Assessment of Heavy Metal Contamination and Ecological Risk in Mangrove Marine Sediments Inside and Outside Zhanjiang Bay: Implications for Conservation
Abstract
:1. Introduction
2. Samples and Experimental Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Preparation and Analysis
2.4. Research Methods
2.4.1. Geoaccumulation Index Method
2.4.2. Potential Ecological Risk Index Method
2.5. Data Processing
3. Results
3.1. Characteristics of Heavy Metal Concentrations in Surface Sediments of Mangrove Forests Adjacent to the Donghai Island Embankment, Huguang Town, Zhanjiang
- (1)
- Copper (Cu) distribution patterns: Within the bay, surface sediment samples exhibit Cu concentrations ranging from 21.36 to 24.13 mg·kg−1, with low variability (coefficient of variation: 5.23%). Outside the bay, Cu concentrations range from 15.12 to 22.96 mg·kg−1, with the lowest value at station DW-Z-5.
- (2)
- Zinc (Zn) distribution patterns: Inside the bay, Zn concentrations range from 91.74 to 100.74 mg·kg−1. Outside, Zn levels vary from 62.81 to 93.71 mg·kg−1, with the lowest at station DW-Z-5.
- (3)
- Cadmium (Cd) distribution patterns: Inside the bay, Cd concentrations range from 0.275 to 0.303 mg·kg−1. Outside, Cd levels range from 0.130 to 0.227 mg·kg−1, with the minimum at station DW-Z-5.
- (4)
- Lead (Pb) distribution patterns: Inside the bay, Pb concentrations range from 12.79 to 22.82 mg·kg−1. Outside, Pb levels range from 21.78 to 29.49 mg·kg−1, with the highest at station DW-Z-4.
- (5)
- Chromium (Cr) distribution patterns: Inside the bay, Cr concentrations range from 84.27 to 96.77 mg·kg−1. Outside, Cr levels range from 72.18 to 97.49 mg·kg−1, with the lowest at station DW-Z-5.
- (6)
- Arsenic (As) distribution patterns: Inside the bay, As concentrations range from 17.69 to 19.65 mg·kg−1. Outside, As levels vary from 13.91 to 22.32 mg·kg−1, with the peak at station DW-Z-1.
- (7)
- Mercury (Hg) distribution patterns: Inside the bay, Hg concentrations range from 0.130 to 0.140 mg·kg−1. Outside, Hg levels range from 0.067 to 0.238 mg·kg−1, with the highest at station DW-Z-1.
3.2. Ecological Risk Assessment of Heavy Metals
3.2.1. Geoaccumulation Index Analysis of Heavy Metal Pollution in Zhanjiang Bay Mangrove Surface Sediments
3.2.2. Potential Ecological Risk Factor and Potential Ecological Risk Index Method
4. Discussion
4.1. Spatial Distribution of Heavy Metal Concentrations in Surface Sediments
4.2. Vertical Distribution Characteristics of Heavy Metal Concentrations in Mangrove Sediments Inside and Outside Zhanjiang Bay
4.3. Source Analysis of Heavy Metals
4.4. Ecological Risk Assessment and Implications
5. Conclusions
- (1)
- Heavy metal concentrations inside Zhanjiang Bay are higher and more uniform than outside, with Cd, Cr, and As showing significant accumulation. Outside the bay, levels are lower, but Pb and As at stations DW-Z-1 and DW-Z-4 approach Class I Marine Sediment Quality Guideline limits, indicating localized risks. Vertically, concentrations inside the bay increase with depth due to historical pollution, while outside, mangrove bioaccumulation and external inputs regulate levels.
- (2)
- Geoaccumulation index (Igeo) and potential ecological risk index (RI) assessments identify Cd as the primary pollutant, with a high risk (Er Class 3) inside the bay (RI Class 2) and low to moderate risk outside. Pollution inside stems from industrial, urban, and aquaculture inputs, while tidal dynamics and mangrove purification mitigate risks outside.
