Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations
Abstract
:1. Introduction
2. Sargassum Composition and Potential Uses of Compounds
2.1. Proteins
2.2. Polysaccharides
2.2.1. Alginates
2.2.2. Sulphated Polysaccharides
2.3. Lipids
2.3.1. Sterols
2.3.2. Carotenoids
2.3.3. Terpenoids and Phenolics
2.4. Inorganic Compounds
3. Processing Sargassum
3.1. Cleaning and Sorting
3.2. Preservation
3.2.1. Drying
3.2.2. Ensilage
4. Biochar, Biofuels, and Biorefineries
4.1. Biochar
4.2. Biofuel
- (1)
- Energy extraction methods requiring dry macroalgae
- (i)
- direct combustion
- (ii)
- pyrolysis
- (iii)
- gasification (conventional)
- (iv)
- trans-esterification to biodiesel
- (2)
- Energy extraction methods for wet macroalgae
- (v)
- hydrothermal treatments
- (vi)
- fermentation to bioethanol or biobutanol
- (vii)
- anaerobic digestion
4.3. Anaerobic Digestion
4.4. Biorefineries
5. Co-Production
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smetacek, V.; Zingone, A. Green and golden seaweed tides on the rise. Nature 2013, 504, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laffoley, D.d’A.; Roe, H.S.J.; Angel, M.V.; Ardron, J.; Bates, N.R.; Boyd, L.L.; Brooke, S.; Buck, K.N.; Carlson, C.A.; Causey, B.; et al. The Protection and Management of the Sargasso Sea: The Golden Floating Rainforest of the Atlantic Ocean: Summary Science and Supporting Evidence Case; Sargasso Sea Alliance: St. George’s, Bermuda, 2011. [Google Scholar]
- Guiry, M.D.; Guiry, G.M.; Algaebase. World-Wide Electronic Publication. Available online: http://www.marinespecies.org/aphia.php?p=taxdetails&id=144132 (accessed on 3 March 2016).
- Oxenford, H.A. Sargassum moss: Ecological aspects and source of influx. In Sargassum Symposium; UWI, Cave Hill: Barbados, 2015. [Google Scholar]
- Lapointe, B.E.; West, L.E.; Sutton, T.T.; Hu, C. Ryther revisited: Nutrient excretions by fishes enhance productivity of pelagic sargassum in the western North Atlantic Ocean. J. Exp. Mar. Biol. Ecol. 2014, 458, 46–56. [Google Scholar] [CrossRef]
- Schell, J.M.; Goodwin, D.S.; Siuda, A.N.S. Recent Sargassum inundation events in the Caribbean shipboard observations reveal dominance of a previously rare form. Oceanography 2015, 28, 8–10. [Google Scholar] [CrossRef]
- Duncan, R.S. Southern Wonder: Alabama’s Surprising Biodiversity; The University of Alabama Press: Tuscaloosa, AL, USA, 2013; p. 459. [Google Scholar]
- Beckles, H. Greetings from the vice-chancellor. In Sargassum Symposium; UWI, Cave Hill: Barbados, 2015. [Google Scholar]
- Stinking Seaweed that Smells of Rotten Eggs Invades Beaches in Florida and Texas—With Some Hit by Piles that Are 10ft High. Daily Mail. 18 October 2015. Available online: http://www.dailymail.co.uk/news/article-3277720/Stinking-sargassum-seaweed-smells-rotten-eggs-terrorizes-beaches-Caribbean-Florida-Texas-shores-experiencing-piles-kelp-10-feet-high.html (accessed on 9 September 2016).
- Grass-Sessay, S.A. Concept Note on the Invasion of Pelagic Sargassum in West Africa, 2015. http://www.sargassoseacommission.org/storage/Concept_Note_on_Sargassum_Invasion_in_West_Africa_-_UNEP__Abidjan_Convention_Secretariat.pdf (accessed on 9 September 2016).
- Huffard, C.L.; Thun, S.; Sherman, A.D.; Sealey, K.; Smith, K.L. Pelagic Sargassum community change over a 40-year period: Temporal and spatial variability. Mar. Biol. 2014, 161, 2735–2751. [Google Scholar] [CrossRef] [PubMed]
- Doyle, E.; Franks, J. Sargassum Fact Sheet; Gulf and Caribbean Fisheries Institute: Marathon, FL, USA, 2015. [Google Scholar]
- Williams, A.; Feagin, R. Sargassum as a natural solution to enhance dune plant growth. Environ. Manag. 2010, 46, 738–747. [Google Scholar] [CrossRef] [PubMed]
- BVI Government Information Service. Sargassum Seaweed: An Important Element for Beaches and Shoreline Stability. Available online: http://www.bvi.org.uk/government/pressrelease/remarkbydeputypremier (accessed on 12 October 2015).
