Marine Intelligent Technology as a Strategic Tool for Sustainable Development: A Five-Year Systematic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Selection Criteria
2.2. Methodology
3. Results
4. Trend Analysis and Discussion
4.1. Trend Analysis
4.1.1. Marine Intelligent Technology in Sustainable Marine Ecosystems
4.1.2. Marine Intelligent Technology in Sustainable Shipping
4.1.3. Marine Intelligent Technology in Sustainable Fisheries
4.2. Discussion
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
AUV | Autonomous underwater vehicle |
AUG | Autonomous underwater gliders |
IoUT | Internet of Underwater Things |
GHG | Greenhouse Gas |
LNG | Liquefied Natural Gas |
WoS | Web of Science |
JMSE | Journal of Marine Science and Engineering |
JCP | Journal of Cleaner Production |
RSER | Renewable & Sustainable Energy Reviews |
ESPR | Environmental Science and Pollution Research |
FMS | Frontiers in Marine Science |
MP | Marine Policy |
ECM | Energy Conversion and Management |
STOTEN | Science of the Total Environment |
IJHE | International Journal of Hydrogen Energy |
OE | Ocean Engineering |
TRD | Transportation Research Part D: Transport and Environment |
CNR | Consiglio Nazionale delle Ricerche |
EKB | Egyptian Knowledge Bank |
VOCs | Volatile organic compounds |
DAS | Distributed acoustic sensing |
IMO | International Maritime Organization |
JES | Journal of Environmental Sciences |
SETA | Sustainable Energy Technologies and Assessments |
OCMA | Ocean & Coastal Management |
AIS | Automatic Identification System |
References
- Erdoğan, S.; Çakar, N.D.; Ulucak, R.; Danish; Kassouri, Y. The role of natural resources abundance and dependence in achieving environmental sustainability: Evidence from resource-based economies. Sustain. Dev. 2021, 29, 143–154. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Z.; Di, Q.; Liang, C. Marine fishery carbon emission reduction and changing factors behind marine fishery eco-efficiency growth in China. Ecol. Inform. 2024, 80, 102478. [Google Scholar] [CrossRef]
- Ye, J.; Chen, J.; Shi, J.; Jiang, X.; Zhou, S. Novel synergy mechanism for carbon emissions abatement in shipping decarbonization. Transp. Res. Part D Transp. Environ. 2024, 127, 104059. [Google Scholar] [CrossRef]
- Li, C.; Mogollón, J.M.; Tukker, A.; Steubing, B. Environmental impacts of global offshore wind energy development until 2040. Environ. Sci. Technol. 2022, 56, 11567–11577. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, R.; Hu, D.; Chen, J.; Xu, L. Modelling driving factors of PM2.5 concentrations in port cities of the Yangtze River delta. Mar. Pollut. Bull. 2022, 184, 114131. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Wang, X.; Yi, K. Above management: Scale development and empirical testing for public opinion monitoring of marine pollution. Mar. Pollut. Bull. 2023, 192, 114953. [Google Scholar] [CrossRef]
- Xu, L.; Shen, C.; Chen, J.; Pan, X.; Xiao, G. Efficiency evaluation and improvement pathway of sulfur-oxide emissions in European ports based on context—Dependent SBM—DEA model. Mar. Pollut. Bull. 2024, 208, 117002. [Google Scholar] [CrossRef]
- Grizzetti, B.; Vigiak, O.; Udias, A.; Aloe, A.; Zanni, M.; Bouraoui, F.; Pistocchi, A.; Dorati, C.; Friedland, R.; De Roo, A.; et al. How EU policies could reduce nutrient pollution in European inland and coastal waters. Global Environ. Change 2021, 69, 102281. [Google Scholar] [CrossRef]
- Duarte, C.M.; Bruhn, A.; Krause—Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 2022, 5, 185–193. [Google Scholar] [CrossRef]
- Castillo, D.J.; Vicary, T.; Kalentsits, M.; Soomai, S.S.; MacDonald, B.H. Ensuring equitable access to ocean and coastal information to advance knowledge and inform decision-making: The global aquatic sciences and fisheries abstracts. Ocean Coast. Manag. 2023, 231, 106399. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Teng, F.; Mehmood, U.; Alofaysan, H.; Sun, Y. Bridging shores: Leveraging green finance, financial globalization, and human capital for a cleaner environment in G-20 marine ecosystems using the fishing ground capability curve theory. Mar. Policy 2024, 170, 106354. [Google Scholar] [CrossRef]
