Choosing a Future Shoreline for the San Francisco Bay: Strategic Coastal Adaptation Insights from Cost Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Shore Zone and Shoreline Positions, Sea Level Rise, and Cost Assessments
2.3. Data and Methods Access
3. Results
3.1. Description of the Current Shore Zone and Alternative Future Shorelines
3.2. Rapid Assessment of Water Exceedance Levels
3.3. Comparing Cost Estimation Approaches
3.4. Overall Cost Estimates
4. Discussion: Strategic Implications of Results
4.1. Implications for Alternative Shorelines and Design Strategies
4.2. Benefits and Limitations of Our Cost Estimation Method
4.3. Potential Future Research
5. Conclusions
5.1. Strategic Physical Design Implications
5.2. Strategic Regulatory Implications
5.3. Strategic Economic and Overall Approach Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aerts, J.; Botzen, W.; Bowman, M.; Dircke, P.; Ward, D.I. Climate Adaptation and Flood Risk in Coastal Cities; Routledge: Abingdon, UK, 2013; ISBN 978-1-136-52893-4. [Google Scholar]
- Brody, S.D.; Zahran, S.; Maghelal, P.; Grover, H.; Highfield, W.E. The Rising Costs of Floods: Examining the Impact of Planning and Development Decisions on Property Damage in Florida. J. Am. Plan. Assoc. 2007, 73, 330–345. [Google Scholar] [CrossRef]
- Hill, K. Climate-Resilient Urban Waterfronts. In Climate Adaptation and Flood Risk in Coastal Cities; Routledge: Abingdon, UK, 2013; ISBN 978-1-136-52893-4. [Google Scholar]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal Systems and Low-Lying Areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovenmental Panel on Climate Change; Perry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Rosenzweig, C.; Solecki, W.D.; Blake, R.; Bowman, M.; Faris, C.; Gornitz, V.; Horton, R.; Jacob, K.; LeBlanc, A.; Leichenko, R.; et al. Developing coastal adaptation to climate change in the New York City infrastructure-shed: Process, approach, tools, and strategies. Clim. Chang. 2011, 106, 93–127. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- French, P.W. Managed realignment? The developing story of a comparatively new approach to soft engineering. Estuar. Coast. Shelf Sci. 2006, 67, 409–423. [Google Scholar] [CrossRef]
- Reeder, T.; Ranger, N. How Do You Adapt in an Uncertain World? Lessons from the Thames Estuary 2100 Project. Available online: http://www.worldresourcesreport.org/ (accessed on 15 April 2015).
- Doody, J.P. Coastal squeeze and managed realignment in southeast England, does it tell us anything about the future? Ocean Coast. Manag. 2013, 79, 34–41. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Klein, R.J.T. Climate change and coastal management on Europe’s coast. In Managing European Coasts; Vermaat, J., Salomons, W., Bouwer, L., Turner, K., Eds.; Environmental Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 199–226. ISBN 978-3-540-23454-8. [Google Scholar]
- Ezer, T.; Corlett, W.B. Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Knowles, N. Potential Inundation Due to Rising Sea Levels in the San Francisco Bay Region; California Climate Change Center: Sacramento, CA, USA, 2009.
- Heberger, M.; Cooley, H.; Moore, E.; Herrera, P.; Pacific Institute. The Impacts of Sea Level Rise on the San Francisco Bay; California Energy Commission: Sacramento, CA, USA, 2012.
- Stralberg, D.; Brennan, M.; Callaway, J.C.; Wood, J.K.; Schile, L.M.; Jongsomjit, D.; Kelly, M.; Parker, V.T.; Crooks, S. Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay. PLoS ONE 2011, 6, e27388. [Google Scholar] [CrossRef] [PubMed]
- California Ocean Protection Council. Updating the State of California Sea-Level Rise Guidance Document. Available online: http://www.opc.ca.gov/climate-change/updating-californias-sea-level-rise-guidance/ (accessed on 18 April 2017).