- (3)
- Mangroves of Zhanjiang Bay face pollution pressure, with Cd control prioritized inside the bay. We recommend regulating industrial wastewater, enhancing mangrove replanting, and long-term monitoring to reduce Cd accumulation. These measures aim to mitigate heavy metal pollution threats, supporting the sustainable conservation of the ecosystem.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Panda, B.P.; Mohanta, Y.K.; Paul, R.; Prusty, B.A.K.; Parida, S.P.; Pradhan, A.; Saravanan, M.; Patowary, K.; Jiang, G.; Joshi, S.J. Assessment of environmental and carcinogenic health hazards from heavy metal contamination in sediments of wetlands. Sci. Rep. 2023, 13, 16314. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy metal contamination: An alarming threat to environment and human health. In Environmental Biotechnology: For Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–125. [Google Scholar]
- Sankhla, M.S.; Kumari, M.; Nandan, M.; Kumar, R.; Agrawal, P. Heavy metals contamination in water and their hazardous effect on human health-a review. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 759–766. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Alonso, R.Á.; Valsero, J.J.D.; García, R.M.; Cabrera, F.Á.; Cosío, E.L.; Laforet, S.D. Assessment of heavy metal pollution in marine sediments from southwest of Mallorca island, Spain. Environ. Sci. Pollut. Res. 2023, 30, 16852–16866. [Google Scholar] [CrossRef]
- Robledo Ardila, P.A.; Álvarez-Alonso, R.; Árcega-Cabrera, F.; Durán Valsero, J.J.; Morales García, R.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and review of heavy metals pollution in sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Lee, S. Mangrove outwelling: A review. Hydrobiologia 1995, 295, 203–212. [Google Scholar] [CrossRef]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Zhang, Y.; Lin, G. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Furukawa, K.; Wolanski, E. Sedimentation in mangrove forests. Mangroves Salt Marshes 1996, 1, 3–10. [Google Scholar]
- Zhou, X.; Wang, Y.-P.; Song, Z. Heavy metal contamination and ecological risk assessments in urban mangrove sediments in Zhanjiang Bay, South China. ACS Omega 2022, 7, 21306–21316. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, J.; Fan, C.; Zhu, B.; Fu, M.; Zhang, P. Effects of terrestrial input on heavy metals in Zhanjiang Bay, a typical subtropical bay in the South China Sea. Mar. Pollut. Bull. 2024, 199, 116015. [Google Scholar]
- Zhang, J.; Zhou, F.; Chen, C.; Sun, X.; Shi, Y.; Zhao, H.; Chen, F. Spatial distribution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China. PLoS ONE 2018, 13, e0201414. [Google Scholar]
- Wang, S.; Zhou, F.; Chen, F.; Meng, Y.; Zhu, Q. Spatiotemporal distribution characteristics of nutrients in the drowned tidal inlet under the influence of tides: A case study of zhanjiang bay, China. Int. J. Environ. Res. Public Health 2021, 18, 2089. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, Z.; Yao, S.; Jia, H.; Xian, X.; Wang, L. Ecological risk of heavy metals in sediment around techeng island special marine reserves in zhanjiang bay. J. Ocean Univ. China 2020, 19, 561–568. [Google Scholar]
- Tang, D.; Luo, S.; Deng, S.; Huang, R.; Chen, B.; Deng, Z. Heavy metal pollution status and deposition history of mangrove sediments in Zhanjiang Bay, China. Front. Mar. Sci. 2022, 9, 989584. [Google Scholar]
- Yu, S.; Hou, X.; Zhang, Y.; Mu, Y. Status investigation and analysis of oyster aquaculture industry in China: Evidence from Zhanjiang. Aquac. Int. 2023, 31, 3403–3418. [Google Scholar]
- Chen, F.; Lao, Q.; Liu, M.; Huang, P.; Chen, B.; Zhou, X.; Chen, P.; Chen, K.; Song, Z.; Cai, M. Impact of intensive mariculture activities on microplastic pollution in a typical semi-enclosed bay: Zhanjiang Bay. Mar. Pollut. Bull. 2022, 176, 113402. [Google Scholar] [CrossRef]
- Li, F.; Lin, J.; Liang, Y.; Gan, H.; Zeng, X.; Duan, Z.; Liang, K.; Liu, X.; Huo, Z.; Wu, C. Coastal surface sediment quality assessment in Leizhou Peninsula (South China Sea) based on SEM-AVS analysis. Mar. Pollut. Bull. 2014, 84, 424–436. [Google Scholar] [CrossRef]
