An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling
Abstract
:1. Introduction
2. Historical Theory: Early Wind Stress Formulations (1687–1955)
2.1. Newton (1687)–Bermoulli, d’Alembert, Euler, Navier (1700s)–Cauchy, Poisson, Saint-Venant, Stokes (1800s)–Prandtl (1904)
2.2. Ekman (1905)
2.3. Taylor (1915)
2.4. Prandtl (1925)
2.5. Von Kármán (1930) and Prandtl (1932)
2.6. Charnock (1955)
3. Historical Correlations: Early Drag Coefficient Formulations (1959–1997)
3.1. Wilson (1959, 1960)
3.2. Wu (1967)
3.3. Garratt (1967)
3.4. Smith (1980)
3.5. Wu (1980, 1982)
3.6. Large & Pond (1981, 1982)
4. Saturated Drag Coefficient
4.1. GPS Dropwindsondes
4.2. Powell et al. (2003)
4.3. Donelan et al. (2004)
5. Latest Drag Coefficient Formulations (2006–2015)
5.1. Powell (2006)
5.2. Moon et al. (2006)
5.3. Jarosz et al. (2007)
5.4. Black et al. (2007)
5.5. Moon et al. (2009)
5.6. Foreman & Emeis (2010)
5.7. Andreas et al. (2012)
5.8. Zijlema et al. (2012)
5.9. Holthuijsen et al. (2012)
5.10. Edson et al. (2013)
5.11. Zachary et al. (2013)
5.12. Vickers et al. (2013)
5.13. Peng & Li (2015)
5.14. Zhao et al. (2015)
5.15. Bi et al. (2015)
6. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barry, R.G.; Chorley, R.J. Atmosphere, Weather, and Climate; Routledge: London, UK, 2003. [Google Scholar]
- Caso, M.; González-Abraham, C.; Ezcurra, E. Divergent ecological effects of oceanographic anomalies on terrestrial ecosystems of the Mexican Pacific coast. Proc. Natl. Acad. Sic. USA 2007, 104, 10530–10535. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, K. The contribution of tropical cyclones to the oceans’ meridional heat transport. J. Geophys. Res. Atmos. 2001, 106, 14771–14782. [Google Scholar] [CrossRef]
- Emanuel, K. Tropical Cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Neely, W. The Great Bahamian Hurricanes of 1899 and 1932: The Story of Two of the Greatest and Deadliest Hurricanes to Impact the Bahamas; iUniverse Inc.: Bloomington, IN, USA, 2012. [Google Scholar]
- Nicholson, S.E. Dryland Climatology; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Saha, P. Modern Climatology; Allied Publishers Pvt. Ltd.: New Delhi, India, 2012. [Google Scholar]
- Murty, T.S.; Flather, R.A.; Henry, R.F. The storm surge problem in the bay of Bengal. Prog. Oceanogr. 1986, 16, 195–233. [Google Scholar] [CrossRef]
- Shamsuddoha, M.; Chowdhury, R.K. Climate Change Impact and Disaster Vunerablities in the Coastal Areas of Bangladesh; Coastal Association for Social Transformation Trust (COAST Trust): Dhaka, Bangladesh, 2007. [Google Scholar]
- Shultz, J.M.; Russell, J.; Espinel, Z. Epidemiology of tropical cyclones: The dynamics of disaster, disease, and development. Epidemiol. Rev. 2005, 27, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Beven, J.L.; Avila, L.A.; Blake, E.S.; Brown, D.P.; Franklin, J.L.; Knabb, R.D.; Pasch, R.J.; Rhome, J.R.; Stewart, S.R. Atlantic Hurricane Season of 2005. Mon. Weather Rev. 2008, 136, 1109–1173. [Google Scholar] [CrossRef]
- Knabb, R.D.; Rhome, J.R.; Brown, D.P. Tropical Cyclone Report for Hurricane Katrina. Available online: http://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf (accessed on 1 September 2016).