- Fiermonte, I. Sargassum a RESOURCE Guide for the Caribbean; The Caribbean Alliance for Sustainable Tourism (CAST): Coral Gables, FL, USA, 2015. [Google Scholar]
- Oyesiku, O.O.; Egunyomi, A. Identification and chemical studies of pelagic masses of Sargassum natans (linnaeus) gaillon and S. fluitans (borgessen) borgesen (brown algae), found offshore in Ondo State, Nigeria. Afr. J. Biotechnol. 2014, 13, 1188–1193. [Google Scholar]
- Willoughby, S. Sargassum and the fishing industry. In Sargassum Symposium; UWI, Cave Hill: Barbados, 2015. [Google Scholar]
- Caribbean-Bound Tourists Cancel Holidays Due to Foul-Smelling Seaweed. The Guardian. 10 August 2015. Available online: https://www.theguardian.com/environment/2015/aug/10/caribbean-bound-tourists-cancel-holidays-due-to-foul-smelling-seaweed (accessed on 9 September 2016).
- Khan, A. Region Needs US$120m to Fight Seaweed. Trinidad Daily Express. 18 August 2015. Available online: http://www.trinidadexpress.com/20150818/news/region-needs-us120m-to-fight-seaweed (accessed on 9 September 2016).
- De Schaun, K. The summer of seaweed. In Sustainability Webinar Series; Caribbean Hotel & Tourism Association: Coral Gables, FL, USA, 2015. [Google Scholar]
- Plaguing Paradise: Smelly Piles of Seaweed Are Ruining Holidays. The Economist. 27 August 2015. Available online: http://www.economist.com/news/americas/21662568-smelly-piles-seaweed-are-ruining-holidays-plaguing-paradise (accessed on 9 September 2016).
- Werner, E.; Harris, J.A. Possible uses of pelagic seaweed as a mariculture substrate. Proc. Annu. Workshop World Maric. Soc. 1973, 4, 63–64. [Google Scholar] [CrossRef]
- Hanisak, M.D.; Samuel, M.A. Growth rates in culture of several species of Sargassum from Florida, USA. Hydrobiologia 1987, 151, 399–404. [Google Scholar] [CrossRef]
- Lenstra, W.J.; van Hal, J.W.; Reith, J.H. Economic aspects of open ocean seaweed cultivation. In Proceedings of the Alg’n Chem 2011, Montpellier, France, 7–10 November 2011.
- N‘Yeurt, A.d.R.; Chynoweth, D.P.; Capron, M.E.; Stewart, J.R.; Hasan, M.A. Negative carbon via ocean afforestation. Process Saf. Environ. Prot. 2012, 90, 467–474. [Google Scholar] [CrossRef]
- Caribbean Sea Commission. Challenges, Dialogue and Cooperation towards the Sustainability of the Caribbean Sea. In Proceedings of the 1st Symposium of the Caribbean Sea Commission, Port of Spain, Trinidad and Tobago, 23–24 November 2015.
- Vargas-Moreno, J.M.; Callejón-Ferre, A.J.; Pérez-Alonso, J.; Velázquez-Martí, B. A review of the mathematical models for predicting the heating value of biomass materials. Renew. Sustain. Energy Rev. 2012, 16, 3065–3083. [Google Scholar] [CrossRef]
- Josefsson, M.; Jansson, K. Nobanis—Invasive Alien Species Fact Sheet—Sargassum muticum. Available online: http://www.nobanis.org/files/factsheets/Sargassum_muticum.pdf (accessed on 4 November 2014).
- Balboa, E.; Moure, A.; Domínguez, H. Valorization of Sargassum muticum biomass according to the biorefinery concept. Mar. Drugs 2015, 13, 3745–3760. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.J.; Nielsen, B.V.; Bailey, D. High-value products from macroalgae: The potential uses of the invasive brown seaweed, Sargassum muticum. Rev. Environ. Sci. Biotechnol. 2015, 15, 67–88. [Google Scholar] [CrossRef]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos Bay in central west coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.J.; Staple, A.; Harvey, P. Slow pyrolysis as a method for the destruction of Japanese wireweed, Sargassum muticum. Environ. Nat. Resour. Res. 2015, 5, 28–36. [Google Scholar] [CrossRef]
- Soto, M.; Vazquez, M.A.; de Vega, A.; Vilarino, J.M.; Fernandez, G.; de Vicente, M.E. Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresour. Technol. 2015, 189, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.J.; Harvey, P.J. Ensilage and anaerobic digestion of Sargassum muticum. J. Appl. Phycol. 2016, 1–10. [Google Scholar] [CrossRef]
- Yende, S.R.; Harle, U.N.; Chaugule, B.B. Therapeutic potential and health benefits of Sargassum species. Pharmacogn. Rev. 2014, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Martinez Nadal, N.G. Antibiotic properties of Sargassum natans from Puerto Rico. J. Pharm. Sci. 1961, 50, 356. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Q.; Jiang, X.M.; Han, X.X.; Ji, H.S. Compositional analysis of bio-oil derived from pyrolysis of seaweed. Energy Conv. Manag. 2013, 68, 273–280. [Google Scholar] [CrossRef]
