approach—The Case of the Canary Current Upwelling System. Cont. Shelf Res. 2014, 81, 38–54. [Google Scholar] [CrossRef]
- Carlson, T.N.; Prospero, J.M. The Large-Scale Movement of Saharan Air Outbreaks over the Northern Equatorial Atlantic. J. Appl. Meteorol. Climatol. 1972, 11, 283–297. [Google Scholar] [CrossRef]
- Dunion, J.P.; Velden, C.S. The Impact of the Saharan Air Layer on Atlantic Tropical Cyclone Activity. Bull. Amer. Meteor. Soc. 2004, 85, 353–366. [Google Scholar] [CrossRef]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef]
- Allain, C. Les Conditions Hydrologiques Sur La Bordure Atlantique de l’Afrique Du Nord-Ouest. Rapports et Procès-Verbaux des Réunions de la Commission Internationale pour l’Exploration Scientifique de la Méditerranée. Rapp. P. -V. Réun. CIEM 1970, 159, 25–29. [Google Scholar]
- Carr, M.-E. Estimation of Potential Productivity in Eastern Boundary Currents Using Remote Sensing. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 49, 59–80. [Google Scholar] [CrossRef]
- Hagen, E. Northwest African Upwelling Scenario. Oceanol. Acta 2001, 24, 113–128. [Google Scholar] [CrossRef]
- Mittelstaedt, E. The Ocean Boundary along the Northwest African Coast: Circulation and Oceanographic Properties at the Sea Surface. Prog. Oceanogr. 1991, 26, 307–355. [Google Scholar] [CrossRef]
- Jones, P.G.W. The Variability of Oceanographic Observations off the Coast of North-West Africa. Deep Sea Res. Oceanogr. Abstr. 1972, 19, 405–431. [Google Scholar] [CrossRef]
- Von Rad, U.; Wissmann, G. Cretaceous-Cenozoic History of the West Saharan Continental Margin (NW Africa): Development, Destruction and Gravitational Sedimentation. In Geology of the Northwest African Continental Margin; Von Rad, U., Hinz, K., Sarnthein, M., Seibold, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 106–131. ISBN 978-3-642-68411-1. [Google Scholar]
- Jones, P.G.W.; Folkard, A.R. Chemical Oceanographic Observations off the Coast of North-West Africa, with Special Reference to the Process of Upwelling. Available online: https://library.metoffice.gov.uk/portal/Default/en-GB/RecordView/Index/61929 (accessed on 2 February 2025).
- Groupe MEDIPROD, Résultats de la campagne cineca—Charcot II. 1971.
- Schemainda, R.; Nehring, D.; Schulz, S. Ozeanologische Untersuchungen zum Produktionspotential der nordwestafrikanischen Wasserauftriebsregion 1970–1973: Diese Arbeit wurde Prof. Dr. habil. Erich Bruns zum 75. Geburtstag gewidmet (Études océanologiques sur le potentiel de production de la région d’upwelling au nord-ouest de l’Afrique de 1970 à 1973). Geodätische und Geophysikalische Veröffentlichungen 1975, 88.
- Shaffer, G. Étude à Méso-Échelle de La Variabilité de l’upwelling Côtier Au Large Du Nord-Ouest de l’Afrique. Meteor. Forschungsergebnisse Reihe A 1976, 17, 21–72. [Google Scholar]
- Weichart, G. Meereschemische Untersuchungen im nordwestafrikanischen Auftriebsgebiet 1968. Meteor. Forschungsergebnisse Reihe A Allg. Phys. Chem. Meeres 1974, 14, 33–70. [Google Scholar]
- Emery, K.O.; Lepple, F.; Toner, L.; Uchupi, E.; Rioux, R.H.; Pople, W.; Hulburt, E.M. Suspended Matter and Other Properties of Surface Waters of the Northeastern Atlantic Ocean. J. Sediment. Res. 1974, 44, 1087–1110. [Google Scholar] [CrossRef]
- Da Rocha, J.; Milliman, J.; Santana, C.; Vicalvi, M. Continental Margin Sedimentation off Brazil; E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller): Stuttgart, Germany, 1975; Volume 4. [Google Scholar]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Udden, J.A. Mechanical Composition of Clastic Sediments. GSA Bull. 1914, 25, 655–744. [Google Scholar] [CrossRef]
- Wentworth, C.K. The Classification and Terminology of the Pyroclastic Rocks. Natl. Res. Counc. Bull. 1932, 89, 19–53. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River Bar [Texas]; A Study in the Significance of Grain Size Parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 961–1010. ISBN 978-0-89118-866-7. [Google Scholar]
- Fournier-Sowinski, J.; Bonnot-Courtois, C.; Paris, R.; Vot, M. Analyses Granulométriques. Principes et Méthodes; BRGM (Bureau de Recherches Géologiques et Minières): Orléans, France, 2012; Available online: https://hal.science/hal-04648219 (accessed on 3 February 2023).
