The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean
Abstract
:1. Introduction
2. Governing Equation and Basic Characteristics
3. Generation
3.1. Wind
3.2. Parametric Subharmonic Instability and Other Nolinear Wave-Wave Interactions
4. Propagation
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garrett, C. What is the “Near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr. 2001, 31, 962–971. [Google Scholar] [CrossRef]
- Alford, M.H. Improved global maps 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Alford, M.H.; MacKinnon, J.A.; Zhao, Z.; Pinkel, R.; Klymak, J.; Peacock, T. Internal waves across the Pacific. Geophys. Res. Lett. 2007, 34, 2–7. [Google Scholar] [CrossRef]
- Jing, Z.; Wu, L.; Ma, X.; Chang, P. Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing. Sci. Rep. 2016, 6, 37180. [Google Scholar] [CrossRef]
- Ferrari, R.; Wunsch, C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef]
- Egbert, G.D.; Ray, R.D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 2000, 405, 775–778. [Google Scholar] [CrossRef]
- Firing, E. Observations of strong inertial oscillations after the passage of Tropical Cyclone Ofa. J. Geophys. Res. Ocean. 1997, 102, 3317–3322. [Google Scholar] [CrossRef]
- Fu, L.-L. Observations and models of inertial waves in the deep ocean. Rev. Geophys. 1981, 19, 141–170. [Google Scholar] [CrossRef]
- Leaman, K.D.; Sanford, T.B. Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res. 1975, 80, 1975–1978. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Perkins, H. A near-inertial internal wave spectrum for the Sargasso Sea in late summer. J. Phys. Oceanogr. 1984, 14, 489–505. [Google Scholar] [CrossRef]
- Garrett, C. Mixing with latitude. Nature 2003, 422, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, C.; Ferrari, R. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 2004, 36, 281–314. [Google Scholar] [CrossRef]
- Alford, M.H.; Mackinnon, J.A.; Simmons, H.L.; Nash, J.D. Near-Inertial Internal Gravity Waves in the Ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.D.; Mitchum, G.T. Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett. 1996, 23, 2101–2104. [Google Scholar] [CrossRef]
- Zhao, Z.; Alford, M.H. New altimetric estimates of mode-1 M2 internal tides in the Central North Pacific Ocean. J. Phys. Oceanogr. 2009, 39, 1669–1684. [Google Scholar] [CrossRef]
- Alford, M.H.; Cronin, M.F.; Klymak, J.M. Annual cycle and depth penetration of wind-generated near-inertial internal waves at ocean station papa in the northeast pacific. J. Phys. Oceanogr. 2012, 42, 889–909. [Google Scholar] [CrossRef]
- Zhang, F.; Li, M.; Miles, T. Generation of Near-Inertial Currents on the Mid-Atlantic Bight by Hurricane Arthur (2014). J. Geophys. Res. Ocean. 2018, 123, 3100–3116. [Google Scholar] [CrossRef]
- Whalen, C.B.; MacKinnon, J.A.; Talley, L.D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci. 2018, 11, 842–847. [Google Scholar] [CrossRef]
- Gregg, M.C.; Sanford, T.B.; Winkel, D.P. Reduced mixing from the breaking of internal waves in equatorial waters. Nature 2003, 422, 513–515. [Google Scholar] [CrossRef]
- Jochum, M.; Briegleb, B.P.; Danabasoglu, G.; Large, W.G.; Norton, N.J.; Jayne, S.R.; Alford, M.H.; Bryan, F.O. The impact of oceanic near-inertial waves on climate. J. Clim. 2013, 26, 2833–2844. [Google Scholar] [CrossRef]
- Pallàs-Sanz, E.; Candela, J.; Sheinbaum, J.; Ochoa, J.; Jouanno, J. Trapping of the near-inertial wave wakes of two consecutive hurricanes in the Loop Current. J. Geophys. Res. Ocean. 2016, 121, 7431–7454. [Google Scholar] [CrossRef]