- Demirel, Y. Energy and energy types. In Energy: Production, Conversion, Storage, Conservation, and Coupling; Springer London: London, UK, 2012; pp. 27–70. [Google Scholar]
- Ross, A.B.; Jones, J.M.; Kubacki, M.L.; Bridgeman, T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 2008, 99, 6494–6504. [Google Scholar] [CrossRef] [PubMed]
- Merrill, A.L.; Watts, B.K. Energy Values of Foods: Basis & Duration. Slight Revised February 1973; US Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Angell, A.R.; Mata, L.; Nys, R.; Paul, N.A. The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. J. Appl. Phycol. 2015, 28, 511–524. [Google Scholar] [CrossRef]
- Tiwari, B.; Troy, D. Seaweed Sustainability: Food and Non-Food Applications, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Parimi, N.S.; Singh, M.; Kastner, J.R.; Das, K.C. Biomethane and biocrude oil production from protein extracted residual spirulina platensis. Energy 2015, 93, 697–704. [Google Scholar] [CrossRef]
- González López, C.V.; Garcia, M.D.C.; Fernandez, F.G.A.; Bustos, C.S.; Chisti, Y.; Sevilla, J.M.F. Protein measurements of microalgal and cyanobacterial biomass. Bioresour. Technol. 2010, 101, 7587–7591. [Google Scholar] [CrossRef] [PubMed]
- Heaven, S.; Milledge, J.; Zhang, Y. Comments on “anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable”. Biotechnol. Adv. 2011, 29, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Duan, J.; Guo, J.; Guo, S.; Zhao, J. Rapid determination of nucleosides, nucleobases and free amino acids in brown seaweeds using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. J. Appl. Phycol. 2014, 26, 675–686. [Google Scholar] [CrossRef]
- Safi, C.; Charton, M.; Pignolet, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Evaluation of the protein quality of Porphyridium cruentum. J. Appl. Phycol. 2013, 25, 497–501. [Google Scholar] [CrossRef]
- Safi, C.; Charton, M.; Pignolet, O.; Silvestre, F.; Vaca-Garcia, C.; Pontalier, P.-Y. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 2013, 25, 523–529. [Google Scholar] [CrossRef]
- Lourenco, S.O.; Barbarino, E.; Lavin, P.L.; Marque, U.M.L.; Aidar, E. Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 2004, 39, 17–32. [Google Scholar] [CrossRef]
- Phlips, E.J.; Zeman, C. Photosynthesis, growth and nitrogen-fixation by epiphytic forms of filamentous cyanobacteria from pelagic Sargassum. Bull. Mar. Sci. 1990, 47, 613–621. [Google Scholar]
- Wernberg, T.; Thomsen, M.S.; Staehr, P.A.; Pedersen, M.F. Comparative phenology of Sargassum muticum and Halidrys siliquosa (phaeophyceae: Fucales) in limfjorden, Denmark. Bot. Mar. 2001, 44, 31–39. [Google Scholar] [CrossRef]
- Jard, G.; Marfaing, H.; Carrere, H.; Delgenes, J.P.; Steyer, J.P.; Dumas, C. French Brittany macroalgae screening: Composition and methane potential for potential alternative sources of energy and products. Bioresour. Technol. 2013, 144, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Percival, E. The polysaccharides of green, red and brown seaweeds: Their basic structure, biosynthesis and function. Br. Phycol. J. 1979, 14, 103–117. [Google Scholar] [CrossRef]
- Jung, K.A.; Lim, S.R.; Kim, Y.; Park, J.M. Potentials of macroalgae as feedstocks for biorefinery. Bioresour. Technol. 2013, 135, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.C.; Tan, H.P. Alginate-based biomaterials for regenerative medicine applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef]
- Rehm, B.H.A. Alginates: Biology and Applications; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Bixler, H.; Porse, H. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 2011, 23, 321–335. [Google Scholar] [CrossRef]
- Zhao, F.J.; Liu, F.L.; Liu, J.D.; Ang, P.O.; Duan, D.L. Genetic structure analysis of natural Sargassum muticum (fucales, phaeophyta) populations using RAPD and ISSR markers. J. Appl. Phycol. 2008, 20, 191–198. [Google Scholar] [CrossRef]
- Liu, F.; Pang, S.J.; Gao, S.Q.; Shan, T.F. Intraspecific genetic analysis, gamete release performance, and growth of Sargassum muticum (fucales, phaeophyta) from China. Chin. J. Ocean. Limnol. 2013, 31, 1268–1275. [Google Scholar] [CrossRef]