- Hammer, Ø.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis (Version 2.09); Natural History Museum, University of Oslo: Oslo, Norway, 2001; Available online: https://www.nhm.uio.no/english/research/resources/past/ (accessed on 7 November 2023).
- MAKAOUI, A. Étude Hydrologique de l’upwelling Côtier Marocain et Sa Contribution à La Sédimentologie Du Plateau Continental. Ph.D. Thesis, Faculté des Sciences Ben M’Sik, Université Hassan II, Casablanca, Morocco, 2008. [Google Scholar]
- Rothwell, R.G.; Croudace, I.W. Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us. In Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences; Croudace, I.W., Rothwell, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 25–102. ISBN 978-94-017-9849-5. [Google Scholar]
- Caquineau, S.; Gaudichet, A.; Gomes, L.; Magonthier, M.; Chatenet, B. Saharan Dust: Clay Ratio as a Relevant Tracer to Assess the Origin of Soil-derived Aerosols. Geophys. Res. Lett. 1998, 25, 983–986. [Google Scholar] [CrossRef]
- Govin, A.; Holzwarth, U.; Heslop, D.; Ford Keeling, L.; Zabel, M.; Mulitza, S.; Collins, J.A.; Chiessi, C.M. Distribution of Major Elements in Atlantic Surface Sediments (36°N–49°S): Imprint of Terrigenous Input and Continental Weathering. Geochem. Geophys. Geosyst. 2012, 13, 2011GC003785. [Google Scholar] [CrossRef]
- Brady, M.P.; Tostevin, R.; Tosca, N.J. Marine Phosphate Availability and the Chemical Origins of Life on Earth. Nat. Commun. 2022, 13, 5162. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and Evaluation of a New Multi-Function X-Ray Core Scanner. In New Techniques in Sediment Core Analysis; Geological Society of London: London, UK, 2006; Volume 267, pp. 51–63. [Google Scholar] [CrossRef]
- Caley, T.; Malaizé, B.; Zaragosi, S.; Rossignol, L.; Bourget, J.; Eynaud, F.; Martinez, P.; Giraudeau, J.; Charlier, K.; Ellouz-Zimmermann, N. New Arabian Sea Records Help Decipher Orbital Timing of Indo-Asian Monsoon. Earth Planet. Sci. Lett. 2011, 308, 433–444. [Google Scholar] [CrossRef]
- Ziegler, M.; Jilbert, T.; De Lange, G.J.; Lourens, L.J.; Reichart, G. Bromine Counts from XRF Scanning as an Estimate of the Marine Organic Carbon Content of Sediment Cores. Geochem. Geophys. Geosyst. 2008, 9, 2007GC001932. [Google Scholar] [CrossRef]
- Ziegler, M.; Lourens, L.J.; Tuenter, E.; Reichart, G.-J. Anomalously High Arabian Sea Productivity Conditions during MIS 13. Clim. Past Discuss. 2009, 5, 1989–2018. [Google Scholar]
- Harff, J.; Endler, R.; Emelyanov, E.; Kotov, S.; Leipe, T.; Moros, M.; Olea, R.; Tomczak, M.; Witkowski, A. Late Quaternary Climate Variations Reflected in Baltic Sea Sediments. In The Baltic Sea Basin; Harff, J., Björck, S., Hoth, P., Eds.; Central and Eastern European Development Studies (CEEDES); Springer: Berlin/Heidelberg, Germany, 2011; pp. 99–132. ISBN 978-3-642-17219-9. [Google Scholar]
- Sluijs, A.; Röhl, U.; Schouten, S.; Brumsack, H.; Sangiorgi, F.; Sinninghe Damsté, J.S.; Brinkhuis, H. Arctic Late Paleocene–Early Eocene Paleoenvironments with Special Emphasis on the Paleocene-Eocene Thermal Maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). Paleoceanography 2008, 23, 2007PA001495. [Google Scholar] [CrossRef]
- Burdige, D.J. Geochemistry of Marine Sediments; Princeton University Press: Princeton, NJ, USA, 2020; ISBN 978-0-691-21609-6. [Google Scholar]