- Zambrano-Pinto, M.V.; Tinizaray-Castillo, R.; Riera, M.A.; Maddela, N.R.; Luque, R.; Díaz, J.M.R. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. Sci. Total Environ. 2024, 908, 168244. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, W.; Xie, X. Intelligent image monitoring technology of marine environmental pollution information. J. Coast. Res. 2020, 112, 1–4. [Google Scholar] [CrossRef]
- Heikkilä, M.; Himmanen, H.; Soininen, O.; Sonninen, S.; Heikkilä, J. Navigating the future: Developing smart fairways for enhanced maritime safety and efficiency. J. Mar. Sci. Eng. 2024, 12, 324. [Google Scholar] [CrossRef]
- Xue, B.; Xu, Y.; Yang, J. Remote sensing of the interaction between human and natural ecosystems in Asia. Remote Sens. 2024, 16, 2255. [Google Scholar] [CrossRef]
- Zou, Y.; Sun, M.; Li, S.; Zhang, X.; Feng, L.; Wang, Y.; Du, T.; Ji, Y.; Sun, P.; Xu, M. Advances in self-powered triboelectric sensor toward marine IoT. Nano Energy 2024, 122, 109316. [Google Scholar] [CrossRef]
- Cui, B.; Wang, C.; Wu, Y.; Zhu, C.; Lin, J.; Yang, T. Intelligent monitoring of marine vessel dynamics based on data mining. Ocean Eng. 2024, 313, 119387. [Google Scholar] [CrossRef]
- Huang, X. Design of intelligent collection system for marine pollution information based on broadband internet of things. Desalin. Water Treat. 2023, 315, 558–564. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Shi, J.; Yan, T.; Gu, M.; Huang, X. Factor diagnosis and governance strategies of ship oil spill accidents based on formal concept analysis. Mar. Pollut. Bull. 2023, 196, 115606. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Shi, J.; Wang, Y.; Li, H.; Xiang, Y.; Liu, Y.; Chen, H. Causal diagnostic model and governance strategies to reduce pollution from ship accidents in Chinese waters. Mar. Pollut. Bull. 2024, 207, 116817. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Fang, H.; Yu, S.; Yang, S.; Yang, H.; Xie, Y.; Dai, Y. RSNC-YOLO: A deep-learning-based method for automatic fine-grained tuna recognition in complex environments. Appl. Sci. 2024, 14, 10732. [Google Scholar] [CrossRef]
- Jolaosho, T.L.; Rasaq, M.F.; Omotoye, E.V.; Araomo, O.V.; Adekoya, O.S.; Abolaji, O.Y.; Hungbo, J.J. Microplastics in freshwater and marine ecosystems: Occurrence, characterization, sources, distribution dynamics, fate, transport processes, potential mitigation strategies, and policy interventions. Ecotoxicol. Environ. Saf. 2025, 294, 118036. [Google Scholar] [CrossRef] [PubMed]
- Beladi-Mousavi, S.M.; Hermanová, S.; Ying, Y.; Plutnar, J.; Pumera, M. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110. [Google Scholar] [CrossRef]
- Biliškov, I.; Papić, V. Development of a seafloor litter database and application of image preprocessing techniques for UAV-based detection of seafloor objects. Electronics 2024, 13, 3524. [Google Scholar] [CrossRef]
- Liu, L.; Li, P. Plant intelligence-based PILLO underwater target detection algorithm. Eng. Appl. Artif. Intell. 2023, 126, 106818. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, D.; Gan, W. YOLOv7t-CEBC network for underwater litter detection. J. Mar. Sci. Eng. 2024, 12, 524. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, L.; Bu, Y. Research on the identification and classification of marine debris based on improved YOLOv8. J. Mar. Sci. Eng. 2024, 12, 1748. [Google Scholar] [CrossRef]
- Massot-Campos, M.; Bonin-Font, F.; Guerrero-Font, E.; Martorell-Torres, A.; Martin Abadal, M.; Muntaner-Gonzalez, C.; Nordfeldt-Fiol, B.M.; Oliver-Codina, G.; Cappelletto, J.; Thornton, B. Assessing benthic marine habitats colonized with posidonia oceanica using autonomous marine robots and deep learning: A Eurofleets campaign. Estuar. Coast. Shelf Sci. 2023, 291, 108438. [Google Scholar] [CrossRef]
- Osuka, K.E.; McClean, C.; Stewart, B.D.; Bett, B.J.; Le Bas, T.; Howe, J.; Abernerthy, C.; Yahya, S.; Obura, D.; Samoilys, M. Characteristics of shallow and mesophotic environments of the Pemba Channel, Tanzania: Implications for management and conservation. Ocean Coast. Manag. 2021, 200, 105463. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Dong, J.; Song, S.; Zhang, T.; Liu, D.; Zhang, H.; Han, S. Developing a microscopic image dataset in support of intelligent phytoplankton detection using deep learning. ICES J. Mar. Sci. 2020, 77, 1427–1439. [Google Scholar] [CrossRef]