- Baade, R.A.; Baumann, R.; Matheson, V. Estimating the Economic Impact of Natural and Social Disasters, with an Application to Hurricane Katrina. Urban Stud. 2007, 44, 2061–2076. [Google Scholar] [CrossRef]
- Burton, M.; Hicks, M. Hurricane Katrina: Preliminary Estimates of Commercial and Public Sector Damages; Marshall University Center Business and Economy Reseach: Huntington, WV, USA, 2005; pp. 1–13. [Google Scholar]
- Curry, J.A.; Webster, P.J.; Holland, G.J. Mixing politics and science in testing the hypothesis that greenhouse warming is causing a global increase in hurricane intensity. Bull. Am. Meteorol. Soc. 2006, 87, 1025–1037. [Google Scholar] [CrossRef]
- Lott, N.; Ross, T. Tracking and Evaluating US Billion Dollar Weather Disasters, 1980–2005; NOAA National Climatic Data Center: Asheville, NC, USA, 2015.
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Knutson, T.R.; Tuleya, R.E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 2004, 17, 3477–3495. [Google Scholar] [CrossRef]
- Trenberth, K. Uncertainty in Hurricanes and Global Warming. Science 2005, 308, 1753–1754. [Google Scholar] [CrossRef] [PubMed]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, H.E. Hurricane heat engines. Nature 1999, 401, 649–650. [Google Scholar] [CrossRef]
- Donelan, M.A.; Drennan, W.M.; Katsaros, K.B. The Air–Sea Momentum Flux in Conditions of Wind Sea and Swell. J. Phys. Oceanogr. 1997, 27, 2087–2099. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T. The Effect of Wind-Wave-Current Interaction on Air–Sea Momentum Fluxes and Ocean Response in Tropical Cyclones. J. Phys. Oceanogr. 2009, 39, 1019–1034. [Google Scholar] [CrossRef]
- Moon, I.-J.; Ginis, I.; Hara, T. Effect of Surface Waves on Air–Sea Momentum Exchange. Part II: Behavior of Drag Coefficient under Tropical Cyclones. J. Atmos. Sci. 2004, 61, 2334–2348. [Google Scholar] [CrossRef]
- Moon, I.-J.; Kwon, J.-I.; Lee, J.-C.; Shim, J.-S.; Kang, S.K.; Oh, I.S.; Kwon, S.J. Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Model. 2009, 29, 115–127. [Google Scholar] [CrossRef]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Yelland, M.J.; Moat, B.I.; Taylor, P.K.; Pascal, R.W.; Hutchings, J.; Cornell, V.C. Wind Stress Measurements from the Open Ocean Corrected for Airflow Distortion by the Ship. J. Phys. Oceanogr. 1998, 28, 1511–1526. [Google Scholar] [CrossRef]
- Jarosz, E.; Mitchell, D.A.; Wang, D.W.; Teague, W.J. Major Tropical Cyclone. 2007, 557, 2005–2007. [Google Scholar]
- Taylor, G.I. Skin friction of the wind on the earth’s surface. Proc. R. Soc. Lond. Ser. A 1916, 92, 196–199. [Google Scholar] [CrossRef]
- Masuda, T.; Kusaba, A. On the local equilibrium of winds and wind-waves in relation to surface drag. J. Oceanogr. Soc. Jpn. 1987, 43, 28–36. [Google Scholar] [CrossRef]
- Mellor, G.L. Users Guide for a Three Dimensional, Primitive Equation, Numberical Ocean Model; Program in Atmospheric and Ocean Sciences, Princeton University: Princeton, NJ, USA, 1998. [Google Scholar]
- Smith, S.D. Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr. 1980, 10, 709–726. [Google Scholar] [CrossRef]
- Govind, P.K. Omega windfinding systems. J. Appl. Meteorol. 1975, 14, 1503–1511. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Y. Enhancement of wind stress evaluation method under storm conditions. Clim. Dyn. 2016. [Google Scholar] [CrossRef]
- Makin, V.K. A note on the drag of the sea surface at hurricane winds. Bound. Layer Meteorol. 2005, 115, 169–176. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y.; Xie, L. Adjusting the wind stress drag coefficient in storm surge forecasting using an adjoint technique. J. Atmos. Ocean. Technol. 2013, 30, 590–608. [Google Scholar] [CrossRef]