- Ekman, V.W. Studies on Ocean Currents: Results ofa Cruise On Board the “Armauer Hansen” in 1930 Under the Leadership of Bjørn Helland-Hansen; Geofysiske Publikasjoner: Bergen, Norway, 1953; Volume 19. [Google Scholar]
- Webster, F. Observations of inertial-period motions in the deep sea. Rev. Geophys. 1968, 6, 473. [Google Scholar] [CrossRef]
- Doherty, K.W.; Frye, D.E.; Liberatore, S.P.; Toole, J.M. A moored profiling instrument. J. Atmos. Ocean. Technol. 1999, 16, 1816–1829. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, D.; Shu, Y.; Chen, J.; He, Y.; Xie, Q. Bottom-Reached Near-Inertial Waves Induced by the Tropical Cyclones, Conson and Mindulle, in the South China Sea. J. Geophys. Res. Ocean. 2022, 127, e2021JC018162. [Google Scholar] [CrossRef]
- Alford, M.H. Sustained, Full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr. 2010, 40, 2643–2660. [Google Scholar] [CrossRef]
- Plueddemann, A.J.; Farrar, J.T. Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 5–30. [Google Scholar] [CrossRef]
- Johnston, T.M.S.; Rudnick, D.L. Observations of the Transition Layer. J. Phys. Oceanogr. 2009, 39, 780–797. [Google Scholar] [CrossRef]
- Dohan, K.; Davis, R.E. Mixing in the transition layer during two storm events. J. Phys. Oceanogr. 2011, 41, 42–66. [Google Scholar] [CrossRef]
- Sanford, T.B.; Price, J.F.; Girton, J.B. Upper-ocean response to hurricane frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr. 2011, 41, 1041–1056. [Google Scholar] [CrossRef]
- Hebert, D.; Moum, J.N. Decay of a Near-Inertial Wave. J. Phys. Oceanogr. 1994, 24, 2334–2351. [Google Scholar] [CrossRef]
- Alford, M.H.; Gregg, M.C. Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res. Oceans 2001, 106, 16947–16968. [Google Scholar] [CrossRef]
- Fer, I. Near-inertial mixing in the Central Arctic Ocean. J. Phys. Oceanogr. 2014, 44, 2031–2049. [Google Scholar] [CrossRef]
- Whalen, C.B.; Talley, L.D.; MacKinnon, J.A. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Whalen, C.B.; MacKinnon, J.A.; Talley, L.D.; Waterhouse, A.F. Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr. 2015, 45, 1174–1188. [Google Scholar] [CrossRef]
- D’Asaro, E.A. The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer. J. Phys. Oceanogr. 1985, 15, 1043–1059. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Ocean. 2014, 119, 3134–3157. [Google Scholar] [CrossRef]
- Hou, H.; Yu, F.; Nan, F.; Yang, B.; Guan, S.; Zhang, Y. Observation of near-inertial oscillations induced by energy transformation during typhoons. Energies 2019, 12, 99. [Google Scholar] [CrossRef]
- MacKinnon, J.A.; Winters, K.B. Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Xie, X.H.; Shang, X.D.; Van Haren, H.; Chen, G.Y.; Zhang, Y.Z. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophys. Res. Lett. 2011, 38, 1–7. [Google Scholar] [CrossRef]
- Nikurashin, M.; Ferrari, R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the southern ocean. J. Phys. Oceanogr. 2010, 40, 2025–2042. [Google Scholar] [CrossRef]
- Hu, S.; Sprintall, J.; Guan, C.; McPhaden, M.J.; Wang, F.; Hu, D.; Cai, W. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 2020, 6, eaax7727. [Google Scholar] [CrossRef]
- Pollard, R.T.; Millard, R.C., Jr. Comparison between observed and simulated wind-generated inertial oscillations. Deep. Sea Res. Oceanogr. Abstr. 1970, 17, 817–821. [Google Scholar] [CrossRef]
