Online Parameter Identification for PMSM Based on Multi-Innovation Extended Kalman Filtering
Abstract
1. Introduction
2. Multi-Innovation Extended Kalman Filter
2.1. Extended Kalman Filter
2.2. Multi-Innovation Theory
3. PMSM Parameter Identification Model Based on MIEKF
3.1. Construction of PMSM Parameter Identification Model Based on MIEKF
3.2. Process of PMSM Parameter Identification Based on MIEKF
4. Experimental Verification
4.1. Experimental Platform
4.2. Algorithm Evaluation Metrics and Parameter Settings
4.2.1. Evaluation Metrics
4.2.2. Selection of Innovation Length
4.2.3. Parameter Initialization Settings of EKF
4.3. Validation of the Effectiveness of MIEKF
4.3.1. No-Load Condition
4.3.2. Speed Variation Condition
4.3.3. Load Variation Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial neural networks |
EKF | Extended Kalman filter |
FFRLS | Forget factor recursive least squares |
KF | Kalman filter |
MIEK | Multi-innovation extended Kalman filter |
MEPS | Marine electric propulsion system |
MRAS | Model reference adaptive system |
PMSM | Permanent magnet synchronous motor |
SPMSM | Surface permanent magnet synchronous motor |
PSO | Particle swarm optimization |
RCP | Rapid control prototyping |
RMS | Root mean square error |
RLS | Recursive least squares |
THD | Total harmonic distortion |
References
- Tagao, M.K.L.; Tayo, R.J.C.; Tria, L.A.R. Standardization Framework and Policy Recommendation of the Electric Propulsion System of an Electric Passenger Ferry for Inland Waterways in the Philippines. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Xi’an, China, 10–13 October 2024; pp. 500–505. [Google Scholar]
- Zhang, D.; Xiao, S.; Bai, H.; Gao, D.; Wang, B. NSMO-Based Adaptive Finite-Time Command-Filtered Backstepping Speed Controller for New Energy Hybrid Ship PMSM Propulsion System. J. Mar. Sci. Eng. 2025, 13, 918. [Google Scholar] [CrossRef]
- Kenné, G.; Ahmed-Ali, T.; Lamnabhi-Lagarrigue, F.; Arzandé, A. Nonlinear systems time-varying parameter estimation: Application to induction motors. Electr. Power Syst. Res. 2008, 78, 1881–1888. [Google Scholar] [CrossRef]
- Shchur, I.; Rusek, A.; Mandzyuk, M. Power effective work of PMSM in electric vehicles at the account of magnetic saturation and iron losses. Przegląd Elektrotech. (Electr. Rev.) 2015, 1, 199–202. [Google Scholar]
- Lian, C.; Xiao, F.; Liu, J.; Gao, S. Parameter and VSI nonlinearity hybrid estimation for PMSM drives based on recursive least square. IEEE Trans. Transp. Electrif. 2022, 9, 2195–2206. [Google Scholar] [CrossRef]
- Xu, W.; Tang, Y.; Dong, D.; Xiao, X.; Liu, Y.; Yang, K.; Li, Y. Improved deadbeat predictive thrust control for linear induction machine with online parameter identification based on MRAS and linear extended state observer. IEEE Trans. Ind. Appl. 2023, 59, 3186–3199. [Google Scholar] [CrossRef]
- Alrashed, M.M.; Elnaggar, M.F.; Flah, A.; El-Bayeh, C.Z.; Kolhe, M.L.; Miao, Y. Online intelligent parameter and speed estimation of permanent magnet synchronous motors using bacterial foraging optimization. Sci. Technol. Energy Transit. 2025, 80, 33. [Google Scholar] [CrossRef]
- Li, X.; Kennel, R. General formulation of Kalman-filter-based online parameter identification methods for VSI-fed PMSM. IEEE Trans. Ind. Electron. 2021, 68, 2856–2864. [Google Scholar] [CrossRef]
- Brosch, A.; Wallscheid, O.; Böcker, J. Long-term memory recursive least squares online identification of highly utilized permanent magnet synchronous motors for finite-control-set model predictive control. IEEE Trans. Power Electron. 2022, 38, 1451–1467. [Google Scholar] [CrossRef]