- Cai, L.; McGuire, N.E.; Hanlon, R.; Mooney, T.A.; Girdhar, Y. Semi-supervised visual tracking of marine animals using autonomous underwater vehicles. Int. J. Comput. Vis. 2023, 131, 1406–1427. [Google Scholar] [CrossRef]
- Maglietta, R.; Carlucci, R.; Fanizza, C.; Dimauro, G. Machine learning and image processing methods for cetacean photo identification: A systematic review. IEEE Access 2022, 10, 80195–80207. [Google Scholar] [CrossRef]
- Alam, T.; Al Redwan Newaz, A.; Bobadilla, L.; Alsabban, W.H.; Smith, R.N.; Karimoddini, A. Towards energy-aware feedback planning for long-range autonomous underwater vehicles. Front. Robot. AI 2021, 8, 621820. [Google Scholar] [CrossRef]
- Anand, A.; Yuva Bharath, M.; Sundaravadivel, P.; Preetha Roselyn, J.; Annie Uthra, R. On-device intelligence for AI-enabled bio-inspired autonomous underwater vehicles (AUVs). IEEE Access 2024, 12, 51982–51994. [Google Scholar] [CrossRef]
- Bai, X.; Shang, J.; Luo, Z.; Jiang, T.; Yin, Q. Development of amphibious biomimetic robots. J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) 2022, 23, 157–187. [Google Scholar] [CrossRef]
- Cao, M.; Bie, H.; Hu, X. Behavior composition for marine pollution source localization using a mobile sensor network. Appl. Sci. 2022, 12, 5767. [Google Scholar] [CrossRef]
- Helal, K.M.; Fragasso, J.; Moro, L. Effectiveness of ocean gliders in monitoring ocean acoustics and anthropogenic noise from ships: A systematic review. Ocean Eng. 2024, 295, 116993. [Google Scholar] [CrossRef]
- Jahanbakht, M.; Xiang, W.; Hanzo, L.; Rahimi Azghadi, M. Internet of underwater things and big marine data analytics-a comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 904–956. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Mazinani, A.; Othman, N.Q.H.; Amjad, H. Towards the internet of underwater things: A comprehensive survey. Earth Sci. Inform. 2022, 15, 735–764. [Google Scholar] [CrossRef]
- Curran, S.; Onorati, A.; Payri, R.; Agarwal, A.K.; Arcoumanis, C.; Bae, C.; Boulouchos, K.; Chuahy, F.D.; Gavaises, M.; Hampson, G.J.; et al. The future of ship engines: Renewable fuels and enabling technologies for decarbonization. Int. J. Engine Res. 2024, 25, 85–110. [Google Scholar] [CrossRef]
- Harahap, F.; Nurdiawati, A.; Conti, D.; Leduc, S.; Urban, F. Renewable marine fuel production for decarbonized maritime shipping: Pathways, policy measures and transition dynamics. J. Clean. Prod. 2023, 415, 137906. [Google Scholar] [CrossRef]
- Ni, P.; Wang, X.; Li, H. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. Fuel 2020, 279, 118477. [Google Scholar] [CrossRef]
- Moshiul, A.M.; Mohammad, R.; Hira, F.A.; Maarop, N. Alternative marine fuel research advances and future trends: A bibliometric knowledge mapping approach. Sustainability 2022, 14, 4947. [Google Scholar] [CrossRef]
- Macingwane, Z.; Schönborn, A. Techno-economic analysis of green hydrogen production as maritime fuel from wave energy. Energies 2024, 17, 4683. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Feng, Y.; Lu, Z.; Sun, K. Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas-diesel dual-fuel marine engine. Fuel 2022, 325, 124935. [Google Scholar] [CrossRef]
- Skoko, I.; Stanivuk, T.; Franic, B.; Bozic, D. Comparative analysis of CO2 emissions, fuel consumption, and fuel costs of diesel and hybrid dredger ship engines. J. Mar. Sci. Eng. 2024, 12, 999. [Google Scholar] [CrossRef]
- Bui, K.Q.; Perera, L.P.; Emblemsvåg, J. Life-cycle cost analysis of an innovative marine dual-fuel engine under uncertainties. J. Clean. Prod. 2022, 380, 134847. [Google Scholar] [CrossRef]
- Pomaska, L.; Acciaro, M. Bridging the maritime-hydrogen cost-gap: Real options analysis of policy alternatives. Transp. Res. Part D Transp. Environ. 2022, 107, 103283. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Santos, G.; Pinedo, J.; Santos, E.; Ruiz-Salmón, I.; Laso, J.; Lyne, A.; Ortiz, A.; Ortiz, I.; Irabien, A.; et al. Environmental sustainability of alternative marine propulsion technologies powered by hydrogen-a life cycle assessment approach. Sci. Total Environ. 2022, 820, 153189. [Google Scholar] [CrossRef]
- Ngando Ebba, J.D.; Camara, M.B.; Doumbia, M.L.; Dakyo, B.; Song-Manguelle, J. Large-scale hydrogen production systems using marine renewable energies: State-of-the-art. Energies 2024, 17, 130. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; Liu, X.; Liu, Y.; Qian, Z.; Ding, S. Evaluation of damage performance in offshore floating photovoltaics-based hydrogen production system due to potential hydrogen release. Front. Mar. Sci. 2024, 11, 1413678. [Google Scholar] [CrossRef]
