Machine Learning-Based Mooring Failure Detection for FPSOs: A Two-Step ANN Approach
Abstract
:1. Introduction
2. Big-Data Collection from Numerical Simulation
2.1. Design Particulars of Moored FPSO and Numerical Model
2.2. Environmental Data
2.3. Big Data Collection and Data Description
3. ANN Architecture
3.1. ANN Architecture: Two-Step Approach
3.2. Feature Selection
3.3. Hyperparameter Optimization
4. Results and Discussions
5. Concluding Remarks
- The two-step ANN architecture outperformed the single-step method, achieving an overall accuracy of 83.7% with 100% accuracy in mooring group classification and reducing misclassifications in individual line failures. The single-step ANN suffered from misclassifications, including falsely identifying an intact case as failure and two misclassifications where failure cases were incorrectly classified as intact, while the second-step ANN did not misclassify any intact cases as failures.
- The 6DOF mean values, particularly for surge and yaw motions, were the most critical features for mooring failure detection. Additionally, planar motions were more important than non-planar motions.
- Selecting the best features using a mutual information map can improve model accuracy, highlighting the importance of selecting highly correlated input variables rather than expanding the dataset with uncorrelated features.
- Including environmental conditions as inputs did not enhance performance, reinforcing the idea that platform motion data are the most relevant predictor for mooring failure detection.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, K.-T.; Shu, H.; Smedley, P.; L’Hostis, D.; Duggal, A. A historical review on integrity issues of permanent mooring systems. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2013; p. OTC-24025-MS. [Google Scholar]
- DNV-RP-F116; Integrity Management of Submarine Pipeline Systems. Recommended Practice DNV-RP-F116. Det Norske Veritas: Høvik, Norway, 2015.
- Brown, M.; Comley, A.; Eriksen, M.; Williams, I.; Smedley, P.; Bhattacharjee, S. Phase 2 Mooring Integrity JIP–Summary of Findings. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2010. [Google Scholar]
- Campman, C.; Edwards, R.; Hennessy, W. Review of floating production platform real-time integrity monitoring systems worldwide. In Proceedings of the Rid Oil & Gas Expo and Conference, Rio de Janeiro, Brazil, 13–16 September 2010. [Google Scholar]
- Elman, P.; Bramande, J.; Elletson, E.; Pinheiro, K. Reducing uncertainty through the use of mooring line monitoring. In Proceedings of the Offshore Technology Conference, Rio de Janeiro, Brasil, 29–31 October 2013; p. OTC-24388-MS. [Google Scholar]
- Gerner, M.; Perryman, S.; Geyer, J.; Von Aschwege, J. Marine monitoring of Gulf of Mexico deepwater floating systems. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2007; p. OTC-18626-MS. [Google Scholar]
- Duz, B.; Mak, B.; Hageman, R.; Grasso, N. Real time estimation of local wave characteristics from ship motions using artificial neural networks. In Practical Design of Ships and Other Floating Structures, Proceedings of the 14th International Symposium, PRADS 2019, Yokohama, Japan, 22–26 September 2019; Springer: Singapore, 2021; Volume III 14, pp. 657–678. [Google Scholar]
- Yoon, T.; Park, Y.-I.; Kim, J.-H. Estimation of Directional Wave Spectra with Motion Data of Floating Structure Using Complex-Valued Neural Networks. Appl. Sci. 2025, 15, 1603. [Google Scholar] [CrossRef]
- Kwon, D.-S.; Kim, S.-J.; Jin, C.; Kim, M.; Guha, A.; Esenkov, O.E.; Ryu, S. Inverse estimation of a vertical current velocity profile using motions of an FPSO and artificial neural network. Ocean Eng. 2023, 285, 115343. [Google Scholar] [CrossRef]
- Park, H.-J.; Kim, J.-S.; Nam, B.W.; Kim, J.-S. ANN-based prediction models for green water events around a FPSO in irregular waves. Ocean Eng. 2024, 291, 116408. [Google Scholar] [CrossRef]
- Sidarta, D.E.; Auburtin, E.; Ledoux, A.; Lim, H.-J.; Leridon, A.; Tcherniguin, N. Mooring Line Failure Detection Using Artificial Neural Networks: An Application to Field Data Including Artificial Failure Cases. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2023; p. D031S032R007. [Google Scholar]