- Liu, Y.; An, S.; He, Y.; Wang, L.; Fan, Z. Two-stage recursive least squares algorithm for identifying ship motion parameters and wave peak frequency. Ships Offshore Struct. 2025, 1–13. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Zhang, C.; Zhou, Y. An improved deadbeat predictive current control based on parameter identification for PMSM. IEEE Trans. Transp. Electrif. 2023, 10, 2740–2753. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Y.; Shi, L.; Huang, Y.; Chang, B. Dual-Vector-Based Model Predictive Current Control with Online Parameter Identification for Permanent-Magnet Synchronous Motor Drives in Marine Electric Power Propulsion System. J. Mar. Sci. Eng. 2025, 13, 585. [Google Scholar] [CrossRef]
- Tang, Y.R.; Xu, W.; Liu, Y.; Dong, D.H. Dynamic Performance Enhancement Method Based on Improved Model Reference Adaptive System for SPMSM Sensorless Drives. IEEE Access 2021, 9, 135012–135023. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wei, H.L.; Li, X.H.; Liu, K.; Zhong, Q.C. Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO. IEEE Trans. Power Electron. 2018, 33, 10858–10871. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M.; Zhang, C.; Shen, A.; Bing, L. Identification of PMSM parameters with time-error compensated based on contractile factor antipredator PSO. IEEE Trans. Transp. Electrif. 2023, 10, 4006–4017. [Google Scholar] [CrossRef]
- Wang, Z.; Chai, J.; Xiang, X.; Sun, X.; Lu, H. A novel online parameter identification algorithm designed for deadbeat current control of the permanent-magnet synchronous motor. IEEE Trans. Ind. Electron. 2022, 58, 2029–2041. [Google Scholar] [CrossRef]
- Yi, B.; Kang, L.; Tao, S.; Zhao, X.; Jing, Z. Adaptive Two-Stage Extended Kalman Filter Theory in Application of Sensorless Control for Permanent Magnet Synchronous Motor. Math. Probl. Eng. 2013, 2013, 974974. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, T.; Bai, J.; Fan, J. Parameter Identification of Maritime Vessel Rudder PMSM Based on Extended Kalman Particle Filter Algorithm. J. Mar. Sci. Eng. 2024, 12, 1095. [Google Scholar] [CrossRef]
- Yang, H.; Yang, R.; Hu, W.; Huang, Z. FPGA-based sensorless speed control of PMSM using enhanced performance controller based on the reduced-order EKF. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 289–301. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Sun, H.; Liang, S. Fractional order system identification using a joint multi-innovation fractional gradient descent algorithm. Sci. Rep. 2024, 14, 30802. [Google Scholar] [CrossRef]
- Ding, F. Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data. J. Comput. Appl. Math. 2023, 426, 115107. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Liang, C. A novel parameter identification algorithm for 3-DoF ship maneuvering modelling using nonlinear multi-innovation. J. Mar. Sci. Eng. 2022, 10, 581. [Google Scholar] [CrossRef]
- Yang, D.; Ding, F. Multi-innovation gradient-based iterative identification methods for feedback nonlinear systems by using the decomposition technique. Int. J. Robust Nonlinear Control 2023, 33, 7755–7773. [Google Scholar] [CrossRef]
- Ge, Q.; Li, Y.; Wang, Y.; Hu, X.; Li, H.; Sun, C. Adaptive Kalman filtering based on model parameter ratios. IEEE Trans. Autom. Control 2024, 69, 6230–6237. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Liu, Y.; Liang, X.; Yang, C.; Gui, W. Advancing Industrial Process Control With Deep Learning-Enhanced Model Predictive Control for Nonlinear Time-Delay Systems. IEEE Trans. Ind. Inform. 2025, 1–11. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, Z.; Qiao, D.; Mu, X.; Hu, X. An improved innovation adaptive Kalman filter for integrated INS/GPS navigation. Sustainability 2022, 14, 11230. [Google Scholar] [CrossRef]