- Yang, B.; Hou, Y. Near-inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea. Acta Oceanol. Sin. 2014, 33, 102–111. [Google Scholar] [CrossRef]
- D’Asaro, E.A. The decay of wind-forced mixed layer inertial oscillations due to the β effect. J. Geophys. Res. Ocean. 1989, 94, 2045–2056. [Google Scholar] [CrossRef]
- Lerczak, J.A.; Hendershott, M.C.; Winant, C.D. Observations and modeling of coastal internal waves driven by a diurnal sea breeze. J. Geophys. Res. Ocean. 2001, 106, 19715–19729. [Google Scholar] [CrossRef]
- Mickett, J.B.; Serra, Y.L.; Cronin, M.F.; Alford, M.H. Notes and correspondence: Resonant forcing of mixed layer inertial motions by atmospheric easterly waves in the northeast tropical pacific. J. Phys. Oceanogr. 2010, 40, 401–416. [Google Scholar] [CrossRef]
- Alford, M.H. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inrtial motions. J. Phys. Oceanogr. 2001, 31, 2359–2368. [Google Scholar] [CrossRef]
- Alford, M.H. Global Calculations of Local and Remote Near-Inertial-Wave Dissipation. J. Phys. Oceanogr. 2020, 50, 3157–3164. [Google Scholar] [CrossRef]
- Watanabe, M.; Hibiya, T. Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett. 2002, 29, 2–5. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.; Perrie, W. Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Flexas, M.M.; Thompson, A.F.; Torres, H.S.; Klein, P.; Farrar, J.T.; Zhang, H.; Menemenlis, D. Global Estimates of the Energy Transfer From the Wind to the Ocean, With Emphasis on Near-Inertial Oscillations. J. Geophys. Res. Ocean. 2019, 124, 5723–5746. [Google Scholar] [CrossRef] [PubMed]
- Raja, K.J.; Buijsman, M.C.; Shriver, J.F.; Arbic, B.K.; Siyanbola, O. Near-Inertial Wave Energetics Modulated by Background Flows in a Global Model Simulation. J. Phys. Oceanogr. 2022, 52, 823–840. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- Simmons, H.L.; Hallberg, R.W.; Arbic, B.K. Internal wave generation in a global baroclinic tide model. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 3043–3068. [Google Scholar] [CrossRef]
- Niwa, Y.; Hibiya, T. Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr. 2011, 67, 493–502. [Google Scholar] [CrossRef]
- Hou, H.; Xu, T.; Li, B.; Yang, B.; Wei, Z.; Yu, F. Different Types of Near-Inertial Internal Waves Observed by Lander in the Intermediate-Deep Layers of the South China Sea and Their Generation Mechanisms. J. Mar. Sci. Eng. 2022, 10, 594. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, X.; Yang, C.; Qi, Y.; Tian, D.; Xu, J.; Cai, S.; Wu, R.; Ma, Y.; Ni, X.; et al. Observed Impact of Typhoon Mangkhut (2018) on a Continental Slope in the South China Sea. J. Geophys. Res. Ocean. 2022, 127, e2022JC018432. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Zhou, L.; Liu, X.; Ding, T.; Zhou, B. Upper ocean response to typhoon Kalmaegi (2014). J. Geophys. Res. Ocean. 2016, 121, 6520–6535. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, Q.; Tang, T.Y.; Chuang, W.S.; Li, L.; Hu, J.; Wang, D. Upper ocean near-inertial response to 1998 Typhoon Faith in the South China Sea. Acta Oceanol. Sin. 2012, 31, 25–32. [Google Scholar] [CrossRef]
- Le Boyer, A.; Alford, M.H.; Pinkel, R.; Hennon, T.D.; Yang, Y.J.; Ko, D.; Nash, J. Frequency Shift of Near-Inertial Waves in the South China Sea. J. Phys. Oceanogr. 2020, 50, 1121–1135. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, J.; Zheng, Q.; Gan, J. Comparison of typhoon-induced near-inertial oscillations in shear flow in the northern South China Sea. Acta Oceanol. Sin. 2015, 34, 38–45. [Google Scholar] [CrossRef]
