Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures
Abstract
:1. Introduction
2. Historical Overview of the RBF Phenomenon
2.1. History of the Flow Slide Threat in the Netherlands
2.2. Terzaghi and the Origin of the Term ‘Zettingsvloeiing’
2.3. Liquefaction or Breaching?
2.4. Retrogressive Bank Failures in the Mississippi River, USA
3. Recent Case Studies of RBF Events from Around the World
3.1. RBF Events in Queensland, Australia
3.2. Plaat van Walsoorden Flood Control Test, Netherlands
3.3. Ameland Southwest Beach Collapses, Netherlands
3.4. Coastal Erosion and Associated RBF Events at Cap Ferret, France
3.5. Internet Video Search Results
4. The Modern Understanding of Retrogressive Breach Failures (RBF)
4.1. The Breaching Mechanism
4.2. The Density Current
4.3. Anatomy of an RBF Event
- (1)
- A geotechnical element: The ‘shear dilatancy’ or ‘breaching effect’ taking place within the sand skeleton itself, causing suction, which stabilizes the retrogressing sand wall, at slopes much steeper than the natural angle of internal friction. This requires the sand to be sufficiently densely packed (dilatant) and water saturated. The breach sheds a constant supply of ‘raining’ sand particles into the water that produces a dense mixture of sand and water.
- (2)
- A hydrodynamic element: This is characterized by the generation of a turbulent density current mixing and carrying suspended sand grains downslope and is governed by slope geometry and sand characteristics. The sand must be fine grained (low fall velocity) so that the density current can carry the grains some distance away before they again settle out of suspension. The breach must be high enough to provide enough sand and energy for turbulent mixing of the sand grains with ambient water to generate a homogeneous, denser than water suspension.
5. Modern Flow Slide Protection and Coastal Defense Strategies
- (a)
- a filter-construction of fine and coarse gravel installed directly on the sand. In this test, the retrogression of the breach was immediately smothered by falling loose rocks covering the breach.
- (b)
- the same protection layer but laid on top of a permeable geotextile membrane. In this test, undermining by breaching continued steadily under the membrane until, after some hours, the complete slope had been degraded, and the natural angle of repose reached.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beinssen, K.; Neil, D.T.; Mastbergen, D.R. Field Observations of Retrogressive Breach Failures at two Tidal Inlets in Queensland, Australia. Aust. Geomech. 2014, 49, 55–63. [Google Scholar]
- Beinssen, K.; Neil, D.T. Retrogressive Breach Failure Events at Amity Point, Australia and their Interaction with Built Defences. In Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, HI, USA, 21–26 June 2015; pp. 1325–1330. [Google Scholar]
- Koppejan, A.W.; Van Wamelen, B.M.; Weinberg, L.J.H. Coastal Flow Slides in the Dutch Province of Zeeland. In Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands, 21–30 June 1948; Volume 13, pp. 89–96. [Google Scholar]
- Van den Berg, J.H.; Van Gelder, A.; Mastbergen, D.R. The importance of breaching as a mechanism of subaqueous slope failure in fine sand. Sedimentology 2002, 49, 81–95. [Google Scholar]
- Silvis, F.; De Groot, M. Flow slides in the Netherlands: Experience and engineering practice. Can. Geotech. J. 1995, 32, 1086–1092. [Google Scholar] [CrossRef]
- Wilderom, M.H.; Bakker, W.T. Resultaten van Het Vooroeveronderzoek Langs de Zeeuwse Stromen; Nota 75.2; Rijkswaterstaat: Vlissingen, The Netherlands, 1979. [Google Scholar]
- De Groot, M.B.; Mastbergen, D.R. Scour hole slope instability in sandy soil. In Proceedings of the 3rd International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; CURNET: Gouda, The Netherlands. [Google Scholar]
- Stoutjesdijk, T.; Mastbergen, D.; De Groot, M. Stormvloedkering Oosterschelde: Ontwikkeling Ontgrondingskuilen en Stabiliteit Bodembescherming; Deelrapportage Hellinginstabiliteit; Deltares: Delft, The Netherlands, 2012. [Google Scholar]
- Van Dijk, W.M.; Mastbergen, D.R.; Van den Ham, G.A.; Leuven, J.R.F.W.; Kleinhans, M.G. Location and probability of shoal margin collapses in a sandy estuary. Earth Surf. Process. Landf. 2018, 43, 2342–2357. [Google Scholar] [CrossRef] [Green Version]
- De Bruin, M.P.; Wilderom, M.H. Tussen Afsluitdammen en Deltadijken; Deel 1; Noord-Beveland: Middelburg, The Netherlands, 1961. [Google Scholar]
- Lambrechtsen, C.L.M. Afschuiving aan Den Oever van den Calamiteusen Vlietepolder op 28 Oct. 1886. Verhandelingen 1888–1889, Tijdschr. Kon. Inst. v. Ing., 1888, 51–59, Platen 8, 9 en 10, Van Langenhuysen, ‘s-Gravenhage, The Netherlands.