- Kanchiralla, F.M.; Brynolf, S.; Mjelde, A. Role of biofuels, electro-fuels, and blue fuels for shipping: Environmental and economic life cycle considerations. Energy Environ. Sci. 2024, 17, 6393–6418. [Google Scholar] [CrossRef]
- Huang, J.; Fan, H.; Xu, X.; Liu, Z. Life cycle greenhouse gas emission assessment for using alternative marine fuels: A very large crude carrier (VLCC) case study. J. Mar. Sci. Eng. 2022, 10, 1969. [Google Scholar] [CrossRef]
- Shi, J.; Xu, J.; Chen, J.; Ye, J.; Zhu, M.; Qin, Q.; Zhou, S.; Liu, Y.; Xiang, Y. Clean energy ship application to promote carbon neutrality in global maritime industry: State governance or international supervision? Ocean Coast. Manag. 2024, 257, 107356. [Google Scholar] [CrossRef]
- Wu, S.; Miao, B.; Chan, S.H. Feasibility assessment of a container ship applying ammonia cracker-integrated solid oxide fuel cell technology. Int. J. Hydrogen Energy 2022, 47, 27166–27176. [Google Scholar] [CrossRef]
- Lindstad, E.; Eskeland, G.S.; Rialland, A.; Valland, A. Decarbonizing maritime transport: The importance of engine technology and regulations for LNG to serve as a transition fuel. Sustainability 2020, 12, 8793. [Google Scholar] [CrossRef]
- Vieira, M.; Macedo, A.; Alvarenga, A.; Lafoz, M.; Villalba, I.; Blanco, M.; Rojas, R.; Romero-Filgueira, A.; García-Mendoza, A.; Santos-Herran, M.; et al. What future for marine renewable energy in Portugal and Spain up to 2030? Forecasting plausible scenarios using general morphological analysis and clustering techniques. Energy Policy 2024, 184, 113859. [Google Scholar] [CrossRef]
- Mukherjee, A.; Bruijnincx, P.; Junginger, M. Techno-economic competitiveness of renewable fuel alternatives in the marine sector. Renew. Sust. Energy Rev. 2023, 174, 113127. [Google Scholar] [CrossRef]
- Oliva, R.D.P.; Estay, M.; Barrientos, M.; Estevez, R.A.; Gelcich, S.; Vásquez-Lavín, F. Emerging energy sources’ social acceptability: Evidence from marine-based energy projects. Renew. Sust. Energy Rev. 2024, 198, 114429. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Wang, Y.; Wu, J.; Fu, S. Exploration of environmentally friendly marine power technology—Ammonia/diesel stratified injection. J. Clean. Prod. 2022, 380, 135014. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Gao, Y.; Xia, C.; Zhu, Y.; Shreka, M.; Ming, P. Numerical simulation of lean premixed combustion characteristics and emissions of natural gas—Ammonia dual—Fuel marine engine with the pre-Chamber ignition system. Fuel 2023, 343, 127990. [Google Scholar] [CrossRef]
- Ouyang, T.; Su, Z.; Zhao, Z.; Wang, Z.; Huang, H. Advanced exergo—Economic schemes and optimization for medium–low grade waste heat recovery of marine dual—Fuel engine integrated with accumulator. Energy Convers. Manag. 2020, 226, 113577. [Google Scholar] [CrossRef]
- Cavalcanti, E.J.C. Energy, exergy and exergoenvironmental analyses on gas—Diesel fuel marine engine used for trigeneration system. Appl. Therm. Eng. 2021, 184, 116211. [Google Scholar] [CrossRef]
- Yang, L.; Su, Z. An eco—Friendly and efficient trigeneration system for dual—Fuel marine engine considering heat storage and energy deployment. Energy 2022, 239, 121930. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, D.; Yang, W.; Qian, Y.; Mao, Y.; Lu, X. Investigation on the potential of using carbon—Free ammonia in large two—Stroke marine engines by dual—Fuel combustion strategy. Energy 2023, 263, 125748. [Google Scholar] [CrossRef]
- Ouyang, T.; Su, Z.; Wang, F.; Jing, B.; Huang, H.; Wei, Q. Efficient and sustainable design for demand—Supply and deployment of waste heat and cold energy recovery in marine natural gas engines. J. Clean. Prod. 2020, 274, 123004. [Google Scholar] [CrossRef]
- Ouyang, T.; Su, Z.; Yang, R.; Wang, Z.; Mo, X.; Huang, H. Advanced waste heat harvesting strategy for marine dual—Fuel engine considering gas—Liquid two—Phase flow of turbine. Energy 2021, 224, 120150. [Google Scholar] [CrossRef]