- Cao, A.; Guo, Z.; Song, J.; Lv, X.; He, H.; Fan, W. Near-Inertial Waves and Their Underlying Mechanisms Based on the South China Sea Internal Wave Experiment (2010–2011). J. Geophys. Res. Ocean. 2018, 123, 5026–5040. [Google Scholar] [CrossRef]
- Yu, X.; Naveira Garabato, A.C.; Vic, C.; Gula, J.; Savage, A.C.; Wang, J.; Waterhouse, A.F.; MacKinnon, J.A. Observed Equatorward Propagation and Chimney Effect of Near-Inertial Waves in the Midlatitude Ocean. Geophys. Res. Lett. 2022, 49, e2022GL098522. [Google Scholar] [CrossRef]
- Chen, G.; Xue, H.; Wang, D.; Xie, Q. Observed near-inertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Ocean. 2013, 118, 4965–4977. [Google Scholar] [CrossRef]
- Qiao, M.; Cao, A.; Song, J.; Pan, Y.; He, H. Enhanced Turbulent Mixing in the Upper Ocean Induced by Super Typhoon Goni (2015). Remote Sens. 2022, 14, 2300. [Google Scholar] [CrossRef]
- Chen, S.; Polton, J.A.; Hu, J.; Xing, J. Local inertial oscillations in the surface ocean generated by time-varying winds. Ocean Dyn. 2015, 65, 1633–1641. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y.; Chen, Z.; Liu, J.; Liu, T.; Li, J.; Cai, S.; Ning, D. Horizontal variations of typhoon-forced near-inertial oscillations in the south China sea simulated by a numerical model. Cont. Shelf Res. 2019, 180, 24–34. [Google Scholar] [CrossRef]
- Jeon, C.; Park, J.H.; Park, Y.G. Temporal and Spatial Variability of Near-Inertial Waves in the East/Japan Sea From a High-Resolution Wind-Forced Ocean Model. J. Geophys. Res. Ocean. 2019, 124, 6015–6029. [Google Scholar] [CrossRef]
- Yang, L.; Du, Y.; Wang, D.; Wang, C.; Wang, X. Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Clim. Dyn. 2015, 44, 1505–1519. [Google Scholar] [CrossRef]
- Yang, W.; Wei, H.; Liu, Z.; Li, G. Intermittent Intense Thermocline Shear Associated With Wind-Forced Near-Inertial Internal Waves in a Summer Stratified Temperate Shelf Sea. J. Geophys. Res. Ocean. 2021, 126, e2021JC017576. [Google Scholar] [CrossRef]
- de Freitas, P.P.; Amorim, F.d.L.L.; Mill, G.N.; da Costa, V.S.; Gabioux, M.; Cirano, M.; Paiva, A.d.M. Observations of near-inertial oscillations along the Brazilian continental shelf break. Ocean. Dyn. 2019, 69, 1203–1215. [Google Scholar] [CrossRef]
- Schlosser, T.L.; Jones, N.L.; Bluteau, C.E.; Alford, M.H.; Ivey, G.N.; Lucas, A.J. Generation and propagation of near-inertial waves in a baroclinic current on the tasmanian shelf. J. Phys. Oceanogr. 2019, 49, 2653–2667. [Google Scholar] [CrossRef]
- He, H.; Cao, A.; Wang, Y.; Song, J. Evolution of oceanic near-inertial waves induced by typhoon Sarika (2016) in the South China Sea. Dyn. Atmos. Ocean. 2022, 100, 101332. [Google Scholar] [CrossRef]
- Shay, L.K.; Elsberry, R.L.; Black, P.G. Vertical Structure of the Ocean Current Response to a Hurricane. J. Phys. Oceanogr. 1989, 19, 649–669. [Google Scholar] [CrossRef]
- Teague, W.J.; Jarosz, E.; Wang, D.W.; Mitchell, D.A. Observed Oceanic Response over the Upper Continental Slope and Outer Shelf during Hurricane Ivan*. J. Phys. Oceanogr. 2007, 37, 2181–2206. [Google Scholar] [CrossRef]
- van Haren, H. Near-inertial wave propagation between stratified and homogeneous layers. J. Oceanogr. 2023, 79, 367–377. [Google Scholar] [CrossRef]
- Müller, P.; Olbers, D.J. On the dynamics of internal waves in the deep ocean. J. Geophys. Res. 1975, 80, 3848–3860. [Google Scholar] [CrossRef]
