Variability in Diurnal Internal Tides and Near-Inertial Waves in the Southern South China Sea Based on Mooring Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Velocity Rotary Spectra
2.3. Calculation of Coherent and Incoherent Motions
3. Results
3.1. Evolution of Diurnal Internal Tides
3.2. Near-Inertial Waves Induced by Tropical Cyclone RAI (Event 1)
3.3. Near-Inertial Waves from November to December (Event 2)
3.4. Near-Inertial Waves Induced by Tropical Cyclone NOCK (Event 3)
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ITs | Internal tides |
NIWs | Near-inertial waves |
KE | Kinetic energy |
TC | Tropical cyclone |
feff | Effective inertial frequency |
SCS | South China Sea |
O1 | One of the diurnal tidal constituents |
K1 | One of the diurnal tidal constituents |
RAI | Tropical cyclone passed through the moorings in September 2016 |
NOCK | Tropical cyclone passed through the moorings in December 2016 |
CMEMS | Copernicus Marine Environment Monitoring Service |
CCMP | Cross-Calibrated Multi-Platform |
JTWC | Joint Typhoon Warning Center |
ADCPs | Acoustic Doppler Current Profilers |
References
- Mohapatra, S.C.; Guedes Soares, C. Boussinesq Model for Two-Fluid System with Surface- and Interfacial Tension. Appl. Ocean Res. 2024, 152, 104183. [Google Scholar] [CrossRef]
- Alford, M.H.; Peacock, T.; MacKinnon, J.; Nash, J.D.; Buijsman, M.C.; Centurioni, L.R.; Chao, S.-Y.; Chang, M.-H.; Farmer, D.M.; Fringer, O.B.; et al. The formation and fate of internal waves in the South China Sea. Nature 2015, 521, 65–69. [Google Scholar] [CrossRef]
- Moehlis, J.; Smith, S.L. Radiation of Mixed Layer Near-Inertial Oscillations into the Ocean Interior. J. Phys. Oceanogr. 2001, 31, 1550–1560. [Google Scholar] [CrossRef]
- Jochum, M.; Briegleb, B.P.; Danabasoglu, G.; Large, W.G.; Norton, N.J.; Jayne, S.R.; Alford, M.H.; Bryan, F.O. The impact of oceanic near-inertial waves on climate. J. Clim. 2013, 26, 2833–2844. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- Alford, M.H. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett. 2003, 30, 1424. [Google Scholar] [CrossRef]
- St. Laurent, L.; Garrett, C. The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 2002, 32, 2882–2899. [Google Scholar] [CrossRef]
- Alford, M.H.; MacKinnon, J.A.; Simmons, H.L.; Nash, J.D. Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123. [Google Scholar] [CrossRef] [PubMed]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Gill, A.E. On the behavior of internal waves in the wake of storms. J. Phys. Oceanogr. 1984, 14, 1129–1151. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Sanford, T.B.; Niiler, P.P.; Terrill, E.J. Cold wake of Hurricane Frances. Geophys. Res. Lett. 2007, 34, L15609. [Google Scholar] [CrossRef]
- Wunsch, C.; Ferrari, R. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 2004, 36, 281–314. [Google Scholar] [CrossRef]
- Duda, T.F.; Rainville, L. Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. J. Geophys. Res. Oceans 2008, 113, C03025. [Google Scholar] [CrossRef]
- Chang, M.H.; Lien, R.C.; Tang, T.Y.; D’Asaro, E.A.; Yang, Y.J. Energy flux of nonlinear internal waves in northern South China Sea. Geophys. Res. Lett. 2006, 33, L03607. [Google Scholar] [CrossRef]
- Alford, M.H.; Zhao, Z. Global patterns of low-mode internal wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr. 2007, 37, 1829–1848. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Liang, X.; Tian, J. Three-Dimensional Distribution of Turbulent Mixing in the South China Sea. J. Phys. Oceanogr. 2016, 46, 769–788. [Google Scholar] [CrossRef]
- Zhao, Z. Southward Internal Tides in the Northeastern South China Sea. J. Geophys. Res. Oceans 2020, 125, e2020JC016324. [Google Scholar] [CrossRef]
- Zhao, Z. Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans 2014, 119, 5434–5448. [Google Scholar] [CrossRef]