- Critchley, A.T.; Farnham, W.F.; Morrell, S.L. An account of the attempted control of an introduced marine alga, Sargassum-muticum, in southern England. Biol. Conserv. 1986, 35, 313–332. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, N.; Moure, A.; Dominguez, H. Hydrothermal fractionation of Sargassum muticum biomass. J. Appl. Phycol. 2012, 24, 1569–1578. [Google Scholar] [CrossRef]
- Hoppe, H.A.; Levring, T.; Tanaka, Y. Marine Algae in Pharmaceutical Science; de Gruyter: Berlin, Germany; New York, NY, USA, 1979. [Google Scholar]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO: Rome, Italy, 2003. [Google Scholar]
- Berteau, O.; Mulloy, B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003, 13, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem. Pap. 2014, 68, 203–209. [Google Scholar] [CrossRef]
- Gorham, J.; Lewey, S.A. Seasonal changes in the chemical composition of Sargassum muticum. Mar. Biol. 1984, 80, 103–107. [Google Scholar] [CrossRef]
- Balboa, E.M.; Rivas, S.; Moure, A.; Dominguez, H.; Parajo, J.C. Simultaneous extraction and depolymerization of fucoidan from Sargassum muticum in aqueous media. Mar. Drugs 2013, 11, 4612–4627. [Google Scholar] [CrossRef] [PubMed]
- Streefland, M. Report on Biofuel Production Processes from Micro, Macroalgae and Other Aquatic Biomass; AquaFUELs: Brussels, Belgium, 2010. [Google Scholar]
- Milledge, J.J.; Smith, B.; Dyer, P.; Harvey, P. Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies 2014, 7, 7194–7222. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, S.H.S.; Lyons, G.; McRoberts, C.; McCall, D.; Carmichael, E.; Andrews, F.; McCormack, R. Brown seaweed species from Strangford Lough: Compositional analyses of seaweed species and biostimulant formulations by rapid instrumental methods. J. Appl. Phycol. 2012, 24, 1141–1157. [Google Scholar] [CrossRef]
- Hardouin, K.; Burlot, A.S.; Umami, A.; Tanniou, A.; Stiger-Pouvreau, V.; Widowati, I.; Bedoux, G.; Bourgougnon, N. Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds. J. Appl. Phycol. 2014, 26, 1029–1042. [Google Scholar] [CrossRef]
- Van Ginneken, V.J.T.; Helsper, J.; de Visser, W.; van Keulen, H.; Brandenburg, W.A. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- University of Maryland Medical Centre. Docosahexaenoic Acid (DHA). Available online: http://www.umm.edu/altmed/articles/docosahexaenoic-acid-000300.htm (accessed on 9 September 2016).
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Turner, J.P.; Rooker, J.R. Fatty acid composition of flora and fauna associated with Sargassum mats in the Gulf of Mexico. Mar. Biol. 2006, 149, 1025–1036. [Google Scholar] [CrossRef]
- Khotimchenko, S.V. Fatty acid composition of seven Sargassum species. Phytochemistry 1991, 30, 2639–2641. [Google Scholar] [CrossRef]
- Bhaskar, N.; Hosakawa, M.; Miyashita, K. Growth inhibition of human pro-myelocytic leukemia (hl-60) cells by lipid extracts of marine alga Sargassum marginatum (fucales, phaeophyta) harvested off Goa (west coast of India) with special reference to fatty acid composition. Indian J. Mar. Sci. 2004, 33, 355–360. [Google Scholar]
- Kim, G.W.; Itabashi, Y. Non-methylene-interrupted fatty acids with delta 5 unsaturation in Sargassum species. J. Oleo Sci. 2012, 61, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Banaimoon, S.A. Fatty-acids in marine macroalgae from southern Yemen (hadramout) including occurrence of eicosatetraenoic (20/4) and eicosapentaenoic (20/5) acids. Bot. Mar. 1992, 35, 165–168. [Google Scholar] [CrossRef]
- Bazes, A.; Silkina, A.; Douzenel, P.; Fay, F.; Kervarec, N.; Morin, D.; Berge, J.-P.; Bourgougnon, N. Investigation of the antifouling constituents from the brown alga Sargassum muticum (yendo) fensholt. J. Appl. Phycol. 2009, 21, 395–403. [Google Scholar] [CrossRef]
- Gerasimenko, N.I.; Martyyas, E.A.; Logvinov, S.V.; Busarova, N.G. Biological activity of lipids and photosynthetic pigments of Sargassum pallidum c. Agardh. Appl. Biochem. Microbiol. 2014, 50, 73–81. [Google Scholar] [CrossRef]
- Clifton, P. Lowering cholesterol a review on the role of plant sterols. Aust. Fam. Phys. 2009, 38, 218–221. [Google Scholar]
- Genser, B.; Silbernagel, G.; de Backer, G.; Bruckert, E.; Carmena, R.; Chapman, M.J.; Deanfield, J.; Descamps, O.S.; Rietzschel, E.R.; Dias, K.C.; et al. Plant sterols and cardiovascular disease: A systematic review and meta-analysis (dagger). Eur. Heart J. 2012, 33, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.R.; Xu, G.J.; Bian, L.Z.; Zhang, S.C.; Song, F.Q. Study on sterols from brown algae (Sargassum muticum). Chin. Sci. Bull. 2006, 51, 2520–2528. [Google Scholar] [CrossRef]