- Luettich, R.; Westerink, J. ADCIRC: A (Parallel) ADvanced CIRCulation Model for Oceanic, Coastal and Estuarine Waters; ADCIRC: Morehead, NC, USA, 2015. [Google Scholar]
- Anderson, J.D. Ludwig Prandtl’s Boundary Layer. Phys. Today 2005, 58, 42–48. [Google Scholar] [CrossRef]
- Franco, J.M.; Partal, P. RHEOLOGY—The Newtonian Fluid. Eolss 2000, I, 74–77. [Google Scholar]
- Ball, W.W.R. A Short Account of The History of Mathematics; Dover Publications, Inc.: Queens County, NY, USA, 1960. [Google Scholar]
- Grimberg, G.; Pauls, W.; Frisch, U. Genesis of d’Alembert’s paradox and analytical elaboration of the drag problem. Phys. D Nonlinear Phenom. 2008, 237, 1878–1886. [Google Scholar] [CrossRef]
- Frisch, U. Translation of Leonhard Euler’s: General Principles of the Motion of Fluids. Available online: https://arxiv.org/abs/0802.2383 (accessed on 2 September 2016).
- Darrigol, O. Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier-Stokes Equation. Arch. Hist. Exact Sci. 2016, 56, 95–150. [Google Scholar] [CrossRef]
- Tani, I. History of Boundary Layer Theory. Annu. Rev. Fluid Mech. 1977, 9, 87–111. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer: New York, NY, USA, 1999. [Google Scholar]
- Arakeri, F.; Shankar, P. Ludwig Prandtl and Boundary Layers in Fluid Flow How a Small Viscosity can Cause Large Effects. Resonance 2000, 5, 48–63. [Google Scholar] [CrossRef]
- Weber, R.O. Remarks on the Definition and Estimation of Friction Velocity. Bound. Layer Meteorol. 1999, 93, 197–209. [Google Scholar] [CrossRef]
- Ekman, V.W. On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys. 1905, 2, 1–53. [Google Scholar]
- Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H. The Oceans: Their Physics, Chemistry, and General Biology; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1942. [Google Scholar]
- Garratt, J.R. Review of Drag Coefficients over Oceans and Continents. Mon. Weather Rev. 1977, 105, 915–929. [Google Scholar] [CrossRef]
- Wilson, B.W. Note on surface wind stress over water at low and high wind speeds. J. Geophys. Res. 1960, 65, 3377–3382. [Google Scholar] [CrossRef]
- Andreas, E.L.; Mahrt, L.; Vickers, D. A New Drag Relation for Aerodynamically Rough Flow over the Ocean. J. Atmos. Sci. 2012, 69, 2520–2537. [Google Scholar] [CrossRef]
- Donelan, M.A.; Haus, B.K.; Reul, N.; Plant, W.J.; Stiassnie, M.; Graber, H.C.; Brown, O.B.; Saltzman, E.S. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- McDonough, J.M. Introductory Lectures on Turbulence: Physics, Mathematics and Modeling. 2007. Avaliable online: https://www.engr.uky.edu/~acfd/lctr-notes634.pdf (accessed on 1 September 2016).
- Ting, D. Basics of Engineering Turbulence; Academic Press: New York, NY, USA, 2016. [Google Scholar]
- Bradshaw, P. Possible origin of Prandt’s mixing-length theory. Nature 1974, 249, 135–136. [Google Scholar] [CrossRef]
- Prandtl, L. Über die ausgebildete Turbulenz. In Proceedings of the 2nd International Congress Applied Mechanics, Zurich, Switzerland, 12–17 September 1926; pp. 62–74.
- Tollmien, W.; Schlichting, H.; Görtler, H.; Riegels, F.W. Chronologische Folge der Veröffentilchungen. In Ludwig Prandtl Gesammelte Abhandlungen; Springer-Verlag: Berlin-Heidelberg, Germany, 1961; pp. 1–9. [Google Scholar]
- Vos, R.; Farokhi, S. Introduction to Transonic Aerodynamics; Springer Netherlands: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Schlichting, H. Lecture Series ‘Boundary Layer Theory’ Part II—Turbulent Flows; National Advisory Committee for Aeronautics (NACA): Washington, DC, USA, 1949.