- Lu, D.; Theotokatos, G.; Zhang, J.; Zeng, H.; Cui, K. Comparative assessment and parametric optimisation of large marine two—Stroke engines with exhaust gas recirculation and alternative turbocharging systems. J. Mar. Sci. Eng. 2022, 10, 351. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, L.; Yu, X.; Li, J. Recent development in the decarbonization of marine and offshore engineering systems. Ocean Eng. 2023, 280, 114883. [Google Scholar] [CrossRef]
- Wan, X.; Wang, K.; Fan, X.; Xu, W. Can government subsidy and marine carbon capture, utilization and storage technology improve the decision level of supply chain intellectual property pledge financing? Ocean Coast. Manag. 2023, 240, 106663. [Google Scholar] [CrossRef]
- Tavakoli, S.; Gamlem, G.M.; Kim, D.; Roussanaly, S.; Anantharaman, R.; Yum, K.K.; Valland, A. Exploring the technical feasibility of carbon capture onboard ships. J. Clean. Prod. 2024, 452, 142032. [Google Scholar] [CrossRef]
- Zanobetti, F.; Pio, G.; Bucelli, M.; Miani, L.; Jafarzadeh, S.; Cozzani, V. Onboard carbon capture and storage (OCCS) for fossil fuel-based shipping: A sustainability assessment. J. Clean. Prod. 2024, 470, 143343. [Google Scholar] [CrossRef]
- Liu, K.; Ding, M.; Pan, B.; Yu, P.; Lu, D.; Chen, S.; Zhang, S.; Wang, G. A maneuverable underwater vehicle for nearseabed observation. Nat. Commun. 2024, 15, 10284. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, L.; Jiang, Q.; Zhao, Z. Digitalization and operational efficiency in fisheries: Evidence from China. Isr. J. Aquac. Bamidgeh. 2024, 76, 156–166. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, M.; Gecevska, V.; Chen, B.; Saeed, R.; Zhang, X. Modeling and evaluation of quality monitoring based on wireless sensor and blockchain technology for live fish waterless transportation. Comput. Electron. Agric. 2022, 193, 106642. [Google Scholar] [CrossRef]
- Nalmpanti, M.; Chrysafi, A.; Meeuwig, J.J.; Tsikliras, A.C. Monitoring marine fishes using underwater video techniques in the Mediterranean Sea. Rev. Fish Biol. Fish. 2023, 33, 1291–1310. [Google Scholar] [CrossRef]
- Connolly, R.M.; Jinks, K.I.; Herrera, C.; Lopez-Marcano, S. Fish surveys on the move: Adapting automated fish detection and classification frameworks for videos on a remotely operated vehicle in shallow marine waters. Front. Mar. Sci. 2022, 9, 918504. [Google Scholar] [CrossRef]
- Islam, S.I.; Ahammad, F.; Mohammed, H. Cutting-edge technologies for detecting and controlling fish diseases: Current status, outlook, and challenges. J. World Aquac. Soc. 2024, 55, e13051. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, D.; Yu, H.; Ryu, J. Autonomous underwater vehicle control for fishnet inspection in turbid water environments. Int. J. Control Autom. Syst. 2022, 20, 3383–3392. [Google Scholar] [CrossRef]
- Qiu, W.; Pakrashi, V.; Ghosh, B. Fishing net health state estimation using underwater imaging. J. Mar. Sci. Eng. 2020, 8, 707. [Google Scholar] [CrossRef]
- Li, J.; Xu, W.; Deng, L.; Xiao, Y.; Han, Z.; Zheng, H. Deep learning for visual recognition and detection of aquatic animals: A review. Rev. Aquacult. 2023, 15, 409–433. [Google Scholar] [CrossRef]
- Liu, T.; He, S.; Liu, H.; Gu, Y.; Li, P. A robust underwater multiclass fish-school tracking algorithm. Remote Sens. 2022, 14, 4106. [Google Scholar] [CrossRef]
- Xing, B.; Sun, M.; Ding, M.; Han, C. Fish sonar image recognition algorithm based on improved YOLOv5. Math. Biosci. Eng. 2023, 21, 1321–1341. [Google Scholar] [CrossRef]
- Alsaleh, M.; Yuan, Y.; Longqi, S. Do global competitiveness factors impact the marine sustainability practices? An empirical evidence from fisheries sector. Bus. Strategy Environ. 2024, 33, 6671–6688. [Google Scholar] [CrossRef]
- Kong, F.; Cui, W. Spatial-temporal evolution and drivers of ecological sustainability of coastal fisheries in China. Ocean Coast. Manag. 2024, 258, 107403. [Google Scholar] [CrossRef]
- Ge, D.; Wang, G.; Ge, J.; Xiang, B.; You, Y.; Feng, A. Trajectory tracking control of two-joint underwater manipulator in ocean-wave environment. Ocean Eng. 2024, 292, 116329. [Google Scholar] [CrossRef]
- Xi, Q.; Fu, Z.; Xue, M.; Zou, M.; Zheng, J. Analysis of underwater acoustic propagation induced by structural vibration in Arctic Ocean environment based on hybrid FEM-WSM solver. Ocean Eng. 2023, 287, 115922. [Google Scholar] [CrossRef]