Motor Parameter | Value | Motor Parameter | Value |
---|---|---|---|
Rated power (kW) | 5.5 | Stator resistance (Ω) | 1.08 |
Rated speed (r/min) | 1500 | d-axis inductance (mH) | 8.38 |
Rated current (A) | 10 | q-axis inductance (mH) | 25.6 |
Rated torque (N·m) | 36 | Permanent magnet flux linkage (Wb) | 0.416 |
Rated frequency (Hz) | 50 | Number of pole pairs | 4 |
Innovation Lengths | Rs (%) | Ld (%) | Lq (%) | (%) |
---|---|---|---|---|
p = 1 | 0.5113 | 0.7217 | 0.3922 | 0.2243 |
p = 3 | 0.4923 | 0.5751 | 0.0856 | 0.2108 |
p = 5 | 0.4746 | 0.1897 | 0.1554 | 0.2297 |
p = 7 | 0.4397 | 0.1046 | 0.1005 | 0.2026 |
p = 10 | 0.4081 | 0.0928 | 0.0726 | 0.1929 |
Parameter | Calibrated Value | Method | μ | ε (%) | RMSE |
---|---|---|---|---|---|
Rs (mΩ) | 1080 | FFRLS | 1113.51 | 3.1028 | 33.4963 |
EKF | 1080.03 | 0.0028 | 0.1016 | ||
MIEKF | 1080.01 | 0.0009 | 0.0419 | ||
Ld (μH) | 8380 | FFRLS | 8379.78 | 0.0026 | 12.9354 |
EKF | 8379.26 | 0.0088 | 0.7973 | ||
MIEKF | 8379.91 | 0.0011 | 0.0606 | ||
Lq (μH) | 25,600 | FFRLS | 25,586.41 | 0.0532 | 4.0162 |
EKF | 25,601.79 | 0.0069 | 3.3493 | ||
MIEKF | 25,600.09 | 0.0004 | 2.4607 | ||
() | 416 | FFRLS | 428.888 | 3.0981 | 12.8875 |
EKF | 416.003 | 0.0007 | 0.0030 | ||
MIEKF | 416.001 | 0.0002 | 0.0008 |
Parameter | Calibrated Value | Method | μ | ε (%) | RMSE |
---|---|---|---|---|---|
Rs (mΩ) | 1080 | FFRLS | 1113.45 | 3.1009 | 33.4218 |
EKF | 1080.07 | 0.0065 | 0.0208 | ||
MIEKF | 1080.003 | 0.0002 | 0.0093 | ||
Ld (μH) | 8380 | FFRLS | 8381.47 | 0.0175 | 7.8521 |
EKF | 8379.96 | 0.0005 | 0.0347 | ||
MIEKF | 8379.99 | 0.0001 | 0.0156 | ||
Lq (μH) | 25,600 | FFRLS | 25,598.83 | 0.0046 | 2.0153 |
EKF | 25,600.32 | 0.0013 | 2.0825 | ||
MIEKF | 25,600.17 | 0.0007 | 1.0234 | ||
() | 416 | FFRLS | 428.875 | 3.0949 | 12.8876 |
EKF | 416.0006 | 0.0001 | 0.0004 | ||
MIEKF | 416.0008 | 0.0002 | 0.0005 |
Parameter | Calibrated Value | Method | μ | ε (%) | RMSE |
---|---|---|---|---|---|
Rs (mΩ) | 108 | FFRLS | 1113.89 | 3.1379 | 33.4488 |
EKF | 1080.03 | 0.0027 | 0.0124 | ||
MIEKF | 1079.95 | 0.0046 | 0.0285 | ||
Ld (μH) | 8380 | FFRLS | 8381.75 | 0.0209 | 1.2459 |
EKF | 8380.94 | 0.0112 | 0.0323 | ||
MIEKF | 8380.13 | 0.0015 | 0.0296 | ||
Lq (μH) | 25,600 | FFRLS | 25,597.98 | 0.0079 | 2.0135 |
EKF | 25,595.33 | 0.0183 | 0.0005 | ||
MIEKF | 25,593.83 | 0.0241 | 0.0005 | ||
() | 416 | FFRLS | 426.851 | 2.6084 | 12.8876 |
EKF | 417.933 | 0.4647 | 2.8827 | ||
MIEKF | 416.056 | 0.0135 | 1.1989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, C.; Liu, X.; Guo, Z.; Zhao, H.; Liu, J. Online Parameter Identification for PMSM Based on Multi-Innovation Extended Kalman Filtering. J. Mar. Sci. Eng. 2025, 13, 1660. https://doi.org/10.3390/jmse13091660
Xiang C, Liu X, Guo Z, Zhao H, Liu J. Online Parameter Identification for PMSM Based on Multi-Innovation Extended Kalman Filtering. Journal of Marine Science and Engineering. 2025; 13(9):1660. https://doi.org/10.3390/jmse13091660
Chicago/Turabian StyleXiang, Chuan, Xilong Liu, Zilong Guo, Hongge Zhao, and Jingxiang Liu. 2025. "Online Parameter Identification for PMSM Based on Multi-Innovation Extended Kalman Filtering" Journal of Marine Science and Engineering 13, no. 9: 1660. https://doi.org/10.3390/jmse13091660
APA StyleXiang, C., Liu, X., Guo, Z., Zhao, H., & Liu, J. (2025). Online Parameter Identification for PMSM Based on Multi-Innovation Extended Kalman Filtering. Journal of Marine Science and Engineering, 13(9), 1660. https://doi.org/10.3390/jmse13091660