- Neyt, P.J. Oeverafschuiving aan den Vlietepolder, Mededeelingen nopens den Oeverafschuiving den 10den Maart 1864 aan den Vlietepolder Ontstaan, Verhandelingen 1865–1866 Kon. Inst. v. Ing., 1865, 4–10, Plaat 1–3, The Hague, The Netherlands. Available online: http://lib.tudelft.nl/books/?bookname=Verhandelingen%201865-1866%20deel%202&page=1 (accessed on 16 October 2019).
- Van Rummelen, F.F.F.E. Dike- and Coast-Falls in the Province of Zeeland (South Western Netherlands). Geol. Mijnb. 1960, 39, 692–700. [Google Scholar]
- Müller, F. Das Wasserwesen der Niederländischen Provinz Zeeland; with Atlas Containing 10 Tafeln (Maps) with Detailed Illustrations, Berlin, W. Ernst Verlag, 1898; Reprint; Kessinger Legacy Reprints: Whitefish, MT, USA, 2010. [Google Scholar]
- Terzaghi, K. Erdbaumechanik auf bodenphysikalischer Grundlage; Franz Deuticke: Leipzig, Germany, 1925. [Google Scholar]
- Gudehus, G.; Keßler, J.; Lucke, B. Setzungsfließen. Geotechnik 2015, 38, 255–266. [Google Scholar] [CrossRef]
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice; Wiley & Sons: New York, NY, USA, 1948; Second edition, Wiley, 1967, Third edition, Wiley, 1996. [Google Scholar]
- Keverling Buisman, A.S. Grondmechanica; Waltman: Delft, The Netherlands, 1940; Heruitgave: Balkema: Rotterdam, The Netherlands, 1996. [Google Scholar]
- Barentsen, P. Oevervallen, Zettingsvloeiingen of Kwelafschuivingen? In Orgaan van de Technisch Ambtenaren van den Rijkswaterstaat; OTAR: Dordrecht, The Netherlands, 1943; Volume 27, pp. 131–139. [Google Scholar]
- Stoutjesdijk, T.P.; De Groot, M.B.; Lindenberg, J. Engineering Approach to Coastal Flow Slides. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, 23–28 October 1994; pp. 3350–3359. [Google Scholar]
- De Groot, M.; Adel, H.D.; Stoutjesdijk, T.; Van Westenbrugge, C. Risk of dike failure due to flow slides. Coast. Eng. 1995, 26, 241–249. [Google Scholar] [CrossRef]
- De Groot, M.B.; Lindenberg, J.; Mastbergen, D.R.; Van den Ham, G. Liquefaction flow slides in large flumes. Int. J. Phys. Model. Geotech. 2019, 19, 37–53. [Google Scholar] [CrossRef]
- De Jager, R.R.; Maghsoudloo, A.; Askarinejad, A.; Molenkamp, F. Preliminary Results of Instrumented Laboratory Flow Slides. Procedia Eng. 2017, 175, 212–219. [Google Scholar] [CrossRef]
- De Jager, R.R. Assessing Liquefaction Flow Slides. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Breusers, H.N.C. Suction of sand. Bull. Int. Assoc. Eng. Geol. Kref. 1974, 10, 65–66. [Google Scholar] [CrossRef]