- Liang, H. Observational Study on the Internal Tides and Near-Inertial Internal Waves in the Northern South China Sea. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2015. [Google Scholar]
- Xu, Z.; Liu, K.; Yin, B.; Zhao, Z.; Wang, Y.; Li, Q. Long-range propagation and associated variability of internal tides in the South China Sea. J. Geophys. Res. Oceans 2016, 121, 8268–8286. [Google Scholar] [CrossRef]
- Zaron, E.D. Mapping the nonstationary internal tide with satellite altimetry. J. Geophys. Res. Oceans 2017, 122, 539–554. [Google Scholar] [CrossRef]
- Song, P.; Chen, X. Investigation of the internal tides in the Northwest Pacific Ocean considering the background circulation and stratification. J. Phys. Oceanogr. 2020, 50, 3113–3133. [Google Scholar] [CrossRef]
- Guan, S.; Jin, F.-F.; Tian, J.; Lin, I.-I.; Pun, I.-F.; Zhao, W.; Huthnance, J.; Xu, Z.; Cai, W.; Jing, Z.; et al. Ocean Internal Tides Suppress Tropical Cyclones in the South China Sea. Nat. Commun. 2024, 15, 3903. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Guan, S.; Lin, I.-I.; Huang, M.; Jin, F.; Wang, Q.; Lu, Z.; Zhao, W.; Tian, J. Response and Feedback of Mesoscale Eddies to Tropical Cyclones over the South China Sea. J. Geophys. Res. Atmos. 2025, 130, e2024JD041414. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Chen, G.-X.; Shu, Y.-Q.; Wang, Q.; Chen, R.-Y.; Wang, D.-X. Near-Inertial Oscillations Induced by Tropical Cyclones under the Background of South China Sea Winter Monsoon Surge: A Case Study of Mirinae (0921). J. Trop. Oceanogr. 2015, 34, 11–18. [Google Scholar] [CrossRef]
- Chen, G.; Xue, H.; Wang, D.; Xie, Q. Observed near-inertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Oceans 2013, 118, 4965–4977. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Liu, J.; He, Y.; Chen, Z.; Cai, S. Correlation of near-inertial wind stress in typhoon and typhoon-induced oceanic near-inertial kinetic energy in the upper South China Sea. Atmosphere 2019, 10, 388. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, J.; Shang, X.; Xie, X.; Wu, X.; Gao, J.; Mei, H. Observation of Near-Inertial Internal Gravity Waves in the Southern South China Sea. Remote Sens. 2023, 15, 368. [Google Scholar] [CrossRef]
- Mao, H.; Qi, Y.; Chen, Y.; Yu, J. Enhanced Mixing Induced by Near-Inertial Waves Inferred by Glider Observation in the Northern South China Sea. J. Mar. Sci. Eng. 2023, 11, 2141. [Google Scholar] [CrossRef]
- Yang, B.; Hu, P.; Hou, Y. Observed Near-Inertial Waves in the Northern South China Sea. Remote Sens. 2021, 13, 3223. [Google Scholar] [CrossRef]
- Lee, D.K.; Niiler, P.P. The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res. Oceans 1998, 103, 7579–7591. [Google Scholar] [CrossRef]
- Martínez-Marrero, A.; Barceló-Llull, B.; Pallàs-Sanz, E.; Aguiar-González, B.; Estrada-Allis, S.N.; Gordo, C.; Grisolía, D.; Rodríguez-Santana, A.; Arístegui, J. Near-Inertial Wave Trapping Near the Base of an Anticyclonic Mesoscale Eddy Under Normal Atmospheric Conditions. J. Geophys. Res. Oceans 2019, 124, 8455–8467. [Google Scholar] [CrossRef]
- Conn, S.; Fitzgerald, J.; Callies, J. Interpreting Observed Interactions Between Near-Inertial Waves and Mesoscale Eddies. J. Phys. Oceanogr. 2023, 54, 485–502. [Google Scholar] [CrossRef]
- Lelong, M.-P.; Cuypers, Y.; Bouruet-Aubertot, P. Near-inertial energy propagation inside a Mediterranean anticyclonic eddy. J. Phys. Oceanogr. 2020, 50, 2271–2288. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Z.; Xu, Z.; Yin, B.; Zheng, Q. Spontaneous near-inertial wave generation from mesoscale eddy: Nonlinear forcing mechanism. Phys. Fluids 2023, 35, 076609. [Google Scholar] [CrossRef]
- Kunze, E.; Schmitt, R.W.; Toole, J.M. The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr. 1995, 25, 942–957. [Google Scholar] [CrossRef]