- Pomar, L.; Hallock, P. Carbonate Factories: A Conundrum in Sedimentary Geology. Earth-Sci. Rev. 2008, 87, 134–169. [Google Scholar] [CrossRef]
- Nittrouer, C.A.; Wright, L.D. Transport of Particles across Continental Shelves. Rev. Geophys. 1994, 32, 85–113. [Google Scholar] [CrossRef]
- Zaragosi, S.; Bourillet, J.-F.; Eynaud, F.; Toucanne, S.; Denhard, B.; Van Toer, A.; Lanfumey, V. The Impact of the Last European Deglaciation on the Deep-Sea Turbidite Systems of the Celtic-Armorican Margin (Bay of Biscay). Geo-Mar. Lett. 2006, 26, 317–329. [Google Scholar] [CrossRef]
- Newton, R.S.; Seibold, E.; Werner, F. Facies Distribution Patterns on the Spanish Sahara Continental Shelf, Mapped with Side Scan Sonar. Meteor Forschungsergebnisse Reihe C Geol. Geophys. 1973, 17, 55–77. [Google Scholar]
- Emery, K.O. Relict Sediments on Continental Shelves of World. AAPG Bull. 1968, 52, 445–464. [Google Scholar]
- Frenzel, B. Climatic Fluctuations of the Ice Age. Bull. Am. Meteorol. Soc. 1975, 56, 3. [Google Scholar]
- Delany, A.C.; Claire Delany, A.; Parkin, D.W.; Griffin, J.J.; Goldberg, E.D.; Reimann, B.E.F. Airborne Dust Collected at Barbados. Geochim. Cosmochim. Acta 1967, 31, 885–909. [Google Scholar] [CrossRef]
- Radczewski, O.E. Eolian Deposits in Marine Sediments 1. In Recent Marine Sediments; American Association of Petroleum Geologists: Washington, DC, USA, 1939; ISBN 978-1-62981-251-9. [Google Scholar]
- Lepple, F.K. Eolian Dust over the North Atlantic Ocean. Ph.D. Thesis, University of Delaware, Newark, NJ, USA, 1975. [Google Scholar]
- d’Almeida, G.A. Desert Aerosol: Characteristics and Effects on Climate. In Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport; Leinen, M., Sarnthein, M., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 311–338. ISBN 978-94-010-6937-3. [Google Scholar]
- Duce, R.A.; Liss, P.S.; Merrill, J.T.; Atlas, E.L.; Buat-Menard, P.; Hicks, B.B.; Miller, J.M.; Prospero, J.M.; Arimoto, R.; Church, T.M.; et al. The Atmospheric Input of Trace Species to the World Ocean. Glob. Biogeochem. Cycles 1991, 5, 193–259. [Google Scholar] [CrossRef]
- Bozzano, G.; Kuhlmann, H.; Alonso, B. Storminess Control over African Dust Input to the Moroccan Atlantic Margin (NW Africa) at the Time of Maxima Boreal Summer Insolation: A Record of the Last 220 Kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 183, 155–168. [Google Scholar] [CrossRef]
- Johnson, L.R. Mineralogical Dispersal Patterns of North Atlantic Deep-Sea Sediments with Particular Reference to Eolian Dusts. Mar. Geol. 1979, 29, 335–345. [Google Scholar] [CrossRef]
- Sarnthein, M. Neogene Sand Layers off Northwest Africa: Composition and Source Environment; Initial Reports of the Deep Sea Drilling Project; U.S. Government Printing Office: Washington, WA, USA, 1978; Volume 38–41. [Google Scholar]
- Schütz, L.; Rahn, K.A. Trace-Element Concentrations in Erodible Soils. Atmos. Environ. 1982, 16, 171–176. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.C.; Lizcano, G.; Tegen, I.; Flamant, C.; Koren, I.; Ginoux, P.; Engelstaedter, S.; Bristow, C.S.; Zender, C.S.; et al. Links between Topography, Wind, Deflation, Lakes and Dust: The Case of the Bodélé Depression, Chad. Geophys. Res. Lett. 2006, 33, 2006GL025827. [Google Scholar] [CrossRef]