- Reiner, E.; Topliff, J.; Wood, J.D. Hypocholesterolemic agents derived from sterols of marine algae. Can. J. Biochem. Physiol. 1962, 40, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, J.; Fu, Z.; Ye, C.; Zhang, R.; Song, Y.; Zhang, Y.; Li, H.; Ying, H.; Liu, H. 24(s)-saringosterol from edible marine seaweed Sargassum fusiforme is a novel selective LXRβ agonist. J. Agric. Food Chem. 2014, 62, 6130–6137. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, W.; Jeon, Y.J. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: A review. Phytochem. Rev. 2011, 10, 431–443. [Google Scholar] [CrossRef]
- Chae, D.; Manzoor, Z.; Kim, S.C.; Kim, S.; Oh, T.-H.; Yoo, E.-S.; Kang, H.-K.; Hyun, J.-W.; Lee, N.H.; Ko, M.-H.; et al. Apo-9′-fucoxanthinone, isolated from Sargassum muticum, inhibits CpG-induced inflammatory response by attenuating the mitogen-activated protein kinase pathway. Mar. Drugs 2013, 11, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.R.; Hosokawa, M.; Miyashita, K. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar. Drugs 2013, 11, 5130–5147. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; Riccioni, G.; D’Orazio, N. Carotenoids: Potential allies of cardiovascular health? Food Nutr. Res. 2015, 59, 26762. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: A review. J. Oleo Sci. 2015, 64, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zorofchian Moghadamtousi, S.; Karimian, H.; Khanabdali, R.; Razavi, M.; Firoozinia, M.; Zandi, K.; Abdul Kadir, H. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Sci. World J. 2014, 2014, 768323. [Google Scholar] [CrossRef] [PubMed]
- Mikami, K.; Hosokawa, M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int. J. Mol. Sci. 2013, 14, 13763–13781. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kim, J.-H.; Kim, S.-W. Synthetic biology and metabolic engineering for marine carotenoids: New opportunities and future prospects. Mar. Drugs 2014, 12, 4810–4832. [Google Scholar] [CrossRef] [PubMed]
- Balboa, E.M.; Soto, M.L.; Nogueira, D.R.; Gonzalez-Lopez, N.; Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Dominguez, H. Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind. Crops Prod. 2014, 58, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Suganya, T.; Varman, M.; Masjuki, H.H.; Renganathan, S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 2016, 55, 909–941. [Google Scholar] [CrossRef]
- Plouguerne, E.; le Lann, K.; Connan, S.; Jechoux, G.; Deslandes, E.; Stiger-Pouvreau, V. Spatial and seasonal variation in density, reproductive status, length and phenolic content of the invasive brown macroalga Sargassum muticum (yendo) fensholt along the coast of western Brittany (France). Aquat. Bot. 2006, 85, 337–344. [Google Scholar] [CrossRef]
- Le Lann, K.; Jegou, C.; Stiger-Pouvreau, V. Effect of different conditioning treatments on total phenolic content and antioxidant activities in two Sargassacean species: Comparison of the frondose Sargassum muticum (yendo) fensholt and the cylindrical Bifurcaria bifurcata R. Ross. Phycol. Res. 2008, 56, 238–245. [Google Scholar] [CrossRef]
- Tanniou, A.; Esteban, S.L.; Vandanjon, L.; Ibanez, E.; Mendiola, J.A.; Cerantola, S.; Kervarec, N.; la Barre, S.; Marchal, L.; Stiger-Pouvreau, V. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013, 104, 44–52. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, M.R.; Xia, A.; Murphy, J.D. Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum. Bioresour. Technol. 2016, 216, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Philippsen, A. Energy Input, Carbon Intensity, and Cost for Ethanol Produced from Brown Seaweed. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2013. [Google Scholar]
- Sridhar, S.; Rengasamy, R. Potential of seaweed liquid fertilizers (SLFS) on some agricultural crop with special reference to protein profile of seedlings. Int. J. Dev. Res. 2011, 1, 55–57. [Google Scholar]
- BioMara. A Short History of Seaweed Exploitation in the Western British Isles. Available online: http://www.biomara.org/understanding-seaweed/the-importance-of-seaweed-across-the-ages (accessed on 27 January 2014).