- Zhai, X.; Greatbatch, R.J.; Zhao, J. Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett. 2005, 32, L18602. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, W.; Huang, X.; Hu, Q.; Guan, S.; Zhou, C.; Tian, J. Observed Near-Inertial Waves Trapped in a Propagating Anticyclonic Eddy. J. Phys. Oceanogr. 2022, 52, 2029–2043. [Google Scholar] [CrossRef]
- Xie, X.; Shang, X.; Chen, G. Nonlinear interactions among internal tidal waves in the northeastern South China Sea. Chin. J. Oceanol. Limnol. 2010, 28, 996–1001. [Google Scholar] [CrossRef]
- Xie, X.; Shang, X.; Haren, H.V.; Chen, G. Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophys. Res. Lett. 2013, 40, 1580–1586. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Oceans 2014, 119, 3134–3157. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, X.; Shang, X.; Chen, G. Coherent and incoherent internal tides in the southern South China Sea. Chin. J. Oceanol. Limnol. 2016, 34, 1374–1382. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, Q.; Nan, F.; Wang, J.; Xu, A.; Yu, F. Quality Control of Deep-Sea Mooring ADCP Data Processing. J. Ocean Univ. China 2021, 20, 8. [Google Scholar]
- Chen, G.; Hou, Y.; Zhang, Q.; Chu, X. The eddy pair off eastern Vietnam: Interannual variability and impact on thermohaline structure. Cont. Shelf Res. 2010, 30, 715–723. [Google Scholar] [CrossRef]
- Mears, C.; Lee, T.; Ricciardulli, L.; Wang, X.; Wentz, F. Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds. Remote Sens. 2022, 14, 4230. [Google Scholar] [CrossRef]
- Gonella, J. A rotary-component method for analysing meteorological and oceanographic vector time series. Deep Sea Res. Oceanogr. Abstr. 1972, 19, 833–846. [Google Scholar] [CrossRef]
- Dronkers, J.J. Tidal Computations in Rivers and Coastal Waters; North-Holland: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Shang, X.; Liu, Q.; Xie, X.; Chen, G.; Chen, R. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2015, 98, 43–52. [Google Scholar] [CrossRef]
- Pan, H.; Lv, X.; Wang, Y.; Matte, P.; Chen, H.; Jin, G. Exploration of tidal-fluvial interaction in the Columbia River estuary using S_TIDE. J. Geophys. Res. Oceans 2018, 123, 6598–6619. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, S.; Zhang, Z.; Zhou, C.; Xu, X.; Guo, C.; Zhao, W.; Tian, J. Observations of parametric subharmonic instability of diurnal internal tides in the Northwest Pacific. J. Phys. Oceanogr. 2024, 54, 849–870. [Google Scholar] [CrossRef]
Morring | ADCP (up) | RCM | NTK | RCM | NTK | RCM |
---|---|---|---|---|---|---|
DA2 | 550 m | 1000 m | 2000 m | 2500 m | 3000 m | 3500 m |
DA4 | 650 m | 1150 m | 2150 m | 3150 m | 3650 m | 4150 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Y.; Wang, C.; Guan, S.; Zhao, W. Variability in Diurnal Internal Tides and Near-Inertial Waves in the Southern South China Sea Based on Mooring Observations. J. Mar. Sci. Eng. 2025, 13, 577. https://doi.org/10.3390/jmse13030577
Zhang Y, Wang Y, Wang C, Guan S, Zhao W. Variability in Diurnal Internal Tides and Near-Inertial Waves in the Southern South China Sea Based on Mooring Observations. Journal of Marine Science and Engineering. 2025; 13(3):577. https://doi.org/10.3390/jmse13030577
Chicago/Turabian StyleZhang, Yilin, Yifan Wang, Chen Wang, Shoude Guan, and Wei Zhao. 2025. "Variability in Diurnal Internal Tides and Near-Inertial Waves in the Southern South China Sea Based on Mooring Observations" Journal of Marine Science and Engineering 13, no. 3: 577. https://doi.org/10.3390/jmse13030577
APA StyleZhang, Y., Wang, Y., Wang, C., Guan, S., & Zhao, W. (2025). Variability in Diurnal Internal Tides and Near-Inertial Waves in the Southern South China Sea Based on Mooring Observations. Journal of Marine Science and Engineering, 13(3), 577. https://doi.org/10.3390/jmse13030577