- Fowler, A. Mathematical Geoscience; Springer Science & Business Media: London, UK, 2011. [Google Scholar]
- Furbish, D.J. Fluid Physics in Geology: An Introduction to Fluid Motions on Earth’s Surface and within Its Crust; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Pye, K.; Tsoar, H. Aeolian Sand and sand Dunes; Springer-Verlag: Berlin, Germany, 2008. [Google Scholar]
- Von Kármán, T. Mechanische änlichkeit und turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math. Klasse 1930, 1930, 58–76. [Google Scholar]
- Kantha, L.H.; Clayson, C.A. Small Scale Processes in Geophysical Fluid Flows; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Guan, C.; Xie, L. On the Linear Parameterization of Drag Coefficient over Sea Surface. J. Phys. Oceanogr. 2004, 34, 2847–2851. [Google Scholar] [CrossRef]
- Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 1955, 81, 639–640. [Google Scholar] [CrossRef]
- Roll, H. Physics of the Marine Atmosphere; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Mansour, A.E.; Ertekin, R.C. Proceedings of the 15th International Ship and Offshore Structures Congress: 3-Volume Set; Elsevier: Amsterdam, The Netherlands, 2003; p. 23. [Google Scholar]
- Takagaki, N.; Komori, S.; Suzuki, N.; Iwano, K.; Kuramoto, T.; Shimada, S.; Kurose, R.; Takahashi, K. Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Wu, J. Wind Stress and Surface Roughness at Air-Sea Interface; HYRDRONAUTICS, Inc.: Laurel, MD, USA, 1967. [Google Scholar]
- Scire, J.S.; Robe, F.R.; Fernau, M.; Yamartino, R.J. A User’s Guide for the CALMET Meteorological Model; Earth Tech. Inc.: Land O Lakes, FL, USA, 2000. [Google Scholar]
- Johnson, B.H.; Heath, R.E.; Hsieh, B.B.; Kim, K.W.; Butler, L. User’s Guide for a Three-Dimensional Numerical Hydrodynamic, Salinity, and Temperature Model of Chesapeake Bay (No. WES/TR/HL-91-20); US Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1991. [Google Scholar]
- Dietrich, J.C.; Bunya, S.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern louisiana and mississippi. Part II: Synoptic description and analysis of hurricanes katrina and rita. Mon. Weather Rev. 2010, 138, 378–404. [Google Scholar] [CrossRef]
- Wright, L.D. Beaches and coastal geology: Sea slick. Encycl. Earth Sci. 1982. [Google Scholar] [CrossRef]
- Smith, S.D.; Banke, E.G. Variation of the sea surface drag coefficient with wind speed. Q. J. R. Meteorol. Soc. 1975, 101, 665–673. [Google Scholar] [CrossRef]
- Wu, J. Wind-Stress coefficients over Sea surface near Neutral Conditions—A Revisit. J. Phys. Oceanogr. 1980, 10, 727–740. [Google Scholar] [CrossRef]
- Roll, H.U. Physics of the Marine Atmosphere: International Geophysics Series Volume 7; Academic Press: New York, NY, USA, 2016. [Google Scholar]
- Wu, J. Wind stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Oceans 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- SWAN: Scientific and Technical Documentation. Available online: http://swanmodel.sourceforge.net/download/zip/swantech.pdf (accessed on 2 September 2016).