- Van Kesteren, W.G.M.; Steeghs, H.J.M.G.; Mastbergen, D.R. Pore water behavior in dredging processes. In Proceedings World Dredging Conference XIII; Van Dam, V.L., Ed.; Universal Publishing Corporation: Bombay, India, 1992; pp. 598–615. [Google Scholar]
- Meijer, K.L.; Van Os, A.G. Pore Pressures Near Moving Underwater Slope. ASCE J. Geotech. Div. 1976, 102, 361–372. [Google Scholar]
- Van Os, A.G. Behaviour of soil when excavated under water. In Proceedings of the International Course on Modern Dredging, D.2, Delft, The Netherlands, 5–10 June 1977. Foundation Post Graduate Courses in Civil Engineering. [Google Scholar]
- Boehmer, J.W.; Borst, W.G.; Bras, A.; Van Raalte, G.H. Slope stability and slope production tests. A new tool in harbour design and dredging practice. In Proceedings of the World Dredging Congress X, BHRA, Singapore, 19–22 April 1983; pp. 283–308. [Google Scholar]
- De Groot, M.B.; Van der Ruyt, M.; Mastbergen, D.R.; Van den Ham, G.A. Bresvloeiing in Zand. Geotechniek 2009, 34–39. [Google Scholar]
- Van den Ham, G.A.; De Groot, M.B.; Mastbergen, D.R. A semi-empirical method to assess flow slide probability. In Submarine Mass Movements and Their Consequences; Advances in Natural and Technological Hazards Research; Krastel, S., Behrmann, J.-H., Volker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., Harbitz, C.B., Eds.; Springer International: Cham, Switzerland, 2014; Volume 37, pp. 213–223. [Google Scholar]
- McKenna, G.T.; Luternauer, J.L.; Kostaschuk, R.A. Large-scale mass-wasting events on the Fraser River delta front near Sand Heads, British Columbia. Can. Geotech. J. 1992, 29, 151–156. [Google Scholar] [CrossRef]
- Ishihara, K. Flow Slides of Underwater Sand Deposits in Jamuna River Bed. In Geotechnical Engineering for Disaster Mitigation and Rehabilitation; Liu, H., Deng, A., Chu, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Sladen, J.A.; D’Hollander, R.D.; Krahn, J.; Mitchell, D.E. Back analysis of the Nerlerk berm liquefaction slides. Can. Geotech. J. 1985, 22, 579–588. [Google Scholar] [CrossRef]
- De Groot, M.B.; Heezen, F.T.; Mastbergen, D.R.; Stefess, H. Slopes and densities of hydraulically placed sands. In Proceedings of the Geot. Div. ASCE Spec. Conf. on Hydraulic Fill structures, Fort Collins, CO, USA, 15–18 August.