- Marrone, A.; Rinaldi, A.; Montalto, V.; Gauci, A.; Ape, F.; Ringeard, H.; Spoto, M.; Martinez, M.; La Marca, E.C.; Mirto, S.; et al. Surviving in a warmer marine world: A study on the impact of thermal effluent on Posidonia oceanica meadows and associated fish assemblages in the Maltese Islands. J. Mar. Sci. Eng. 2025, 13, 475. [Google Scholar] [CrossRef]
- Zhang, C.; Meng, Q.; Ma, X.; Liu, A.; Zhou, F. Modeling bottom dissolved oxygen on the East China Sea shelf using interpretable machine learning. J. Mar. Sci. Eng. 2025, 13, 359. [Google Scholar] [CrossRef]
- Du, L.; Wan, D.; Meng, X.; Li, W.; Liang, G.; Li, H. Classification of underwater sediments in lab based on LiDAR full-waveform data. J. Mar. Sci. Eng. 2025, 13, 624. [Google Scholar] [CrossRef]
- Kuru, K.; Clough, S.; Ansell, D.; McCarthy, J.; McGovern, S. Intelligent airborne monitoring of irregularly shaped man-made marine objects using statistical machine learning techniques. Ecol. Inform. 2023, 78, 102285. [Google Scholar] [CrossRef]
- Cardenas, J.A.; Samadikhoshkho, Z.; Rehman, A.U.; Valle Pérez, A.U.; de León, E.H.P.; Hauser, C.A.E.; Feron, E.M.; Ahmad, R. A systematic review of robotic efficacy in coral reef monitoring techniques. Mar. Pollut. Bull. 2024, 202, 116273. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hua, L.; Al-Mohaimeed, A.M.; Zhao, N. Ocean carbon emission prediction and management measures based on artificial intelligence remote sensing estimation in the context of carbon neutrality. Environ. Res. 2024, 251, 118591. [Google Scholar] [CrossRef]
- Glaviano, F.; Esposito, R.; Cosmo, A.D.; Esposito, F.; Gerevini, L.; Ria, A.; Molinara, M.; Bruschi, P.; Costantini, M.; Zupo, V. Management and sustainable exploitation of marine environments through smart monitoring and automation. J. Mar. Sci. Eng. 2022, 10, 297. [Google Scholar] [CrossRef]
- Razzaq, A.; Mohsan, S.A.H.; Li, Y.; Alsharif, M.H. Architectural framework for underwater IoT: Forecasting system for analyzing oceanographic data and observing the environment. J. Mar. Sci. Eng. 2023, 11, 368. [Google Scholar] [CrossRef]
- He, Y.; Fan, W.; Zang, X.; Zou, Z.; Hu, S.; Zhao, Y. A novel autonomous marine profile elements monitoring and sample collection system. J. Mar. Sci. Eng. 2025, 13, 571. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Lo, L.S.H.; Zhang, X.; Chen, Z.; Gao, J.; U, C.; Dai, Z.; Nakaoka, M.; Yang, H.; et al. Artificial intelligence-assisted environmental DNA metabarcoding and high-resolution underwater optical imaging for noninvasive and innovative marine environmental monitoring. J. Mar. Sci. Eng. 2024, 12, 1729. [Google Scholar] [CrossRef]
- Bakirci, M. Advanced ship detection and ocean monitoring with satellite imagery and deep learning for marine science applications. Reg. Stud. Mar. Sci. 2025, 81, 103975. [Google Scholar] [CrossRef]
- Chellaiah, C.; Anbalagan, S.; Swaminathan, D.; Chowdhury, S.; Kadhila, T.; Shopati, A.K.; Shangdiar, S.; Sharma, B.; Amesho, K.T.T. Integrating deep learning techniques for effective river water quality monitoring and management. J. Environ. Manag. 2024, 370, 122477. [Google Scholar] [CrossRef]
- Liu, G.; Ye, J.; Yang, X.; Chen, Y.; Gu, Y. Intelligent edge monitoring algorithm of remote sensing images on marine environmental pollution. J. Coast. Res. 2020, 112, 429–432. [Google Scholar] [CrossRef]
- Champion, C.; Lawson, J.R.; Whiteway, T.; Coleman, M.A. Exposure of marine protected areas to future ocean warming: Indices to guide climate adaptation planning. Ocean Coast. Manag. 2024, 254, 107143. [Google Scholar] [CrossRef]
- Wang, Q.; Han, G.; Zhang, Q. Marine nature reserve: The starting point of marine ecological environment protection in China? J. Mar. Sci. Eng. 2025, 13, 129. [Google Scholar] [CrossRef]
- Borriglione, M.; Ruitton, S.; Blanfuné, A.; Perret-Boudouresque, M.; Thouroude, B.; Verlaque, M.; Boudouresque, C.F.; Thibaut, T. Non-indigenous species of macroalgae in French Mediterranean marine protected areas: Distribution and trends. J. Mar. Sci. Eng. 2025, 13, 374. [Google Scholar] [CrossRef]
- Chen, R.; Li, B.; Jia, B.; Xu, J.; Ma, L.; Yang, H.; Wang, H. Oil spill identification in X-band marine radar image using K-means and texture feature. PeerJ Comput. Sci. 2022, 8, e1133. [Google Scholar] [CrossRef]
- Lugendo, B.; Wegoro, J.; Shaghude, Y.; Pamba, S.; Makemie, M.; Hollander, J. Seagrass mapping across the coast of Tanzania. Ocean Coast. Manag. 2024, 253, 107169. [Google Scholar] [CrossRef]