- Griggs, G.; Arvai, J.; Cayan, D.; DeConto, R.; Fox, J.; Fricker, H.A.; Kopp, R.E.; Tebaldi, C.; Whiteman, L.; California Ocean Protection Council Science Advisory Team Working Group. Rising Seas in California: An Update on Sea Level Rise Science; California Ocean Science Trust: Oakland, CA, USA, 2017. [Google Scholar]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earths Future 2014, 2, 2014EF000239. [Google Scholar] [CrossRef]
- Brown, S.; Nicholls, R.J.; Hanson, S.; Brundrit, G.; Dearing, J.A.; Dickson, M.E.; Gallop, S.L.; Gao, S.; Haigh, I.D.; Hinkel, J.; et al. Shifting perspectives on coastal impacts and adaptation. Nat. Clim. Chang. 2014, 4, 752–755. [Google Scholar] [CrossRef]
- Hill, K. Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning. Urban Plan. 2016, 1, 103. [Google Scholar] [CrossRef]
- Bierbaum, R.; Smith, J.B.; Lee, A.; Blair, M.; Carter, L.; Iii, F.S.C.; Fleming, P.; Ruffo, S.; Stults, M.; McNeeley, S.; et al. A comprehensive review of climate adaptation in the United States: more than before, but less than needed. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 361–406. [Google Scholar] [CrossRef]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485–498. [Google Scholar] [CrossRef]
- Nordgren, J.; Stults, M.; Meerow, S. Supporting local climate change adaptation: Where we are and where we need to go. Environ. Sci. Policy 2016, 66, 344–352. [Google Scholar] [CrossRef]
- Hirschfeld, D.; Hill, K.; Plane, E. SanFrancisco Bay—Adapt2SeaLevelRise—Case Studies; UC Berkeley Library DASH: Berkeley, CA, USA, 2017. [Google Scholar]
- San Francisquito Creek Joint Powers Authority. SAFER Bay Project—Strategy to Advance Flood Protection, Ecosystems and Recreation along San Francisco Bay; San Francisquito Creek Joint Powers Authority: East Palo Alto/Menlo Park, CA, USA, 2016; p. 91. [Google Scholar]
- Hill, K. Coastal infrastructure: A typology for the next century of adaptation to sea-level rise. Front. Ecol. Environ. 2015, 13, 468–476. [Google Scholar] [CrossRef]
- San Francisco Estuary Institute (SFEI). San Francisco Bay Shore Inventory: Mapping for Sea Level Rise Planning GIS Data; San Francisco Estuary Institute: Richmond, CA, USA, 2016; Available online: http://www.sfei.org/data/sf-bay-shore-inventory-gis-data#sthash.ctGdURWD.dpbs (accessed on 2 February 2015).
- San Francisco Estuary Institute (SFEI). Bay Area Aquatic Resource Inventory (BAARI); San Francisco Estuary Institute: Richmond, CA, USA, 2009; Available online: http://www.sfei.org/baari#sthash.MKGpl13z.dpbs (accessed on 13 May 2015).
- United States Geological Survey (USGS). Coastal Storm Modeling System (CoSMoS) Version 2.1: San Francisco Bay Area. Flood Extent and Depth; Point Blue Conservation Science: Petaluma, CA, USA, 2014. Available online: www.ourcoastourfuture.org (accessed on 31 August 2017).
- Barnard, P.L.; van Ormondt, M.; Erikson, L.H.; Eshleman, J.; Hapke, C.; Ruggiero, P.; Adams, P.N.; Foxgrover, A.C. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 2014, 74, 1095–1125. [Google Scholar] [CrossRef]
- ChrisMuir. Zillow Scraper for Python Using Selenium. 2017. Available online: https://github.com/ChrisMuir/Zillow/ (accessed on 30 March 2017).