- Sun, R.; Sun, Y.; Li, Q.X.; Zheng, X.; Luo, X.; Mai, B. Polycyclic aromatic hydrocarbons in sediments and marine organisms: Implications of anthropogenic effects on the coastal environment. Sci. Total Environ. 2018, 640, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, Y. Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp Litopenaeus vannamei tissues from aquaculture and wild source. J. Food Compos. Anal. 2011, 24, 62–65. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhang, P.; Li, Y.; Li, J.; Luo, X.; Xu, J.; Zhao, L. Seasonal phosphorus variation in coastal water affected by the land-based sources input in the eutrophic Zhanjiang Bay, China. Estuar. Coast. Shelf Sci. 2021, 252, 107277. [Google Scholar] [CrossRef]
- Onwuegbuchunam, D.; Ebe, T.; Okoroji, L.; Essien, A. An analysis of ship-source marine pollution in Nigeria seaports. J. Mar. Sci. Eng. 2017, 5, 39. [Google Scholar] [CrossRef]
- Tam, N.; Yao, M. Normalisation and heavy metal contamination in mangrove sediments. Sci. Total Environ. 1998, 216, 33–39. [Google Scholar] [CrossRef]
- Marchand, C.; Lallier-Vergès, E.; Baltzer, F.; Albéric, P.; Cossa, D.; Baillif, P. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar. Chem. 2006, 98, 1–17. [Google Scholar] [CrossRef]
- Al-Kahtany, K.; Nour, H.E.; El-Sorogy, A.S.; Alharbi, T. Ecological and health risk assessment of heavy metals contamination in mangrove sediments, Red Sea coast. Mar. Pollut. Bull. 2023, 192, 115000. [Google Scholar] [CrossRef]
- Zhu, D.-H.; Song, Q.-L.; Nie, F.-H.; Wei, W.; Chen, M.-M.; Zhang, M.; Lin, H.-Y.; Kang, D.-J.; Chen, Z.-B.; Hay, A.G. Effects of environmental and spatial variables on bacteria in Zhanjiang mangrove sediments. Curr. Microbiol. 2022, 79, 97. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Q.; Li, J.; Jian, S.; Ren, H. Mangrove succession enriches the sediment microbial community in South China. Sci. Rep. 2016, 6, 27468. [Google Scholar] [CrossRef]
- Meng, S.; Peng, T.; Pratush, A.; Huang, T.; Hu, Z. Interactions between heavy metals and bacteria in mangroves. Mar. Pollut. Bull. 2021, 172, 112846. [Google Scholar] [CrossRef]
- Shi, C.; Ding, H.; Zan, Q.; Li, R. Spatial variation and ecological risk assessment of heavy metals in mangrove sediments across China. Mar. Pollut. Bull. 2019, 143, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Sun, O.J.; Wang, E.; Ren, H.; Xu, H. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using Biome-BGC. Ecosystems 2010, 13, 949–965. [Google Scholar] [CrossRef]
- Wu, H.; Peng, R.; Yang, Y.; He, L.; Wang, W.; Zheng, T.; Lin, G. Mariculture pond influence on mangrove areas in south China: Significantly larger nitrogen and phosphorus loadings from sediment wash-out than from tidal water exchange. Aquaculture 2014, 426, 204–212. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R., Jr.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef] [PubMed]
- Holmer, M. Environmental issues of fish farming in offshore waters: Perspectives, concerns and research needs. Aquac. Environ. Interact. 2010, 1, 57–70. [Google Scholar] [CrossRef]
- Subasinghe, R.; Soto, D.; Jia, J. Global aquaculture and its role in sustainable development. Rev. Aquac. 2009, 1, 2–9. [Google Scholar] [CrossRef]
- Tam, N.F.; Wong, Y.S. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ. Pollut. 2000, 110, 195–205. [Google Scholar] [CrossRef]
- GB/T 22105.1-2008; Soil Quality-Analysis of Total Mercury, Arsenic and Lead Contents in Soils-Atomic Fluorescence Spectrometry—Part 1: Analysis of Total Mercury Contents in Soils. AQSIQ & SAC (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of China): Beijing, China, 2008.
- Wang, S. Table S1. Concentrations of Heavy Metals in Sediment Core Samples from Mangrove Forests Inside and Outside Zhanjiang Bay, South China.xls. 2025. Available online: https://figshare.com/articles/dataset/Table_S1_Concentrations_of_Heavy_Metals_in_Sediment_core_Samples_from_Mangrove_Forests_Inside_and_Outside_Zhanjiang_Bay_South_China_xls/28597535?file=53000810 (accessed on 15 March 2025). [CrossRef]
- Förstner, U.; Ahlf, W.; Calmano, W.; Kersten, M. Sediment criteria development: Contributions from environmental geochemistry to water quality management. In Sediments and Environmental Geochemistry: Selected Aspects and Case Histories; Springer: Berlin/Heidelberg, Germany, 1990; pp. 311–338. [Google Scholar]
- GB 18668-2002; Marine Sediment Quality. AQSIQ & SAC (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of China): Beijing, China, 2002.