- Liu, Z.; You, S.; Xing, L.; Durand, G.; Moccia, L.P.; Mercier, V.; Pan, Y.; Zhang, X. OPMS—A web-based ocean pollution monitoring system. Mar. Pollut. Bull. 2025, 212, 117510. [Google Scholar] [CrossRef]
- Luo, Q.; Zhao, D.; Qiu, Z.; Jiang, S.; Zhang, Y. Research on the detection method of cyanobacteria in Lake Taihu based on hyperspectral data from ZY-1E. J. Mar. Sci. Eng. 2025, 13, 540. [Google Scholar] [CrossRef]
- Schwarzkopf, D.A.; Petrik, R.; Hahn, J.; Ntziachristos, L.; Matthias, V.; Quante, M. Future ship emission scenarios with a focus on ammonia fuel. Atmosphere 2023, 14, 879. [Google Scholar] [CrossRef]
- Luo, X.; Yan, R.; Xu, L.; Wang, S. Accuracy and applicability of ship’s fuel consumption prediction models: A comprehensive comparative analysis. Energy 2024, 310, 133187. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Z.; Chen, J.; Zou, Z.; Wang, Y. Spatial–temporal evolution characteristics and spillover effects of carbon emissions from shipping trade in EU coastal countries. Ocean Coast. Manag. 2024, 250, 107029. [Google Scholar] [CrossRef]
- Xu, L.; Zou, Z.; Liu, L.; Xiao, G. Influence of emission-control areas on the eco-shipbuilding industry: A perspective of the synthetic control method. J. Mar. Sci. Eng. 2024, 12, 149. [Google Scholar] [CrossRef]
- Herrero, A.; Ortega Piris, A.; Diaz–Ruiz–Navamuel, E.; Gutierrez, M.A.; Lopez-Diaz, A.I. Influence of the implantation of the onshore power supply (OPS) system in Spanish medium–sized ports on the reduction in CO2 emissions: The case of the port of Santander (Spain). J. Mar. Sci. Eng. 2022, 10, 1446. [Google Scholar] [CrossRef]
- Prause, F.; Prause, G.; Philipp, R. Inventory routing for ammonia supply in German ports. Energies 2022, 15, 6485. [Google Scholar] [CrossRef]
- Xu, L.; Zou, Z.; Chen, J.; Fu, S. Effects of emission control areas on sulfur-oxides concentrations—Evidence from the coastal ports in China. Mar. Pollut. Bull. 2024, 200, 116039. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Kumar, V.; Jena, A.; Kalwar, A. Fuel injection strategy optimisation and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype. Energy 2022, 248, 123593. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Chen, J.; Shi, M. Spatiotemporal heterogeneity of the relationships between PM2.5 concentrations and their drivers in China’s coastal ports. J. Environ. Manag. 2023, 345, 118698. [Google Scholar] [CrossRef]
- Xu, L.; Wu, J.; Zhao, Q.; Chen, J.; Liu, J.; Gao, F.; Liu, X.; Xu, J. Spatial–temporal characteristics of port infrastructures on sulfur-oxide concentrations of coastal ports in China. Ocean Coast. Manag. 2024, 258, 107399. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Qu, Y.; Yu, T. Assessing the impact of COVID–19 on air pollutant emissions from vessels in Lianyungang Port. Mar. Pollut. Bull. 2023, 194, 115313. [Google Scholar] [CrossRef]
- Wan, Z.; Cai, Z.; Zhao, R.; Zhang, Q.; Chen, J.; Wang, Z. Quantifying the air quality impact of ship emissions in China’s Bohai Bay. Mar. Pollut. Bull. 2023, 193, 115169. [Google Scholar] [CrossRef]
- Bi, W.; Zhang, M.; Chen, H.; Zhang, A. Cooperative task allocation method for air-sea heterogeneous unmanned system with an application to ocean environment information monitoring. Ocean Eng. 2024, 309, 118496. [Google Scholar] [CrossRef]
- Duan, G.; Fan, T.; Chen, L.; Ma, J. Floating marine debris mitigation by vessel routing modeling and optimization considering carbon emission and travel time. Transp. Res. Part C Emerg. Technol. 2021, 133, 103449. [Google Scholar] [CrossRef]
- Idrissi, A.; Bonanno, D.; Di Mauro, L.S.; Diego-Tortosa, D.; Gómez-García, C.; Ker, S.; Le Pape, F.; Murphy, S.; Pulvirenti, S.; Riccobene, G.; et al. Detection of seismic and acoustic sources using distributed acoustic sensing technology in the Gulf of Catania. J. Mar. Sci. Eng. 2025, 13, 658. [Google Scholar] [CrossRef]
- Jian, J.; Zhang, Y.; Xu, K.; Webster, P.J. Automatic reading and reporting weather information from surface fax charts for ships sailing in actual northern Pacific and Atlantic oceans. J. Mar. Sci. Eng. 2024, 12, 2096. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, D.; Xu, L.; Li, J.; Jiang, Z. The application of artificial intelligence technology in shipping: A bibliometric review. J. Mar. Sci. Eng. 2024, 12, 624. [Google Scholar] [CrossRef]