- Besada, V.; Andrade, J.M.; Schultze, F.; González, J.J. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 2009, 75, 305–313. [Google Scholar] [CrossRef]
- Khaled, A.; Hessein, A.; Abdel-Halim, A.M.; Morsy, F.M. Distribution of heavy metals in seaweeds collected along Marsa-matrouh beaches, Egyptian Mediterranean sea. Egypt. J. Aquat. Res. 2014, 40, 363–371. [Google Scholar] [CrossRef]
- Carro, L.; Barriada, J.L.; Herrero, R.; de Vicente, M.E.S. Interaction of heavy metals with ca-pretreated Sargassum muticum algal biomass: Characterization as a cation exchange process. Chem. Eng. J. 2015, 264, 181–187. [Google Scholar] [CrossRef]
- Yokoi, K.; Konomi, A. Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul. Toxicol. Pharmacol. 2012, 63, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Biosorption of antimony by brown algae S. muticum and A. nodosum. Environ. Eng. Manag. J. 2015, 14, 455–463. [Google Scholar]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Vieira, R. Sargassum seaweed as biosorbent for heavy metals. Water Res. 2000, 34, 4270–4278. [Google Scholar] [CrossRef]
- Mohapatra, B. Potential use of Sargassum species: An overview. In Sargassum Symposium; UWI, Cave Hill: Barbados, 2015. [Google Scholar]
- Rubin, E.; Rodriguez, P.; Herrero, R.; Cremades, J.; Barbara, I.; de Vicente, M.E.S. Removal of methylene blue from aqueous solutions using as biosorbent Sargassum muticum: An invasive macroalga in Europe. J. Chem. Technol. Biotechnol. 2005, 80, 291–298. [Google Scholar] [CrossRef]
- Rubin, E.; Rodriguez, P.; Herrero, R.; de Vicente, M.E.S. Biosorption of phenolic compounds by the brown alga Sargassum muticum. J. Chem. Technol. Biotechnol. 2006, 81, 1093–1099. [Google Scholar] [CrossRef]
- Barbot, Y.; Thomsen, C.; Thomsen, L.; Benz, R. Anaerobic digestion of Laminaria japonica waste from industrial production residues in laboratory- and pilot-scale. Mar. Drugs 2015, 13, 5947. [Google Scholar] [CrossRef] [PubMed]
- Guadeloupe 1. Innovation: Un Bateau Contre Les Sargasses. Available online: http://la1ere.francetvinfo.fr/guadeloupe/sites/regions_outremer/files/styles/top_big/public/assets/images/2015/08/18/sargator.jpg?itok=CUf6EtV1 (accessed on 17 March 2016).
- Ward, A.J.; Lewis, D.M.; Green, B. Anaerobic digestion of algae biomass: A review. Algal Res. Biomass Biofuels Bioprod. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Rocca, S.; Agostini, A.; Giuntoli, J.; Marelli, L. Biofuels from Algae: Technology Options, Energy Balance and Ghg Emissions: Insights from a Literature Review; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Milledge, J.J.; Heaven, S. Methods of energy extraction from microalgal biomass: A review. Rev. Environ. Sci. Biotechnol. 2014, 13, 301–320. [Google Scholar] [CrossRef]
- Bruton, T.; Lyons, H.; Lerat, Y.; Stanley, M.; Rasmussen, M.B. A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland; Sustainable Energy Ireland: Dublin, Ireland, 2009. [Google Scholar]
- Milledge, J.J.; Harvey, P.J. Potential process “hurdles” in the use of macroalgae as feedstock for biofuel production in the British isles. J. Chem. Technol. Biotechnol. 2016, 91, 2221–2234. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Barberio, G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study. Fuel Process. Technol. 2005, 86, 1679–1693. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Othman, M.Y.; Ruslan, M.H. Energy and exergy analyses of solar drying system of red seaweed. Energy Build. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Valderrama, D.; Cai, J.; Hishamunda, N.; Ridler, N. Social and Economic Dimensions of Carrageenan Seaweed Farming; FAO Fisheries and Aquaculture technical paper 580; FAO: Rome, Italy, 2014. [Google Scholar]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Oswald, W.J. Large-scale algal culture systems (engineering aspects). In Micro-Algal Biotechnology; Borowitzka, M.A., Borowitzka, L.J., Eds.; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Chan, J.C.C.; Cheung, P.C.K.; Ang, P.O. Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (turn) C Ag. J. Agric. Food Chem. 1997, 45, 3056–3059. [Google Scholar] [CrossRef]
- Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT Food Sci. Technol. 2011, 44, 1266–1272. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Muylaert, K.; Eeckhout, M.; Ruyssen, T.; Foubert, I. Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. J. Agric. Food. Chem. 2011, 59, 11063–11069. [Google Scholar] [CrossRef] [PubMed]
- Indrawati, R.; Sukowijoyo, H.; Indriatmoko; Wijayanti, R.D.E.; Limantara, L. Encapsulation of brown seaweed pigment by freeze drying: Characterization and its stability during storage. Procedia Chem. 2015, 14, 353–360. [Google Scholar] [CrossRef]
- Brennan, J.G.; Butters, J.R.; Cowell, N.D.; Lilly, A.E.V. Food Engineering Operation; Elsevier: London, UK, 1969. [Google Scholar]
- Fellows, P. Food Processing Technology: Principles and Practice, 3rd ed.; CRC Press: Cambridge, UK; Woodhead Pub.: Boca Raton, FL, USA, 2009. [Google Scholar]
- Molina Grima, E.; Belarbi, E.-H.; Acien-Fernandez, F.G.; Robles-Medina, A.; Yusuf, C. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef]
- Seagate Products. Seaweed Powder. Available online: http://seagateproducts.com/product/229/Seaweed-Powder-300-grams.html (accessed on 19 April 2016).