- Large, W.G.; Pond, S. Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Pond, S.; Fissel, B.; Paulson, C.A. A note no bulk aerodynamic coefficients for sensible heat and moisture fluxes. Bound. Layer Meteorol. 1974, 6, 333–339. [Google Scholar] [CrossRef]
- Friehe, C.A.; Schmitt, K.F. Parameterization of Air-Sea Interface Fluxes of Sensible Heat and Moisture by the Bulk Aerodynamic Formulas. J. Phys. Oceanogr. 1976, 6, 801–809. [Google Scholar] [CrossRef]
- Kondo, J. Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteorol. 1975, 9, 91–112. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr. 1982, 12, 464–482. [Google Scholar] [CrossRef]
- Liss, P.S.; Duce, R.A. The Sea Surface and Global Change; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Francis, J.R. The aerodynamic drag of a free water surface. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1951, 206, 387–406. [Google Scholar] [CrossRef]
- Sheppard, P.A. Transfer across the earth’s surface and through the air above. Q. J. R. Meteorol. Soc. 1958, 84, 205–224. [Google Scholar] [CrossRef]
- Deacon, E.L.; Webb, E.K. Physical Oceanography: II. Interchange of Properties between Sea and Air; Commonwealth Scientific and Industrial Research Organization: Perth, Australia, 1962. [Google Scholar]
- Anderson, R.J. A Study of Wind Stress and Heat Flux over the Open Ocean by the Inertial-Dissipation Method. J. Phys. Oceanogr. 1993, 23, 2153–2161. [Google Scholar] [CrossRef]
- Yelland, M.; Taylor, P.K. Wind stress measurements from the open ocean. Am. Meteorol. Soc. 1996, 26, 541–558. [Google Scholar] [CrossRef]
- Cole, H.L.; Rossby, S.; Govind, P.K. The NCAR windfinding dropsonde. Atmos. Technol. 1973, 2, 19–24. [Google Scholar]
- Hock, T.F.; Franklin, J.L. The NCAR GPS Dropwindsonde. Bull. Am. Meteorol. Soc. 1999, 80, 407–420. [Google Scholar] [CrossRef]
- NOAA. Aircraft operation center. Gulfstream IV-SP (G-IV). Available online: https://upload.wikimedia. org/wikipedia/commons/archive/2/2a/20151001222423%21G4-1_%28Gulfstream%29.jpg (accessed on 5 September 2016).
- NCAR. NCAR UCAR EOL: AVAPS dropsonde. Available online: https://www.eol.ucar.edu/ content/gallery-2 (accessed on 5 September 2016).
- Aberson, S.D.; Franklin, J.L. Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Am. Meteorol. Soc. 1999, 80, 421–427. [Google Scholar] [CrossRef]
- Ocampo-Torres, F.J.; Donelan, M.A. Laboratory measurements of mass transfer of carbon dioxide and water vapour for smooth and rough flow conditions. Tellus 1994, 46, 16–32. [Google Scholar] [CrossRef]
- Powell, M.D. Final Report on the NOAA Joint Hurricane Testbed: Drag Coefficient Distribution and Wind Speed Dependence in Tropical Cyclones; NOAA/AOML: Miami, FL, USA, 2007.
- Wright, C.W.; Walsh, E.J.; Vandemark, D.; Krabill, W.B.; Garcia, A.W.; Houston, S.H.; Powell, M.D.; Black, P.G.; Marks, F.D. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean. J. Phys. Oceanogr. 2001, 31, 2472–2488. [Google Scholar] [CrossRef]
- Black, P.G.; D’Asaro, E.A.; Drennan, W.M.; French, J.R.; Niller, P.P.; Sanford, T.B.; Terrill, E.J.; Walsh, E.J.; Zhang, J.A. Air–sea exchange in hurricanes: synthesis of observations from the coupled boundary layer air–sea transfer experiment. Am. Meteorol. Soc. 2007, 88, 359–374. [Google Scholar] [CrossRef]
- Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D. Wind and waves in extreme hurricanes. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Moon, I.-J.; Ginis, I.; Hara, T.; Thomas, B. A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Weather Rev. 2007, 135, 2869–2878. [Google Scholar] [CrossRef]
- Ginis, I.; Khain, A.P.; Morozovsky, E. Effects of large eddies on the structure of the marine boundary layer under strong wind conditions. J. Atmos. Sci. 2004, 72, 3049–3063. [Google Scholar] [CrossRef]
- Smith, S.D.; Anderson, R.J.; Oost, W.A.; Kraan, C.; Maat, N.; de Cosmo, J.; Katsaros, K.B.; Davidson, K.L.; Bumke, K.; Hasse, L.; et al. Sea surface wind stress and drag coefficients: The HEXOS results. Bound. Layer Meteorol. 1992, 60, 109–142. [Google Scholar] [CrossRef]
- Toba, Y.; Iida, N.; Kawamura, H.; Ebuchi, N.; Jones, I.S. Wave dependence of sea-surface wind stress. J. Phys. Oceanogr. 1990, 20, 705–721. [Google Scholar] [CrossRef]
- Moon, I.-J.; Ginis, I.; Hara, T.; Tolman, H.; Wright, C.W.; Walsh, E.J. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr. 2003, 33, 1680–1706. [Google Scholar] [CrossRef]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH-IIITM Version 3.14. Available online: http://nopp.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf (accessed on 2 September 2016).