- He, Y.; Wen, W. Distribution and concentrations of some heavy metals in the offshore bottom sediments, Guangdong Province. Trop. Oceanol. 1982, 1, 58–71. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar]
- Chen, S.; Tang, Y.; Luo, L.; Zhang, J.; Song, Q.; Chen, X.; Huang, H.; Sun, T.; Lin, X. Purification effects of simulation wetland system of several kinds of mangrove plants on heavy metals in wastewater. Ecol. Sci. 2017, 36, 27–33. [Google Scholar]
- MacFarlane, G.; Pulkownik, A.; Burchett, M. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: Biological indication potential. Environ. Pollut. 2003, 123, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Caporale, A.G.; Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Kumpiene, J.; Giagnoni, L.; Marschner, B.; Denys, S.; Mench, M.; Adriaensen, K.; Vangronsveld, J.; Puschenreiter, M.; Renella, G. Assessment of methods for determining bioavailability of trace elements in soils: A Review. Pedosphere 2017, 27, 389–406. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Khalifa, A.M.; Mohamed, H.M.; Abd El-Wahid, K.H.; Hanafy, M.H. Assessment of heavy metals at mangrove ecosystem, applying multiple approaches using in-situ and remote sensing techniques, Red Sea, Egypt. Environ. Sci. Pollut. Res. 2024, 31, 8118–8133. [Google Scholar] [CrossRef]
- Alharbi, O.M.; Khattab, R.A.; Ali, I.; Binnaser, Y.S.; Aqeel, A. Evaluation of the heavy metals threat to the Yanbu shoreline, Red Sea, Saudi Arabia. Mar. Freshw. Res. 2018, 69, 1557–1568. [Google Scholar] [CrossRef]
Certified Reference Material GBW07314 | Element | Cu | Zn | Cd | Pb | Cr | As | Hg |
(mg·kg−1) | ||||||||
Measured Value 1 | 31.30 | 88.20 | 0.206 | 24.40 | 69.40 | 10.10 | 0.059 | |
Measured Value 2 | 28.30 | 82.20 | 0.214 | 23.60 | 77.40 | 10.90 | 0.055 | |
Certified Value | 31.00 | 87.00 | 0.200 | 25.00 | 86.00 | 10.30 | 0.048 | |
Uncertainty | 4.00 | 2.00 | 0.040 | 4.00 | 4.00 | 1.40 | 0.012 | |
Recovery 1 | 101.00% | 101.00% | 103.00% | 97.60% | 80.60% | 98.50% | 122.00% | |
Recovery 2 | 91.40% | 94.50% | 107.00% | 94.50% | 90.00% | 106.00% | 115.00% |
Reference Standard | Cu | Zn | Cd | Pb | Cr | As | Hg |
---|---|---|---|---|---|---|---|
(mg·kg−1) | |||||||
Class I Marine Sediment Quality Guideline [43] | 35 | 150 | 0.50 | 60 | 80 | 20 | 0.200 |
Heavy metals in sediments from the coastal area of western Guangdong Province in 1982 [44] | 13 | 52 | 0.08 | 33 | 103 | 10 | 0.109 |
Pollution Level | Sediment Igeo Range | Igeo Class |
---|---|---|
Unpolluted | Igeo < 0 | 0 |
Unpolluted to Moderately polluted | 0 ≤ Igeo < 1 | 1 |
Moderately polluted | 1 ≤ Igeo < 2 | 2 |
Moderately to Strongly polluted | 2 ≤ Igeo < 3 | 3 |
Strongly polluted | 3 ≤ Igeo < 4 | 4 |
Strongly to Extremely polluted | 4 ≤ Igeo < 5 | 5 |
Extremely polluted | Igeo ≥ 5 | 6 |