- Čelić, J.; Vukšić, M.; Baždarić, R.; Cuculić, A. The challenges of cyber resilience in the maritime sector: Addressing the weak awareness of the dangers caused by cyber threats. J. Mar. Sci. Eng. 2025, 13, 762. [Google Scholar] [CrossRef]
- Anderson, C.M.; Himes-Cornell, A.; Pita, C.; Arton, A.; Favret, M.; Averill, D.; Stohs, S.; Longo, C.S. Social and economic outcomes of fisheries certification: Characterizing pathways of change in canned fish markets. Front. Mar. Sci. 2021, 8, 791085. [Google Scholar] [CrossRef]
- Murphy, R., Jr.; Yochum, N.; Wolf, N.; Kroska, A.C.; Harris, B.P. Barriers to achieving conservation engineering goals in commercial trawl fisheries. Front. Mar. Sci. 2022, 9, 800176. [Google Scholar] [CrossRef]
- Morgan, N.B.; Baco, A.R. Recent fishing footprint of the high-seas bottom trawl fisheries on the Northwestern Hawaiian Ridge and Emperor Seamount Chain: A finer-scale approach to a large-scale issue. Ecol. Indic. 2021, 121, 107051. [Google Scholar] [CrossRef]
- Pham, D.A.; Han, S.H. Deploying a computer vision model based on YOLOv8 suitable for drones in the tuna fishing and aquaculture industry. J. Mar. Sci. Eng. 2024, 12, 828. [Google Scholar] [CrossRef]
- Wang, C.; He, X.; Ma, M.; Xiong, L.; Zhang, W. Assessing coastal ecosystem carrying capacity by a comprehensive economy-resources-environment system: A case study of South Korea. Ocean Coast. Manag. 2022, 227, 106283. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, J.; Liu, J.; Zhao, R.; An, D.; Wei, Y. Three-dimensional path following control system for net cage inspection using bionic robotic fish. Inform. Process Agric. 2022, 9, 100–111. [Google Scholar] [CrossRef]
- Bakdi, A.; Vanem, E. Fullest COLREGs evaluation using fuzzy logic for collaborative decision-making analysis of autonomous ships in complex situations. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18433–18445. [Google Scholar] [CrossRef]
Authors | Cited References | Year | Source |
---|---|---|---|
Bouman et al. | doi 10.1016/j.trd.2017.03.022 | 2017 | TRD |
Balcombe et al. | doi 10.1016/j.enconman.2018.12.080 | 2019 | ECM |
Brynolf et al. | doi 10.1016/j.jclepro.2014.03.052 | 2014 | JCP |
Gilbert et al. | doi 10.1016/j.jclepro.2017.10.165 | 2018 | JCP |
Ni et al. | doi 10.1016/j.fuel.2020.118477 | 2020 | Fuel |
Brynolf et al. | doi 10.1016/j.trd.2013.12.001 | 2014 | TRD |
Deniz and Zincir | doi 10.1016/j.jclepro.2015.11.089 | 2016 | JCP |
Hansson et al. | doi 10.1016/j.biombioe.2019.05.008 | 2019 | Biomass and Bioenergy |
Corbett et al. | doi 10.1021/es071686z | 2007 | Environmental Science & Technology |
Ampah et al. | doi 10.1016/j.jclepro.2021.128871 | 2021 | JCP |
Institution | Country/Region | Publication Count |
---|---|---|
Shanghai Maritime University | China | 28 |
Shanghai Jiao Tong University | China | 27 |
Ocean University of China | China | 23 |
Chinese Academy of Sciences | China | 22 |
University of Strathclyde | United Kingdom | 20 |
Egyptian Knowledge Bank (EKB) | Egypt | 18 |
Universidade de Aveiro | Portugal | 15 |
Consiglio Nazionale delle Ricerche | Italy | 15 |
Harbin Engineering University | China | 15 |
Dalian Maritime University | China | 14 |
University College Cork | Ireland | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Xu, L.; Wu, J. Marine Intelligent Technology as a Strategic Tool for Sustainable Development: A Five-Year Systematic Analysis. J. Mar. Sci. Eng. 2025, 13, 855. https://doi.org/10.3390/jmse13050855
Wang Q, Xu L, Wu J. Marine Intelligent Technology as a Strategic Tool for Sustainable Development: A Five-Year Systematic Analysis. Journal of Marine Science and Engineering. 2025; 13(5):855. https://doi.org/10.3390/jmse13050855
Chicago/Turabian StyleWang, Qin, Lang Xu, and Jiyuan Wu. 2025. "Marine Intelligent Technology as a Strategic Tool for Sustainable Development: A Five-Year Systematic Analysis" Journal of Marine Science and Engineering 13, no. 5: 855. https://doi.org/10.3390/jmse13050855
APA StyleWang, Q., Xu, L., & Wu, J. (2025). Marine Intelligent Technology as a Strategic Tool for Sustainable Development: A Five-Year Systematic Analysis. Journal of Marine Science and Engineering, 13(5), 855. https://doi.org/10.3390/jmse13050855