- McTainsh, G.H.; Walker, P.H. Nature and Distribution of Harmattan Dust. Z. Geomorphol. 1982, 26, 417–435. [Google Scholar] [CrossRef]
- Compton, J.; Maake, L. Source of the Suspended Load of the Upper Orange River, South Africa. S. Afr. J. Geol. 2007, 110, 339–348. [Google Scholar] [CrossRef]
- Spalding, C.; Finnegan, S.; Fischer, W.W. Energetic Costs of Calcification under Ocean Acidification. Glob. Biogeochem. Cycles 2017, 31, 866–877. [Google Scholar] [CrossRef]
- Guerreiro, C.V.; Ferreira, A.; Cros, L.; Stuut, J.-B.; Baker, A.; Tracana, A.; Pinto, C.; Veloso, V.; Rees, A.P.; Cachão, M.A.P.; et al. Response of Coccolithophore Communities to Oceanographic and Atmospheric Processes across the North- and Equatorial Atlantic. Front. Mar. Sci. 2023, 10, 1119488. [Google Scholar] [CrossRef]
Station | Y | X | Depth (m) | Dates | Vessel | Variables Collected |
---|---|---|---|---|---|---|
1 | 25°56′27.6″ N | 14°33′35.0″ W | 25 | December/2021 | AHAM | Sediment + Water |
2 | 26°11′42.0″ N | 15°04′02.3″ W | 513 | December/2021 | AHAM | Sediment + Water |
3 | 25°34′10.2″ N | 14°42′02.5″ W | 25 | December/2021 | AHAM | Sediment + Water |
4 | 25°45′51.6″ N | 15°03′57.6″ W | 95 | December/2021 | AHAM | Sediment + Water |
5 | 24°55′18.0″ N | 14°50′48.1″ W | 50 | December/2021 | AHAM | Sediment + Water |
6 | 25°05′14.4″ N | 15°15′26.3″ W | 50 | December/2021 | AHAM | Sediment + Water |
7 | 25°16′49.8″ N | 15°38′07.8″ W | 98 | December/2021 | AHAM | Sediment + Water |
8 | 25°27′43.2″ N | 16°03′57.6″ W | 505 | December/2021 | AHAM | Sediment + Water |
9 | 24°22′26.4″ N | 15°20′10.3″ W | 22 | December/2021 | AHAM | Sediment + Water |
10 | 24°32′21.6″ N | 15°42′12.6″ W | 30 | December/2021 | AHAM | Sediment + Water |
11 | 24°42′34.2″ N | 16°03′43.2″ W | 64 | December/2021 | AHAM | Sediment + Water |
12 | 24°33′37.2″ N | 16°07′06.0″ W | 62 | June/2019 | AMA | Sediment + Water |
13 | 24°24′41.4″ N | 16°11′32.4″ W | 61 | June/2019 | AMA | Sediment + Water |
14 | 24°00′10.2″ N | 15°44′30.1″ W | 17 | December/2021 | AHAM | Sediment + Water |
15 | 24°08′17.4″ N | 16°00′36.0″ W | 32 | December/2021 | AHAM | Sediment + Water |
16 | 24°17′42.6″ N | 16°17′18.0″ W | 64 | December/2021 | AHAM | Sediment + Water |
17 | 24°25′36.6″ N | 16°30′36.7″ W | 505 | December/2021 | AHAM | Sediment + Water |
18 | 24°10′24.0″ N | 16°24′21.6″ W | 66 | June/2019 | AMA | Sediment + Water |
19 | 23°53′33.5″ N | 16°21′46.8″ W | 55 | February/2020 | DFN | Sediment + Water |
20 | 23°44′30.7″ N | 16°32′16.1″ W | 59 | February/2020 | DFN | Sediment + Water |
21 | 23°22′18.6″ N | 16°06′46.8″ W | 17 | December/2021 | AHAM | Sediment + Water |
22 | 23°27′39.6″ N | 16°22′40.8″ W | 28.9 | December/2021 | AHAM | Sediment + Water |
23 | 23°33′44.4″ N | 16°39′31.7″ W | 54.6 | December/2021 | AHAM | Sediment + Water |
24 | 23°33′34.8″ N | 16°45′10.1″ W | 64 | December/2019 | AMA | Sediment + Water |
25 | 23°40′20.4″ N | 16°56′59.3″ W | 494.7 | December/2021 | AHAM | Sediment + Water |
26 | 23°20′15.4″ N | 16°40′55.6″ W | 60 | February/2020 | DFN | Sediment + Water |
27 | 23°06′00.0″ N | 16°31′00.1″ W | 50 | February/2020 | DFN | Sediment + Water |
28 | 22°53′21.0″ N | 16°19′25.7″ W | 18.5 | December/2021 | DFN | Sediment + Water |
29 | 22°58′28.2″ N | 16°33′24.5″ W | 36 | July/2020 | AMA | Sediment + Water |