Potential Ecological Risk Factor (Er) | Risk Class | Potential Ecological Risk Index (RI) | Risk Class |
---|---|---|---|
Er < 40 | Low | RI < 150 | Low |
40 ≤ Er < 80 | Moderate | 150 ≤ RI < 300 | Moderate |
80 ≤ Er < 160 | High | 300 ≤ RI < 600 | High |
160 ≤ Er < 320 | Very High | 600 ≤ RI < 1200 | Very High |
320 ≤ Er | Extremely High | 1200 ≤ RI | Extremely High |
Sample | Cu | Zn | Cd | Pb | Cr | As | Hg |
---|---|---|---|---|---|---|---|
Within Zhanjiang Bay | |||||||
DHD-Z-1-1 | 23.10 | 93.06 | 0.287 | 22.82 | 86.34 | 18.20 | 0.140 |
DHD-Z-2-1 | 24.13 | 99.76 | 0.303 | 14.71 | 89.00 | 18.36 | 0.133 |
DHD-Z-3-1 | 21.36 | 91.74 | 0.288 | 17.87 | 84.27 | 17.69 | 0.130 |
DHD-Z-4-1 | 23.61 | 100.74 | 0.275 | 12.79 | 96.77 | 19.65 | 0.135 |
Statistical Summary (Within Bay) | |||||||
Minimum | 21.36 | 91.74 | 0.28 | 12.79 | 84.27 | 17.69 | 0.130 |
Maximum | 24.13 | 100.74 | 0.30 | 22.82 | 96.77 | 19.65 | 0.140 |
Mean | 23.05 | 96.33 | 0.29 | 17.05 | 89.10 | 18.47 | 0.134 |
Std. Dev. | 1.21 | 4.58 | 0.01 | 4.38 | 5.47 | 0.83 | 0.004 |
Coeff. Var. (%) | 5.23 | 4.81 | 3.99 | 27.76 | 6.35 | 4.43 | 3.480 |
Outside Zhanjiang Bay | |||||||
DW-Z-1-1 | 22.34 | 85.78 | 0.180 | 23.45 | 94.74 | 22.32 | 0.238 |
DW-Z-2-1 | 18.96 | 79.61 | 0.183 | 28.01 | 83.09 | 13.91 | 0.081 |
DW-Z-3-1 | 20.43 | 81.33 | 0.172 | 21.78 | 91.11 | 21.00 | 0.081 |
DW-Z-4-1 | 22.96 | 93.71 | 0.227 | 29.49 | 97.49 | 19.94 | 0.081 |
DW-Z-5-1 | 15.12 | 62.81 | 0.130 | 24.16 | 72.18 | 16.29 | 0.067 |
Statistical Summary (Outside Bay) | |||||||
Minimum | 15.12 | 62.81 | 0.13 | 21.78 | 72.18 | 13.91 | 0.067 |
Maximum | 22.96 | 93.71 | 0.23 | 29.49 | 97.49 | 22.32 | 0.238 |
Mean | 19.96 | 80.65 | 0.18 | 25.38 | 87.72 | 18.69 | 0.110 |
Std. Dev. | 3.13 | 13.77 | 0.03 | 3.24 | 10.23 | 3.49 | 0.072 |
Coeff. Var. (%) | 16.27 | 14.16 | 20.50 | 13.48 | 11.98 | 18.17 | 61.90 |
Method Detection Limit | 0.008 | 0.160 | 0.015 | 0.070 | 0.070 | 0.180 | 0.002 |
Study Area | Site | Cu | Zn | Cd | Pb | Cr | As | Hg |
---|---|---|---|---|---|---|---|---|
Within the bay | DHD-Z-1 | 0.24 | 0.25 | 1.26 | −1.12 | −0.84 | 0.28 | −0.22 |
DHD-Z-2 | 0.31 | 0.36 | 1.34 | −1.75 | −0.80 | 0.29 | −0.30 | |
DHD-Z-3 | 0.13 | 0.23 | 1.27 | −1.47 | −0.87 | 0.24 | −0.34 | |
DHD-Z-4 | 0.28 | 0.37 | 1.20 | −1.95 | −0.67 | 0.39 | −0.28 | |
Outside the bay | DW-Z-1 | 0.20 | 0.14 | 0.59 | −1.08 | −0.71 | 0.57 | 0.54 |
DW-Z-2 | −0.04 | 0.03 | 0.61 | −0.82 | −0.89 | −0.11 | −1.01 | |
DW-Z-3 | 0.07 | 0.06 | 0.52 | −1.18 | −0.76 | 0.49 | −1.01 | |
DW-Z-4 | 0.24 | 0.26 | 0.92 | −0.75 | −0.66 | 0.41 | −1.02 | |
DW-Z-5 | −0.37 | −0.31 | 0.11 | −1.03 | −1.10 | 0.12 | −1.28 |
Study Area | Sample | Potential Ecological Risk Factor (Er) | Potential Ecological Risk Index (RI) | Risk Class | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Zn | Cd | Pd | Cr | As | Hg | ||||