- United States Army Corps of Engineers. South San Francisco Bay Shoreline Phase I Study - Final Integrated Document; United States Army Corps of Engineers: San Francisco, CA, USA, 2015. [Google Scholar]
- Jonkman, S.N.; Hillen, M.M.; Nicholls, R.J.; Kanning, W.; van Ledden, M. Costs of Adapting Coastal Defences to Sea-Level Rise—New Estimates and Their Implications. J. Coast. Res. 2013, 29, 1212–1226. [Google Scholar] [CrossRef]
- Lowe, J.; Battalio, B.; Brennan, M. Analysis of the Costs and Benefits of Using Tidal Marsh Restoration as a Sea Level Rise Adaptation Strategy in San Francisco Bay; The Bay Institute: San Francisco, CA, USA, 2013. [Google Scholar]
- Linham, M.M.; Nicholls, R.J. Technologies for Climate Change Adaptation: Coastal Erosion and Flooding; UNEP Riso Centre on Energy, Climate and Sustainable Development: Roskilde, Denmark, 2010; ISBN 978-87-550-3855-4. [Google Scholar]
- GHD-GTC Joint Venture. Recommendations for Hazard Mitigation for the Seawall Earthquake Vulnerability Study—Phase 3 Draft Report; Port of San Francisco: San Francisco, CA, USA, 2016; p. 154. [Google Scholar]
- Huang, H.; Tang, Y. Residential land use regulation and the US housing price cycle between 2000 and 2009. J. Urban Econ. 2012, 71, 93–99. [Google Scholar] [CrossRef]
- Mian, A.; Sufi, A. The Consequences of Mortgage Credit Expansion: Evidence from the U.S. Mortgage Default Crisis. Q. J. Econ. 2009, 124, 1449–1496. [Google Scholar] [CrossRef]
- Williams, S.; Ismail, N. Climate Change, Coastal Vulnerability and the Need for Adaptation Alternatives: Planning and Design Examples from Egypt and the USA. J. Mar. Sci. Eng. 2015, 3, 591–606. [Google Scholar] [CrossRef]
- Hillen, M.; Jonkman, S.; Kanning, W.; Kok, M.; Geldenhuys, M.; Stive, M. Coastal Defense Cost Estimates; Delft University of Technology, Royal Haskoning: Delft, The Netherlands, 2010; ISSN 0169-6548. [Google Scholar]
- Jonkman, S.N.; Kok, M.; van Ledden, M.; Vrijling, J.K. Risk-based design of flood defence systems: A preliminary analysis of the optimal protection level for the New Orleans metropolitan area. J. Flood Risk Manag. 2009, 2, 170–181. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.L.; Blöschl, G. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295–3303. [Google Scholar] [CrossRef]
- Restemeyer, B.; Woltjer, J.; van den Brink, M. A strategy-based framework for assessing the flood resilience of cities—A Hamburg case study. Plan. Theory Pract. 2015, 16, 45–62. [Google Scholar] [CrossRef]
- Elkema, M.; Wang, Z.B.; Stive, M.J.F. Impact of Back-Barrier Dams on the Development of the Ebb-Tidal Delta of the Eastern Scheldt. J. Coast. Res. 2012, 28, 1591–1605. [Google Scholar] [CrossRef]
- Giannico, G.R.; Souder, J.A. Tide Gates in the Pacific Northwest: Operation, Types, and Environmental Effects; Oregon Sea Grant, Oregon State University: Corvallis, OR, USA, 2005; Volume 5. [Google Scholar]
- Gordon, J.; Arbeider, M.; Scott, D.; Wilson, S.M.; Moore, J.W. When the Tides Don’t Turn: Floodgates and Hypoxic Zones in the Lower Fraser River, British Columbia, Canada. Estuar. Coasts 2015, 38, 2337–2344. [Google Scholar] [CrossRef]
- Louters, T.; Mulder, J.P.; Postma, R.; Hallie, F.P. Changes in coastal morphological processes due to the closure of tidal inlets in the SW Netherlands. J. Coast. Res. 1991, 7, 635–652. [Google Scholar]