- Sidarta, D.E.; Lim, H.-J.; Kyoung, J.; Tcherniguin, N.; Lefebvre, T.; O’Sullivan, J. Detection of mooring line failure of a spread-moored FPSO: Part 1—Development of an artificial neural network based model. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Glasgow, Scotland, UK, 9–14 June 2019; p. V001T001A042. [Google Scholar]
- Janas, K.; Milne, I.; Whelan, J. Application of a convolutional neural network for mooring failure identification. Ocean Eng. 2021, 232, 109119. [Google Scholar] [CrossRef]
- Saad, A.M.; Schopp, F.; Barreira, R.A.; Santos, I.H.; Tannuri, E.A.; Gomi, E.S.; Costa, A.H.R. Using neural network approaches to detect mooring line failure. IEEE Access 2021, 9, 27678–27695. [Google Scholar] [CrossRef]
- Gumley, J.M.; Marcollo, H.; Wales, S.; Potts, A.E.; Carra, C.J. Application of machine learning techniques as a means of mooring integrity monitoring. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Glasgow, Scotland, UK, 9–14 June 2019; p. V003T002A070. [Google Scholar]
- Gorostidi, N.; Nava, V.; Aristondo, A.; Pardo, D. Predictive maintenance of floating offshore wind turbine mooring lines using deep neural networks. J. Phys. Conf. Ser. 2022, 2257, 012008. [Google Scholar] [CrossRef]
- Song, J.; Noh, Y.; Cho, H.H.; Zi, G.; Kim, S. Data-driven detection of mooring failures in offshore floating photovoltaics using artificial neural networks. Steel Compos. Struct. 2024, 53, 599–612. [Google Scholar]
- Kwon, D.-S.; Jin, C.; Kim, M.; Koo, W. Mooring-failure monitoring of submerged floating tunnel using deep neural network. Appl. Sci. 2020, 10, 6591. [Google Scholar] [CrossRef]
- Chung, M.; Kim, S.; Lee, K.; Shin, D.H. Detection of damaged mooring line based on deep neural networks. Ocean Eng. 2020, 209, 107522. [Google Scholar] [CrossRef]
- Lee, K.; Chung, M.; Kim, S.; Shin, D.H. Damage detection of catenary mooring line based on recurrent neural networks. Ocean Eng. 2021, 227, 108898. [Google Scholar] [CrossRef]
- Kwon, D.-S.; Kim, S.-J.; Jin, C.; Kim, M. Parametric Estimation of Directional Wave Spectra from Moored FPSO Motion Data Using Optimized Artificial Neural Networks. J. Mar. Sci. Eng. 2025, 13, 69. [Google Scholar] [CrossRef]
- Orcina Ltd. OrcaFlex User Manual Version 11.4; Orcina Ltd.: Ulverston, UK, 2023. [Google Scholar]
- Lee, C.; Newman, J. WAMIT User Manual, Version 7.0; WAMIT Inc.: Chestnut Hill, MA, USA, 2013. [Google Scholar]
- Cheng, Y.; Fu, L.; Dai, S.; Collu, M.; Ji, C.; Yuan, Z.; Incecik, A. Experimental and numerical investigation of WEC-type floating breakwaters: A single-pontoon oscillating buoy and a dual-pontoon oscillating water column. Coast. Eng. 2022, 177, 104188. [Google Scholar] [CrossRef]
- Jin, C.; Kim, G.-J.; Kim, S.-J.; Kim, M.; Kwak, H.-G. Discrete-module-beam-based hydro-elasticity simulations for moored submerged floating tunnel under regular and random wave excitations. Eng. Struct. 2023, 275, 115198. [Google Scholar] [CrossRef]
- Jo, J.-S. Study of hydrodynamic analysis of eco-friendly buoys with biodegradable plastic materials. J. Adv. Mar. Eng. Technol. 2023, 47, 231–237. [Google Scholar] [CrossRef]
- Cummins, W. The impulse response function and ship motions. Schiffstechnik 1962, 9, 101–109. [Google Scholar]
- Ogilvie, T.F. Recent progress toward the understanding and prediction of ship motions. In Proceedings of the ONR Symposium on Naval Hydrodynamics, Bergen, Norway, 10–12 September 1964; pp. 3–80. [Google Scholar]
- Malenica, Š.; Clark, P.; Molin, B. Wave and current forces on a vertical cylinder free to surge and sway. Appl. Ocean. Res. 1995, 17, 79–90. [Google Scholar] [CrossRef]
- OCIMF. Prediction of Wind and Current Loads on VLCCs, 2nd ed.; Oil Companies International Marine Forum: London, UK, 1994; pp. 207–216. [Google Scholar]
- Kim, M.; Koo, B.; Mercier, R.; Ward, E. Vessel/mooring/riser coupled dynamic analysis of a turret-moored FPSO compared with OTRC experiment. Ocean Eng. 2005, 32, 1780–1802. [Google Scholar] [CrossRef]