- McComas, C.H.; Bretherton, F.P. Resonant interaction of oceanic internal waves. J. Geophys. Res. 1977, 82, 1397–1412. [Google Scholar] [CrossRef]
- McComas, C.H.; Müller, P. Time Scales of Resonant Interactions Among Oceanic Internal Waves. J. Phys. Oceanogr. 1981, 11, 139–147. [Google Scholar] [CrossRef]
- Müller, P.; Holloway, G.; Henyey, F.; Pomphrey, N. Nonlinear interactions among internal gravity waves. Rev. Geophys. 1986, 24, 493–536. [Google Scholar] [CrossRef]
- St. Laurent, L.C.; Garrett, C. The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 2002, 32, 2882–2899. [Google Scholar] [CrossRef]
- Polzin, K. Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr. 2004, 34, 231–246. [Google Scholar] [CrossRef]
- Hazewinkel, J.; Winters, K.B. PSI of the internal tide on a β plane: Flux divergence and near-inertial wave propagation. J. Phys. Oceanogr. 2011, 41, 1673–1682. [Google Scholar] [CrossRef]
- Yang, W.; Hibiya, T.; Tanaka, Y.; Zhao, L.; Wei, H. Modification of Parametric Subharmonic Instability in the Presence of Background Geostrophic Currents. Geophys. Res. Lett. 2018, 45, 12957–12962. [Google Scholar] [CrossRef]
- Olbers, D.J.; Pomphrey, N. Disqualifying two candidates for the energy balance of oceanic internal waves. J. Phys. Oceanogr. 1981, 11, 1423–1425. [Google Scholar] [CrossRef]
- Young, W.R.; Tsang, Y.K.; Balmforth, N.J. Near-inertial parametric subharmonic instability. J. Fluid Mech. 2008, 607, 25–49. [Google Scholar] [CrossRef]
- Alford, M.H. Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Carter, G.S.; Gregg, M.C. Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr. 2006, 36, 1136–1147. [Google Scholar] [CrossRef]
- Nikurashin, M.; Legg, S. A Mechanism for Local Dissipation of Internal Tides Generated at Rough Topography. J. Phys. Oceanogr. 2011, 41, 378–395. [Google Scholar] [CrossRef]
- Olbers, D.; Pollmann, F.; Eden, C. On PSI Interactions in Internal Gravity Wave Fields and the Decay of Baroclinic Tides. J. Phys. Oceanogr. 2020, 50, 751–771. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, L.; Zhang, X. Latitudinal distribution of mixing rate caused by the M2 internal tide. J. Phys. Oceanogr. 2006, 36, 35–42. [Google Scholar] [CrossRef]
- Hibiya, T.; Nagasawa, M. Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett. 2004, 31, 4–7. [Google Scholar] [CrossRef]
- Hibiya, T.; Nagasawa, M.; Niwa, Y. Latitudinal dependence of diapycnal diffusivity in the thermocline observed using a microstructure profiler. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Simmons, H.L. Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean. Model. 2008, 21, 126–138. [Google Scholar] [CrossRef]
- Sun, O.M.; Pinkel, R. Subharmonic energy transfer from the semidiurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaii. J. Phys. Oceanogr. 2013, 43, 766–789. [Google Scholar] [CrossRef]
- Mackinnon, J.A.; Alford, M.H.; Sun, O.; Pinkel, R.; Zhao, Z.; Klymak, J. Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr. 2013, 43, 17–28. [Google Scholar] [CrossRef]
- Ansong, J.K.; Arbic, B.K.; Simmons, H.L.; Alford, M.H.; Buijsman, M.C.; Timko, P.G.; Richman, J.G.; Shriver, J.F.; Wallcraft, A.J. Geographical distribution of diurnal and semidiurnal parametric subharmonic instability in a global ocean circulation model. J. Phys. Oceanogr. 2018, 48, 1409–1431. [Google Scholar] [CrossRef]