Within the bay | DHD-Z-1 | 8.88 | 1.79 | 107.47 | 3.46 | 1.68 | 18.20 | 51.56 | 193.04 | Moderate |
DHD-Z-2 | 9.28 | 1.92 | 113.62 | 2.23 | 1.73 | 18.36 | 48.77 | 195.91 | Moderate | |
DHD-Z-3 | 8.21 | 1.76 | 108.18 | 2.71 | 1.64 | 17.69 | 47.54 | 187.72 | Moderate | |
DHD-Z-4 | 9.08 | 1.94 | 103.09 | 1.94 | 1.88 | 19.65 | 49.39 | 186.96 | Moderate | |
Outside the bay | DW-Z-1 | 8.59 | 1.65 | 67.57 | 3.55 | 1.84 | 22.32 | 87.38 | 192.91 | Moderate |
DW-Z-2 | 7.29 | 1.53 | 68.64 | 4.24 | 1.61 | 13.91 | 29.89 | 127.13 | Low | |
DW-Z-3 | 7.86 | 1.56 | 64.61 | 3.30 | 1.77 | 21.00 | 29.76 | 129.83 | Low | |
DW-Z-4 | 8.83 | 1.80 | 85.30 | 4.47 | 1.89 | 19.94 | 29.69 | 151.92 | Moderate | |
DW-Z-5 | 5.82 | 1.21 | 48.59 | 3.66 | 1.40 | 16.29 | 24.64 | 101.60 | Low |
Study Area | Heavy Metal | Cu | Zn | Cd | Pb | Cr | As | Hg |
---|---|---|---|---|---|---|---|---|
Within the bay | Cu | 1.000 | ||||||
Zn | 0.833 | 1.000 | ||||||
Cd | 0.191 | −0.024 | 1.000 | |||||
Pb | −0.381 | −0.822 | 0.086 | 1.000 | ||||
Cr | 0.619 | 0.860 | −0.531 | −0.728 | 1.000 | |||
As | 0.618 | 0.812 | −0.590 | −0.636 | 0.992 ** | 1.000 | ||
Hg | 0.424 | −0.031 | −0.225 | 0.562 | 0.109 | 0.222 | 1.000 | |
Outside the bay | Cu | 1.000 | ||||||
Zn | 0.976 ** | 1.000 | ||||||
Cd | 0.871 | 0.955 * | 1.000 | |||||
Pb | 0.230 | 0.410 | 0.647 | 1.000 | ||||
Cr | 0.993 ** | 0.963 ** | 0.847 | 0.160 | 1.000 | |||
As | 0.683 | 0.532 | 0.306 | −0.438 | 0.735 | 1.000 | ||
Hg | 0.487 | 0.321 | 0.094 | −0.306 | 0.446 | 0.598 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Song, Z.; Wang, S.; Yan, S.; Wang, Y.; Gao, Y.; Xia, J. Assessment of Heavy Metal Contamination and Ecological Risk in Mangrove Marine Sediments Inside and Outside Zhanjiang Bay: Implications for Conservation. J. Mar. Sci. Eng. 2025, 13, 708. https://doi.org/10.3390/jmse13040708
Guo H, Song Z, Wang S, Yan S, Wang Y, Gao Y, Xia J. Assessment of Heavy Metal Contamination and Ecological Risk in Mangrove Marine Sediments Inside and Outside Zhanjiang Bay: Implications for Conservation. Journal of Marine Science and Engineering. 2025; 13(4):708. https://doi.org/10.3390/jmse13040708
Chicago/Turabian StyleGuo, Haoqiang, Zhiguang Song, Sibo Wang, Suiqi Yan, Yaoping Wang, Yuan Gao, and Jia Xia. 2025. "Assessment of Heavy Metal Contamination and Ecological Risk in Mangrove Marine Sediments Inside and Outside Zhanjiang Bay: Implications for Conservation" Journal of Marine Science and Engineering 13, no. 4: 708. https://doi.org/10.3390/jmse13040708
APA StyleGuo, H., Song, Z., Wang, S., Yan, S., Wang, Y., Gao, Y., & Xia, J. (2025). Assessment of Heavy Metal Contamination and Ecological Risk in Mangrove Marine Sediments Inside and Outside Zhanjiang Bay: Implications for Conservation. Journal of Marine Science and Engineering, 13(4), 708. https://doi.org/10.3390/jmse13040708