- Ashbell, G.; Weinberg, Z.G. Silage Production and Utilization; FAO: Bet Dagan, Israel, 2005. [Google Scholar]
- Oude Elferink, S.J.W.H.; Driehuis, F.; Gottschal, J.C.; Spoelstra, S.F. Silage fermentation processes and their manipulation. In FAO Electronic Conference on Tropical Silage; FAO: Rome, Italy, 1999. [Google Scholar]
- Shinya, Y.; Yukihiko, M. The Asian Biomass Handbook—A Guide for Biomass Production and Utilization; The Japan Institute of Energy: Tokyo, Japan, 2008. [Google Scholar]
- Jones, D.I.H.; Jones, R. The effect of crop characteristics and ensiling methodology on grass silage effluent production. J. Agric. Eng. Res. 1995, 60, 73–81. [Google Scholar] [CrossRef]
- Black, W.A.P. The preservation of seaweed by ensiling and bactericides. J. Sci. Food Agric. 1955, 6, 14–23. [Google Scholar] [CrossRef]
- Uchida, M.; Miyoshi, T. Algal fermentation-the seed for a new fermentation industry of foods and related products. Jarq Jpn. Agric. Res. Q. 2013, 47, 53–63. [Google Scholar] [CrossRef]
- Herrmann, C.; FitzGerald, J.; O’Shea, R.; Xia, A.; O’Kiely, P.; Murphy, J.D. Ensiling of seaweed for a seaweed biofuel industry. Bioresour. Technol. 2015, 196, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; van Wikselaar, P.G. The occurrence and prevention of ethanol fermentation in high-dry-matter grass silage. J. Sci. Food Agric. 2000, 80, 711–718. [Google Scholar] [CrossRef]
- Bastiman, B. Factors affecting silage effluent production. Exp. Husb. 1977, 40–46. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries. Environmental Impacts of Baled Silage; WA 0111; MAFF: Tokyo, Japan, 1999.
- Mannetje, L. Silage for animal feed. In Encyclopedia of Life Support Systems; Eolss Publishers: Oxford, UK, 2010; Volume 8, pp. 123–135. [Google Scholar]
- Woolf, D.; Lehmann, J.; Fisher, E.M.; Angenent, L.T. Biofuels from pyrolysis in perspective: Trade-offs between energy yields and soil-carbon additions. Environ. Sci. Technol. 2014, 48, 6492–6499. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, D.J. Biochar: Carbon mitigation from the ground up. Environ. Health Perspect. 2009, 117, 70–73. [Google Scholar] [CrossRef]
- Shackley, S.; Sohi, S. An Assessment of the Benefits and Issues Associated with the Application of Biochar to Soil; UK Biochar Research Centre: Edinburgh, UK, 2010. [Google Scholar]
- Van der Kolk, J.; Zwart, K. Pyrolysis in the Countries of the North Sea Region. Potentially Available Quantities of Biomass Waste for Biochar Production. A Publication of the Interreg IVB Project Biochar: Climate saving soils. 2013. Available online: http://www.biochar-interreg4b.eu/images/file/WP44%20-%20Pyrolysis%20in%20the%20Countries%20of%20the%20North%20Sea%20Region.pdf (accessed on 9 September 2016).
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sust. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Peacocke, C.; Joseph, S. Notes on Terminology and Technology in Thermal Conversion. Available online: http://www.biochar-international.org/publications/IBI#Pyrolysis_guidelines (accessed on 15 April 2014).