- Onuki, Y.; Hibiya, T. Decay Rates of Internal Tides Estimated by an Improved Wave–Wave Interaction Analysis. J. Phys. Oceanogr. 2018, 48, 2689–2701. [Google Scholar] [CrossRef]
- Rainville, L.; Pinkel, R. Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr. 2006, 36, 1104–1122. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, Q.; Wang, D.; Hu, J.; Tai, C.K.; Sun, Z. A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data. J. Oceanogr. 2011, 67, 677–687. [Google Scholar] [CrossRef]
- Xie, X.H.; Shang, X.D.; Chen, G.Y.; Sun, L. Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophys. Res. Lett. 2009, 36, 2–7. [Google Scholar] [CrossRef]
- van Haren, H. Tidal and near-inertial peak variations around the diurnal critical latitude. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Li, B.; Cao, A.; Lü, X. Observations of near-inertial waves induced by parametric subharmonic instability. J. Oceanol. Limnol. 2018, 36, 641–650. [Google Scholar] [CrossRef]
- Korobov, A.S.; Lamb, K.G. Interharmonics in internal gravity waves generated by tide-topography interaction. J. Fluid Mech. 2008, 611, 61–95. [Google Scholar] [CrossRef]
- Shen, J.; Fang, W.; Zhang, S.; Qiu, Y.; Zhang, J.; Xie, X. Observed Internal Tides and Near-Inertial Waves in the Northern South China Sea: Intensified f-Band Energy Induced by Parametric Subharmonic Instability. J. Geophys. Res. Ocean. 2020, 125, e2020JC016324. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, S.; Liu, Z.; Xu, J.; Xie, J.; He, Y.; Cai, S. Can Tidal Forcing Alone Generate a GM-Like Internal Wave Spectrum? Geophys. Res. Lett. 2019, 46, 14644–14652. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, G.; Liu, Z.; Chen, S.; Lu, H.; Xu, J.; Gong, Y.; Xie, J.; He, Y.; Chen, J.; et al. Mutual enhancement of wind- and tide-induced near-inertial internal waves in Luzon Strait. J. Phys. Oceanogr. 2022, 52, 3259–3272. [Google Scholar] [CrossRef]
- Gill, A.E. On the Behavior of Internal Waves in the Wakes of Storms. J. Phys. Oceanogr. 1984, 14, 1129–1151. [Google Scholar] [CrossRef]
- Alford, M.H.; Whitmont, M. Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr. 2007, 37, 2022–2037. [Google Scholar] [CrossRef]
- Munk, W.; Phillips, N. Coherence and band structure of inertial motion in the sea. Rev. Geophys. 1968, 6, 447–472. [Google Scholar] [CrossRef]
- Gerkema, T.; Shrira, V.I. Near-inertial waves in the ocean: Beyond the “traditional approximation”. J. Fluid Mech. 2005, 529, 195–219. [Google Scholar] [CrossRef]
- Winters, K.B.; Bouruet-Aubertot, P.; Gerkema, T. Critical reflection and abyssal trapping of near-inertial waves on a β-plane. J. Fluid Mech. 2011, 684, 111–136. [Google Scholar] [CrossRef]
- Alford, M.H.; Zhao, Z. Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr. 2007, 37, 1829–1848. [Google Scholar] [CrossRef]
- Simmons, H.L.; Alford, M.H. Simulating the long-range swell of internal waves generated by ocean storms. Oceanography 2012, 25, 30–41. [Google Scholar] [CrossRef]
- Niwa, Y.; Hibiya, T. Nonlinear processes of energy transfer from travelling hurricanes to the deep ocean internal wave field. J. Geophys. Res. Ocean. 1997, 102, 12469–12477. [Google Scholar] [CrossRef]
- Nagasawa, M.; Niwa, Y.; Hibiya, T. Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res. Ocean. 2000, 105, 13933–13943. [Google Scholar] [CrossRef]
- Komori, N.; Ohfuchi, W.; Taguchi, B.; Sasaki, H.; Klein, P. Deep ocean inertia-gravity waves simulated in a high-resolution global coupled atmosphere-ocean GCM. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Young, W.R.; Jelloul, M. Ben. Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 1997, 55, 735–766. [Google Scholar] [CrossRef]