- Moon, I.-J.; Hara, T.; Ginis, I.; Belcher, S.E.; Tolman, H.L. Effect of surface waves on air sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci. 2004, 61, 2321–2333. [Google Scholar] [CrossRef]
- Foreman, R.J.; Emeis, S. Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr. 2010, 40, 2325–2332. [Google Scholar] [CrossRef]
- Andreas, E.L.; Mahrt, L.; Vickers, D. An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Q. J. R. Meteorol. Soc. 2015, 141, 642–654. [Google Scholar] [CrossRef]
- Zijlema, M.; van Vledder, G.P.; Holthuijsen, L.H. Bottom friction and wind drag for wave models. Coast. Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- Powell, M.D. New findings on hurricane intensity, wind field extent and surface drag coefficient behavior. In Proceedings of the Tenth International Workshop on Wave Hindcasting and Forecasting and Coastal Hazard Symposium, Oahu, HI, USA, 11–16 November 2007.
- Powell, M.D. New findings on Cd behavior in tropical cyclones. In Proceedings of the 28th Conference on Hurricanes and Tropical Meteorology, Orlando, FL, USA, 28 April 2008.
- Petersen, G.N.; Renfrew, I.A. Aircraft-based observations of air–sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Q. J. R. Meteorol. Soc. 2009, 135, 2030–2045. [Google Scholar] [CrossRef]
- Amorocho, J.; DeVries, J.J. A new evaluation of the wind stress coefficient over water surfaces. J. Geophys. Res. Oceans 1980, 85, 433–442. [Google Scholar] [CrossRef]
- Yokota, M.; Hashimoto, N.; Kawaguchi, K.; Kawai, H. Development of an inverse estimation method of sea surface drag coefficient under strong wind conditions. Coast. Eng. 2009, 65, 181–185. [Google Scholar] [CrossRef]
- Bye, J.A.T.; Jenkins, A.D. Drag coefficient reduction at very high wind speeds. J. Geophys. Res. 2006, 111, 1–9. [Google Scholar] [CrossRef]
- Bye, J.A.; Wolff, J.-O. Charnock dynamics: A model for the velocity structure in the wave boundary layer of the air–sea interface. Ocean Dyn. 2008, 58, 31–42. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N. On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res. Oceans 2006, 111, 1–18. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Makin, V.K. Aerodynamic roughness of the sea surface at high winds. Bound. Layer Meteorol. 2007, 125, 289–303. [Google Scholar] [CrossRef]
- Soloviev, A.; Lukas, R. Effects of bubbles and sea spray on air–sea exchange in hurricane conditions. Bound. Layer Meteorol. 2010, 136, 365–376. [Google Scholar] [CrossRef]
- Belcher, S.E.; Hunt, J.C.R. Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 1998, 30, 507–538. [Google Scholar] [CrossRef]
- Peirson, W.L.; Garcia, A.W. On the wind-induced growth of slow water waves of finite steepness. J. Fluid Mech. 2008, 608, 243–274. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Webster, P.; Lukas, R. TOGA COARE: The coupled ocean-atmosphere response experiment. Bull. Am. Meteorol. Soc. 1992, 73, 1377–1416. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef]
- Weiss, C.C.; Schroeder, J.L. StickNet: A new portable, rapidly deployable surface observation system. Bull. Am. Meteorol. Soc. 2008, 89, 1502–1503. [Google Scholar]