Cost Range: Thousands of 2016 $ (per Linear Kilometer per Meter of Elevation) | Design Type | Study Type and Source |
---|---|---|
$5.3–$13.2 | Landform | SF Bay: Engineering Study (USACE, 2015) |
$3.9–$12.4 | Landform | Academic Publication from Planning Work (Jonkman, 2013) |
$2.5–$5.5 | Landform | SF Bay: Technical Report (Lowe, 2013) |
$0.400–$33.0 | Wall | International Technical Report (Linham and Nicholls 2010) |
$5.8–$18.3 | Wall | Academic Publication from Planning Work (Jonkman, 2013) |
$24.5–$495.5 | Wall | SF Bay: Engineering Study (GHD-GTC Joint Venture, 2016) |
SFEI Class | Landform or Wall | Static or Dynamic |
---|---|---|
Berm | Landform | Static |
Channel or opening | Landform | Static |
Embankment | Landform | Static |
Engineered Levee | Landform | Static |
Shoreline Protection Structure 1 | Landform | Static |
Natural Shoreline | Landform | Dynamic |
Wetland | Landform | Dynamic |
Floodwall | Wall | Static |
Transportation Structure | Wall | Static |
Water control structure | Wall | Dynamic |
Sea Level Rise Scenario (m) | Levee Dimensions 1 | ||
---|---|---|---|
Height (m) | Width (m) | Cross-Sectional Area (m2) | |
0 | Basis = 1 | Basis = 7.9 | Basis = 4.4 |
0.5 | 2 | 15.8 | 17.6 |
1.0 | 3 | 23.7 | 39.6 |
2.0 | 5 | 39.5 | 110.0 |
5.0 | 11 | 86.9 | 532.4 |
Cost Approach | Static Landforms Typical (Range) | Static Walls Typical (Range) | Land Cost (Billions of 2016 USD$) |
---|---|---|---|
(1) Simple, without parcels | $8.0 (±$4.0) | $218.0 (±$75.0) | NA |
(2) Simple, with parcels | 1.4 to 22.0 | ||
(3) Complex, without parcels | Raising >3 m: Times 3 Raising >1.5 m: Times 2 Raising <1.5 m: Times 1 | Raising >0.5 m: Times 4 Raising <0.5 m: Times 0.5 | NA |
(4) Complex, with parcels | 1.4 to 22.0 |
Sea Level Rise Scenario | Shoreline A (Saltwater) | Shoreline B (Salt/Fresh) | Shoreline C (Freshwater) | ||||||
---|---|---|---|---|---|---|---|---|---|
Range Low | Typical | Range High | Range Low | Typical | Range High | Range Low | Typical | Range High | |
0.5 m | $24 | $39 | $53 | $25 | $38 | $51 | $43 | $63 | $83 |
1.0 m | $33 | $51 | $70 | $37 | $57 | $77 | $69 | $103 | $137 |
1.5 m | $81 | $126 | $172 | $95 | $148 | $200 | $157 | $240 | $323 |
2.0 m | $116 | $182 | $248 | $136 | $212 | $287 | $217 | $335 | $453 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirschfeld, D.; Hill, K.E. Choosing a Future Shoreline for the San Francisco Bay: Strategic Coastal Adaptation Insights from Cost Estimation. J. Mar. Sci. Eng. 2017, 5, 42. https://doi.org/10.3390/jmse5030042
Hirschfeld D, Hill KE. Choosing a Future Shoreline for the San Francisco Bay: Strategic Coastal Adaptation Insights from Cost Estimation. Journal of Marine Science and Engineering. 2017; 5(3):42. https://doi.org/10.3390/jmse5030042
Chicago/Turabian StyleHirschfeld, Daniella, and Kristina E. Hill. 2017. "Choosing a Future Shoreline for the San Francisco Bay: Strategic Coastal Adaptation Insights from Cost Estimation" Journal of Marine Science and Engineering 5, no. 3: 42. https://doi.org/10.3390/jmse5030042
APA StyleHirschfeld, D., & Hill, K. E. (2017). Choosing a Future Shoreline for the San Francisco Bay: Strategic Coastal Adaptation Insights from Cost Estimation. Journal of Marine Science and Engineering, 5(3), 42. https://doi.org/10.3390/jmse5030042