- Lee, D.-K.; Niiler, P.P. The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res. 1988, 103, 7579–7591. [Google Scholar] [CrossRef]
- Klein, P.; Smith, S.L. Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. J. Mar. Res. 2001, 59, 697–723. [Google Scholar] [CrossRef]
- Klein, P.; Smith, S.L.; Lapeyre, G. Organization of near-inertial energy by an eddy field. Q. J. R. Meteorol. Soc. 2004, 130, 1153–1166. [Google Scholar] [CrossRef]
- Whitt, D.B.; Thomas, L.N. Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr. 2013, 43, 706–725. [Google Scholar] [CrossRef]
- Zhai, X.; Greatbatch, R.J.; Zhao, J. Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Zhai, X.; Greatbatch, R.J.; Eden, C. Spreading of near-inertial energy in a 1/12° model of the North Atlantic Ocean. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Asselin, O.; Young, W.R. Penetration of Wind-Generated Near-Inertial Waves into a Turbulent Ocean. J. Phys. Oceanogr. 2020, 50, 1699–1716. [Google Scholar] [CrossRef]
- Vic, C.; Ferron, B.; Thierry, V.; Mercier, H.; Lherminier, P. Tidal and Near-Inertial Internal Waves over the Reykjanes Ridge. J. Phys. Oceanogr. 2020, 51, 419–437. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, F.; Chen, Z.; Wang, J.; Nan, F.; Ren, Q.; Hu, Y.; Cao, A.; Zheng, T. Downward Propagation and Trapping of Near-Inertial Waves by a Westward-moving Anticyclonic Eddy in the Subtropical Northwestern Pacific Ocean. J. Phys. Oceanogr. 2023, 53, 2105–2120. [Google Scholar] [CrossRef]
- Kunze, E.; Schmitt, R.W.; Toole, J.M. The Energy Balance in a Warm-Core Ring’s Near-Inertial Critical Layer. J. Phys. Oceanogr. 1995, 25, 942–957. [Google Scholar] [CrossRef]
- Huang, R.; Xie, X.; Hu, J.; Sun, Z. Poleward Propagation of Typhoon-Induced Near-Inertial Waves in the Northern South China Sea. Front. Mar. Sci. 2021, 8, 713991. [Google Scholar] [CrossRef]
- Jeon, C.; Park, J.H.; Nakamura, H.; Nishina, A.; Zhu, X.H.; Kim, D.G.; Min, H.S.; Kang, S.K.; Na, H.; Hirose, N. Poleward-propagating near-inertial waves enabled by the western boundary current. Sci. Rep. 2019, 9, 9955. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Shi, J.; Ma, X.; Xu, J. A mechanism of enhanced subsurface near-inertial kinetic energy in the East China Sea associated with successive typhoons. J. Mar. Syst. 2024, 245, 103995. [Google Scholar] [CrossRef]
- Wang, D.-P. Generation and propagation of inertial waves in the Subtropical Front. J. Mar. Res. 1991, 49, 619–633. [Google Scholar] [CrossRef]
- Federiuk, J.; Allen, J.S. Model studies of near-inertial waves in flow over the Oregon continental shelf. J. Phys. Oceanogr. 1996, 26, 2053–2075. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Wagawa, T.; Yabe, I.; Ito, D.; Senjyu, T.; Itoh, S.; Igeta, Y. Mesoscale-dependent near-inertial internal waves and microscale turbulence in the Tsushima Warm Current. J. Oceanogr. 2021, 77, 155–171. [Google Scholar] [CrossRef]
- Chinn, B.S.; Girton, J.B.; Alford, M.H. Observations of internal waves and parametric subharmonic instability in the Philippines archipelago. J. Geophys. Res. Ocean. 2012, 117, 1–12. [Google Scholar] [CrossRef]
- MacKinnon, J.A.; Gregg, M.C. Shear and baroclinic energy flux on the summer new England shelf. J. Phys. Oceanogr. 2003, 33, 1462–1475. [Google Scholar] [CrossRef]