- Scott, H.L.; Ponsonby, D.; Atkinson, C.J. Biochar: An improver of nutrient and soil water availability—What is the evidence? CAB Rev. 2014, 9. [Google Scholar] [CrossRef]
- Roberts, D.A.; Paul, N.A.; Dworjanyn, S.A.; Bird, M.I.; de Nys, R. Biochar from commercially cultivated seaweed for soil amelioration. Sci. Rep. 2015, 5, 9665. [Google Scholar] [CrossRef] [PubMed]
- Bird, K.T.; Benson, P.H. Seaweed Cultivation for Renewable Resources; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Keita, J.D. Wood or charcoal—Which is better? Int. J. For. For. Ind. 1987, 39, 61–66. [Google Scholar]
- Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conv. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Yu, L.J.; Wang, S.; Jiang, X.M.; Wang, N.; Zhang, C.Q. Thermal analysis studies on combustion characteristics of seaweed. J. Therm. Anal. Calorim. 2008, 93, 611–617. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, X.M.; Wang, Q.; Han, X.X.; Ji, H.S. Experiment and grey relational analysis of seaweed particle combustion in a fluidized bed. Energy Conv. Manag. 2013, 66, 115–120. [Google Scholar] [CrossRef]
- Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy 2010, 87, 38–46. [Google Scholar] [CrossRef]
- Bahadar, A.; Bilal Khan, M. Progress in energy from microalgae: A review. Renew. Sustain. Energy Rev. 2013, 27, 128–148. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; Deverell, R.; McDonnell, K. Biofuel production in Ireland—An approach to 2020 targets with a focus on algal biomass. Energies 2013, 6, 6391–6412. [Google Scholar] [CrossRef]
- Van der Wal, H.; Sperber, B.L.H.M.; Houweling-Tan, B.; Bakker, R.R.C.; Brandenburg, W.; López-Contreras, A.M. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour. Technol. 2013, 128, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Gu, S. Biomass conversion to energy in India-a critique. Renew. Sust. Energ. Rev. 2010, 14, 1367–1378. [Google Scholar] [CrossRef]
- Ventura, J.-R.S.; Yang, B.; Lee, Y.-W.; Lee, K.; Jahng, D. Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. Bioresour. Technol. 2013, 137, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Delrue, F.; Seiter, P.A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G.; Froment, A.K. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour. Technol. 2012, 111, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Salam, F.; Slack, N.; Winton, M.; Hobson, L. Product Options for the Processing of Marine Macro-Algae—Summary Report; The Crown Estates: London, UK, 2011. [Google Scholar]
- Langlois, J.; Sassi, J.F.; Jard, G.; Steyer, J.P.; Delgenes, J.P.; Helias, A. Life cycle assessment of biomethane from offshore-cultivated seaweed. Biofuels Bioprod. Biorefining 2012, 6, 387–404. [Google Scholar] [CrossRef]
- Yokoyama, S.; Jonouchi, K.; Imou, K. Energy production from marine biomass: Fuel cell power generation driven by methane produced from seaweed. Int. J. Environ. Ecol. Geol. Geophys. Eng. 2007, 1, 24–27. [Google Scholar]
- Alvarado-Morales, M.; Boldrin, A.; Karakashev, D.B.; Holdt, S.L.; Angelidaki, I.; Astrup, T. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour. Technol. 2013, 129, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, D.; Luo, G.; Zhang, S.; Chen, J. Macroalgae for biofuels production: Progress and perspectives. Renew. Sustain. Energy Rev. 2015, 47, 427–437. [Google Scholar] [CrossRef]
- Golueke, C.G.; Oswald, W.J.; Gotaas, H.B. Anaerobic digestion of algae. Appl. Microbiol. 1957, 5, 47–55. [Google Scholar] [PubMed]
- Nallathambi Gunaseelan, V. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Banks, C.; Zhang, Y. Optimising Inputs and Outputs from Anaerobic Digestion Processes–Technical Report; Defra: Southampton, UK, 2010. [Google Scholar]
- Nguyen, H.; Heaven, S.; Banks, C. Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam. Int. J. Energy Environ. Eng. 2014, 5, 365–374. [Google Scholar] [CrossRef]
- Astals, S.; Musenze, R.S.; Bai, X.; Tannock, S.; Tait, S.; Pratt, S.; Jensen, P.D. Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance. Bioresour. Technol. 2015, 181, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, A.; Varela, J. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea. BMC Biotechnol. 2014, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Van Hal, J.W.; Huijgen, W.J.J.; Lopez-Contreras, A.M. Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol. 2014, 32, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Baghel, R.S.; Trivedi, N.; Gupta, V.; Neori, A.; Chennur, R.R.; Lali, A.M.; Jha, B. Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chem. 2015, 17, 2436–2443. [Google Scholar] [CrossRef]
- Kelly, M.S.; Dworjanyn, S. The Potential of Marine Biomass for Anaerobic Biogas Production a Feasibility Study with Recommendations for Further Research; The Crown Estate on behalf of the Marine Estate: Scotland, UK, 2008. [Google Scholar]
- Smit, A. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 2004, 16, 245–262. [Google Scholar] [CrossRef]
- Murphy, C.; Hotchkiss, S.; Worthington, J.; McKeown, S. The potential of seaweed as a source of drugs for use in cancer chemotherapy. J. Appl. Phycol. 2014, 26, 2211–2264. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.V.; Alves, M.M.; Costa, J.C. Optimization of biogas production from Sargassum sp. Using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour. Technol. 2015, 175, 480–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milledge, J.J.; Harvey, P.J. Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. J. Mar. Sci. Eng. 2016, 4, 60. https://doi.org/10.3390/jmse4030060
Milledge JJ, Harvey PJ. Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. Journal of Marine Science and Engineering. 2016; 4(3):60. https://doi.org/10.3390/jmse4030060
Chicago/Turabian StyleMilledge, John J., and Patricia J. Harvey. 2016. "Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations" Journal of Marine Science and Engineering 4, no. 3: 60. https://doi.org/10.3390/jmse4030060
APA StyleMilledge, J. J., & Harvey, P. J. (2016). Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. Journal of Marine Science and Engineering, 4(3), 60. https://doi.org/10.3390/jmse4030060