- Lee, J.; Jin, C.; Kim, M. Dynamic response analysis of submerged floating tunnels by wave and seismic excitations. Ocean Syst. Eng. 2017, 7, 1–19. [Google Scholar] [CrossRef]
- Jin, C.; Bakti, F.P.; Kim, M. Time-domain coupled dynamic simulation for SFT-mooring-train interaction in waves and earthquakes. Mar. Struct. 2021, 75, 102883. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: New Delhi, India, 2009. [Google Scholar]
- Jung, K.-H.; Lee, J.-H. Experimental study on predicting the corrosion behavior of carbon steel in various corrosive environments using artificial neural networks. J. Adv. Mar. Eng. Technol. 2023, 47, 317–324. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Length between perpendicular | 310 | m |
Breadth | 47.17 | m |
Depth | 28.04 | m |
Draft | 18.90 | m |
Displacement | 240,869 | MT |
Center of gravity above base | 13.30 | m |
Roll radius of gyration at COG * | 14.77 | m |
Pitch radius of gyration at COG | 77.47 | m |
Yaw radius of gyration at COG | 79.30 | m |
Heave natural period | 14.62 | s |
Roll natural period | 12.88 | s |
Pitch natural period | 11.79 | s |
Parameter | Value | Unit | |||
---|---|---|---|---|---|
Mooring Lines | Steel Catenary Riser | ||||
Segment 1 (Chain) | Segment 2 (Polyester) | Segment 3 (Chain) | |||
Length | 120 | 2290 | 90 | 2800 | m |
Diameter * | 9.52 | 16.0 | 9.52 | 25.4 | cm |
Mass/unit length | 189.2 | 20.4 | 189.2 | 131.0 | kg/m |
Axial stiffness | 9.12 × 105 | 2.79 × 104 | 9.12 × 105 | 3.34 × 106 | kN |
Bending stiffness | - | - | - | 2.25 × 104 | kNm2 |
Torsional stiffness | - | - | - | 1.84 × 104 | kNm2 |
Added mass coefficient ** | 1.0 | 1.0 | 1.0 | 1.0 | - |
Drag coefficient | 2.4 | 1.2 | 2.4 | 1.0 | - |
Minimum breaking load *** | 9035.14 | 4363.95 | 9035.14 | - | kN |
Case # | Input Variables |
---|---|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
Hyperparameter | Search Field |
---|---|
Number of layers | 1–5 |
Number of neurons | 32–512 |
Dropout | 0% or 30% |
Activation function | tanh or ReLU |
Optimization Method | Configuration | Accuracy (%) | |||||
---|---|---|---|---|---|---|---|
1st Step | 2nd Step | Overall * | |||||
Group 1 | Group 2 | Group 3 | Group 4 | ||||
Bayesian | 50 | 100.0 | 62.7 | 66.7 | 74.7 | 56.0 | 82.5 |
Random | 50 | 100.0 | 62.7 | 65.3 | 74.7 | 60.0 | 82.8 |
Bayesian | 150 | 100.0 | 61.3 | 66.7 | 77.3 | 57.3 | 82.8 |
Random | 150 | 100.0 | 66.7 | 66.7 | 77.3 | 58.7 | 83.7 |
Bayesian | 250 | 100.0 | 61.3 | 69.3 | 76.0 | 58.7 | 83.2 |
Random | 250 | 100.0 | 64.0 | 66.7 | 78.7 | 60.0 | 83.7 |
Case # | Accuracy (%) | |||||
---|---|---|---|---|---|---|
1st Step | 2nd Step | Overall * | ||||
Group 1 | Group 2 | Group 3 | Group 4 | |||
1 | 100.0 | 66.7 | 66.7 | 77.3 | 58.7 | 83.7 |
2 | 100.0 | 58.7 | 80.0 | 68.0 | 60.0 | 83.3 |
3 | 100.0 | 54.7 | 53.3 | 64.0 | 58.7 | 78.8 |
4 | 100.0 | 53.3 | 64.0 | 65.3 | 66.7 | 81.2 |
5 | 94.7 | 56.00 | 65.3 | 73.3 | 54.7 | 75.3 |
6 | 71.2 | 57.3 | 53.3 | 53.3 | 56.0 | 50.3 |
7 | 100.0 | 68.0 | 66.7 | 74.7 | 60.0 | 83.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jebari, O.; Kwon, D.-S.; Kim, S.-J.; Jin, C.; Kim, M. Machine Learning-Based Mooring Failure Detection for FPSOs: A Two-Step ANN Approach. J. Mar. Sci. Eng. 2025, 13, 791. https://doi.org/10.3390/jmse13040791
Jebari O, Kwon D-S, Kim S-J, Jin C, Kim M. Machine Learning-Based Mooring Failure Detection for FPSOs: A Two-Step ANN Approach. Journal of Marine Science and Engineering. 2025; 13(4):791. https://doi.org/10.3390/jmse13040791
Chicago/Turabian StyleJebari, Omar, Do-Soo Kwon, Sung-Jae Kim, Chungkuk Jin, and Moohyun Kim. 2025. "Machine Learning-Based Mooring Failure Detection for FPSOs: A Two-Step ANN Approach" Journal of Marine Science and Engineering 13, no. 4: 791. https://doi.org/10.3390/jmse13040791
APA StyleJebari, O., Kwon, D.-S., Kim, S.-J., Jin, C., & Kim, M. (2025). Machine Learning-Based Mooring Failure Detection for FPSOs: A Two-Step ANN Approach. Journal of Marine Science and Engineering, 13(4), 791. https://doi.org/10.3390/jmse13040791