30 | 23°04′36.3″ N | 16°50′22.2″ W | 54 | December/2021 | AHAM | Sediment + Water |
31 | 23°10′56.4″ N | 17°06′54.7″ W | 602 | December/2021 | AHAM | Sediment + Water |
32 | 22°54′29.9″ N | 17°00′33.1″ W | 81 | December/2019 | AMA | Sediment + Water |
33 | 22°23′17.4″ N | 16°31′24.6″ W | 19.3 | December/2021 | AHAM | Sediment + Water |
34 | 22°29′31.8″ N | 16°52′48.5″ W | 51 | December/2021 | AHAM | Sediment + Water |
35 | 21°52′45.0″ N | 16°58′02.2″ W | 20 | February/2021 | AMA | Sediment + Water |
36 | 21°52′49.2″ N | 17°11′34.1″ W | 61 | December/2021 | AHAM | Sediment + Water |
37 | 21°53′03.6″ N | 17°24′51.1″ W | 326 | December/2021 | AHAM | Sediment + Water |
38 | 21°20′55.8″ N | 17°02′42.7″ W | 22 | June/2020 | AMA | Sediment + Water |
Chemical Element | Name of Element | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
SiO2 (wt%) | Silicon dioxide | 20.65 | 21.44 | 1.43 | 70.40 |
TiO2 (wt%) | Titanium dioxide | 0.20 | 0.30 | 0.00 | 1.15 |
Al2O3 (wt%) | Aluminum oxide | 3.83 | 5.63 | 0.17 | 25.01 |
Fe2O3 (wt%) | Iron oxide | 1.80 | 1.36 | 0.59 | 6.09 |
MnO (wt%) | Manganese oxide | 0.01 | 0.01 | 0.00 | 0.05 |
MgO (wt%) | Magnesium oxide | 1.70 | 0.54 | 0.65 | 2.86 |
CaO (wt%) | Calcium oxide | 65.92 | 27.47 | 0.19 | 92.40 |
Na2O (wt%) | Sodium oxide | 1.75 | 1.61 | 0.66 | 11.10 |
K2O (wt%) | Potassium oxide | 0.75 | 0.97 | 0.08 | 4.51 |
P2O5 (wt%) | Phosphorus pentoxide | 0.13 | 0.31 | 0.00 | 1.19 |
CaCO3 (wt%) | Carbonates | 43.16 | 13.01 | 16.84 | 64.91 |
Corg (wt%) | Organic carbon | 0.66 | 0.44 | 0.09 | 2.06 |
Cr (ppm) | Chromium | 257 | 129 | 48 | 629 |
Ni (ppm) | Nickel | 9 | 23 | 0 | 94 |
Zn (ppm) | Zinc | 13 | 23 | 0 | 88 |
Rb (ppm) | Rubidium | 20 | 42 | 0 | 201 |
Sr (ppm) | Strontium | 3237 | 1488 | 101 | 5598 |
Zr (ppm) | Zirconium | 146 | 161 | 7 | 600 |
Cl (ppm) | Chlorine | 16,724 | 10,802 | 270 | 69,000 |
S (ppm) | Sulfur | 2987 | 1423 | 120 | 7493 |
Br (ppm) | Bromine | 88 | 72 | 0 | 280 |
Mud (wt%) | Mud | 8.27 | 13.72 | 0.00 | 53.69 |
Sand (wt%) | Sand | 83.32 | 13.97 | 46.31 | 99.49 |
Gravel (wt%) | Gravel | 8.41 | 11.69 | 0.00 | 39.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nait-Hammou, H.; El Khalidi, K.; Khalfaoui, O.; Makaoui, A.; Chierici, M.; Jamal, C.; Idrissi, M.; Zourarah, B. Sediment Provenance and Distribution on the Northwest African Continental Shelf. J. Mar. Sci. Eng. 2025, 13, 537. https://doi.org/10.3390/jmse13030537
Nait-Hammou H, El Khalidi K, Khalfaoui O, Makaoui A, Chierici M, Jamal C, Idrissi M, Zourarah B. Sediment Provenance and Distribution on the Northwest African Continental Shelf. Journal of Marine Science and Engineering. 2025; 13(3):537. https://doi.org/10.3390/jmse13030537
Chicago/Turabian StyleNait-Hammou, Hasnaa, Khalid El Khalidi, Otmane Khalfaoui, Ahmed Makaoui, Melissa Chierici, Chaimaa Jamal, Mohammed Idrissi, and Bendahhou Zourarah. 2025. "Sediment Provenance and Distribution on the Northwest African Continental Shelf" Journal of Marine Science and Engineering 13, no. 3: 537. https://doi.org/10.3390/jmse13030537
APA StyleNait-Hammou, H., El Khalidi, K., Khalfaoui, O., Makaoui, A., Chierici, M., Jamal, C., Idrissi, M., & Zourarah, B. (2025). Sediment Provenance and Distribution on the Northwest African Continental Shelf. Journal of Marine Science and Engineering, 13(3), 537. https://doi.org/10.3390/jmse13030537