- Zachry, B.C.; Schroeder, J.L.; Kennedy, A.B.; Westerink, J.J.; Letchford, C.W.; Hope, M.E. A case study of nearshore drag coefficient behavior during hurricane ike (2008). J. Appl. Meteorol. Climatol. 2013, 52, 2139–2146. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L.; Andreas, E.L. Estimates of the 10-m neutral sea surface drag coefficient from aircraft eddy-covariance measurements. J. Phys. Oceanogr. 2013, 43, 301–310. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y. A parabolic model of drag coefficient for storm surge simulation in the South China Sea. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Large, W.G.; Yeager, S.G. The global climatology of an interannually varying air-sea flux data set. Clim. Dyn. Dyn. 2008, 33, 341–364. [Google Scholar] [CrossRef]
- Mueller, J.A.; Veron, F. Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound. Layer Meteorol. 2009, 130, 117–134. [Google Scholar] [CrossRef]
- Hersbach, H. Sea-surface roughness and drag coefficient as function of neutral wind speed. J. Phys. Oceanogr. 2011, 41, 247–251. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Dai, C.; Song, G.; Lv, Q. Typhoon air-sea drag coefficient in coastal regions. J. Geophys. Res. Oceans 2015, 120, 716–727. [Google Scholar] [CrossRef]
- Bi, X.; Gao, Z.; Liu, Y.; Liu, F.; Song, Q.; Huang, J.; Huang, H.; Mao, W.; Liu, C. Observed drag coefficients in high winds in the near offshore of the South China Sea. J. Geophys. Res. Atmos. 2015, 120, 6444–6459. [Google Scholar] [CrossRef]
Date | Author | Drag Coefficient Formula |
---|---|---|
1948 * | Neumann [73] | . |
1951 * | Francis [73,89] | . |
1958 * | Sheppard [73,90] | . |
1960 | Wilson [51,73] | (12) |
1962 * | Deacon & Webb [73,91] | . |
1967 | Wu [73] | (13) |
1975 * | Smith & Banke [78] | . |
1977 | Garratt [50] | , (14) |
. (15) | ||
1980 | Smith [32] | . (16) |
1980, 1982 | Wu [79,81] | . (17) |
1981 | Large & Pond [83] | (18) |
1992 * | Anderson [92] | . |
1995 * | Yelland & Taylor [93] | . |
1997 * | Yelland et al. [27] | . |
Date | Author | Drag Coefficient Formula |
---|---|---|
2006 | ADCIRC, adapted from Powell [37] | (19a) |
(19b) | ||
(19c) | ||
2006 | Moon et al. [104] | (20d) |
2007 | Jarosz et al. [28] | , (3c) |
, (21a) | ||
. (21b) | ||
2010 | Foreman & Emeis [111] | . (25) |
2012 | Andreas et al. [52] | . (27) |
2012 | Zijlema et al. [113] | , (28a) |
. (28b) | ||
. (28c) | ||
2012 | Holthuijsen et al. [103] | , (29) |
2013 | Edson et al. [129] | . (3d) |
2015 | Peng & Li [133] | . (30) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryant, K.M.; Akbar, M. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling. J. Mar. Sci. Eng. 2016, 4, 58. https://doi.org/10.3390/jmse4030058
Bryant KM, Akbar M. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling. Journal of Marine Science and Engineering. 2016; 4(3):58. https://doi.org/10.3390/jmse4030058
Chicago/Turabian StyleBryant, Kyra M., and Muhammad Akbar. 2016. "An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling" Journal of Marine Science and Engineering 4, no. 3: 58. https://doi.org/10.3390/jmse4030058
APA StyleBryant, K. M., & Akbar, M. (2016). An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling. Journal of Marine Science and Engineering, 4(3), 58. https://doi.org/10.3390/jmse4030058