- MacKinnon, J.A.; Gregg, M.C. Near-inertial waves on the New England shelf: The role of evolving stratification, turbulent dissipation, and bottom drag. J. Phys. Oceanogr. 2005, 35, 2408–2424. [Google Scholar] [CrossRef]
- Merrifield, M.A.; Pinkel, R. Inertial currents in the Beaufort Sea: Observations of response to wind and shear. J. Geophys. Res. Ocean. 1996, 101, 6577–6590. [Google Scholar] [CrossRef]
- Kunze, E. Near-Inertial Wave Propagation In Geostrophic Shear. J. Phys. Oceanogr. 1985, 15, 544–565. [Google Scholar] [CrossRef]
- D’Asaro, E.A. Upper-Ocean Inertial Currents Forced by a Strong Storm. Part II: Modeling. J. Phys. Oceanogr. 1995, 25, 2937–2952. [Google Scholar] [CrossRef]
- Furuichi, N.; Hibiya, T.; Niwa, Y. Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res. Ocean. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Levine, M.D.; Zervakis, V. Near-Inertial Wave Propagation into the Pycnocline during Ocean Storms: Observations and Model Comparison. J. Phys. Oceanogr. 1995, 25, 2890–2908. [Google Scholar] [CrossRef]
- Hibiya, T.; Niwa, Y.; Fujiwara, K. Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res. Ocean. 1998, 103, 18715–18722. [Google Scholar] [CrossRef]
- Richet, O.; Muller, C.; Chomaz, J.M. Impact of a mean current on the internal tide energy dissipation at the critical latitude. J. Phys. Oceanogr. 2017, 47, 1457–1472. [Google Scholar] [CrossRef]
- Dong, J.; Robertson, R.; Dong, C.; Hartlipp, P.S.; Zhou, T.; Shao, Z.; Lin, W.; Zhou, M.; Chen, J. Impacts of Mesoscale Currents on the Diurnal Critical Latitude Dependence of Internal Tides: A Numerical Experiment Based on Barcoo Seamount. J. Geophys. Res. Ocean. 2019, 124, 2452–2471. [Google Scholar] [CrossRef]
- Yang, W.; Wei, H.; Zhao, L. Parametric subharmonic instability of the semidiurnal internal tides at the east China sea shelf slope. J. Phys. Oceanogr. 2020, 50, 907–920. [Google Scholar] [CrossRef]
- Omidvar, S.; Fagundes, M.; Woodson, C.B. Modification of Internal Wave Generation and Energy Conversion in the Nearshore Due To Tide-Tide and Tide-Wind Interactions. J. Geophys. Res. Ocean. 2022, 127, e2021JC017986. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, Z.; Zhao, R.; Xu, J.; Li, J.; Xie, J.; He, Y.; Zhu, X.-H.; Sun, Y.; Cai, S. Joint Effects of Winds and Tides on Near-Inertial Internal Waves in the Northern South China Sea: A Three-Dimensional Numerical Study. J. Phys. Oceanogr. 2024, 54, 1019–1035. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Xu, Z.; Li, G.; Qiao, L. Parametric Subharmonic Instability on the continental shelf of the East China Sea before and after Typhoon Danas. J. Geophys. Res. Ocean 2024. submitted. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, Z.; Lv, X. The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean. J. Mar. Sci. Eng. 2024, 12, 1565. https://doi.org/10.3390/jmse12091565
Li Y, Xu Z, Lv X. The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean. Journal of Marine Science and Engineering. 2024; 12(9):1565. https://doi.org/10.3390/jmse12091565
Chicago/Turabian StyleLi, Yang, Zhao Xu, and Xianqing Lv. 2024. "The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean" Journal of Marine Science and Engineering 12, no. 9: 1565. https://doi.org/10.3390/jmse12091565
APA StyleLi, Y., Xu, Z., & Lv, X. (2024). The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean. Journal of Marine Science and Engineering, 12(9), 1565. https://doi.org/10.3390/jmse12091565