- Wanatowski, D.; Chu, J.; Lo Robert, S.C. Types of flow slide failures and possible failure mechanisms. In Geotechnical Engineering for Disaster Mitigation and Rehabilitation; Liu, H., Deng, A., Chu, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Stouffer, J.D. Verification of Empirical Method of Determining Slope Stability, 1956 Data, Potamology Investigations; Report No. 12-7; US Army Waterways Experiment Station: Vicksburg, MS, USA, 1957. [Google Scholar]
- Torrey, V.H., III; Dunbar, J.B.; Peterson, R.W. Retrogressive Failures in Sand Deposits of the Mississippi River; Report 1: Field Investigations, Laboratory Studies, and Analysis of Hypothesized Failure Mechanism. Report 2: Empirical Evidence in Support of the Hypothesized Failure Mechanism and Development of Levee Safety Monitoring System; Technical Report GL-88-9; Waterways Experiment Station Corps of Engineers: Vicksburg, MS, USA, 1988. [Google Scholar]
- Dunbar, J.B.; Torrey, V.H.; Wakeley, L.D. A Case History of Embankment Failure: Geological and Geotechnical Aspects of the Celotex Levee Failure, New Orleans, Louisiana; Technical Report GL-99-11; Waterways Experiment Station, US Corps of Engineers: Vicksburg, MS, USA, 1999. [Google Scholar]
- Padfield, C.J. The Stability of River Banks and Flood Embankments, a Centrifugal Model Study of the Influence of the Interaction of Two Deforming Layers in the Analysis of Two River Bank Stability Problems. Ph.D. Thesis, Cambridge University, Cambridge, UK, 1978. [Google Scholar]
- Reuss, R.F. Bank Cavings Investigations Free Nigger Point and Point Menoir Mississippi River, Potamology Investigations; Report, No.15-1; US Army Waterways Experiment Station: Vicksburg, MS, USA, 1952. [Google Scholar]
- Shipway, I. Risks Associated with Nearshore Instability at Inskip Point; EDG Consulting: Brisbane, Australia, 2015. [Google Scholar]
- Thomson, A.K. (Ed.) The Collected Works of Thomas Welsby; Jacaranda Press Pty. Ltd.: Brisbane, Australia, 1967. [Google Scholar]
- You, Y.; Flemings, P.; Mohrig, D. Dynamics of dilative slope failure. Geology 2012, 40, 663–666. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Flemings, P.; Mohrig, D. Mechanics of dual-mode dilative failure in subaqueous sediment deposits. Earth Planet. Sci. Lett. 2014, 397, 10–18. [Google Scholar] [CrossRef]
- Mastbergen, D.; Van den Ham, G.; Cartigny, M.; Koelewijn, A.; De Kleine, M.; Clare, M.; Hizzett, J.; Azpiroz, M.; Vellinga, A. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands. In Submarine Mass Movements and Their Consequences. Adv. in Nat. and Techn. Hazards Res.; Lamarche, G., Mountjoy, J., Bull, S., Eds.; Springer: Cham, Switzerland, 2016; Volume 41, pp. 241–252. [Google Scholar] [CrossRef]
- Van den Ham, G.A.; Mastbergen, D.R.; Koelewijn, A.R.; Ter Brake, C.K.E.; Zomer, W.S. Eindrapport Validatie-Experiment Zettingsvloeiing, Meten aan Zettingsvloeiing, Amersfoort: STOWA- Flood Control IJkdijk. 2015. Available online: https://www.stowa.nl/sites/default/files/assets/PUBLICATIES/Publicaties%202015/STOWA%202015-08.pdf (accessed on 16 October 2019).
- Van Schaick, S.J. Morphological Development after the July 2014 Flow Slide on the Tidal Flat of Walsoorden. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2015. Available online: http://resolver.tudelft.nl/uuid:1d2fee04-7ec1-4132-b894-9b77b7e6a705 (accessed on 16 October 2019).
- Berg, J.V.D.; Martinius, A.; Houthuys, R. Breaching-related turbidites in fluvial and estuarine channels: Examples from outcrop and core and implications to reservoir models. Mar. Pet. Geol. 2017, 82, 178–205. [Google Scholar] [CrossRef]
- Mastbergen, D.R.; Van Schaick, S.J.; Van der Werf, J.J.; Schrijvershof, R.A. Flow Slide in the Tidal Flat of Walsoorden, Western Scheldt. In Poster, NCK Days; Netherlands Centre for Coastal Research: Delft, The Netherlands, 2016; Available online: https://www.nck-web.org/content/documents/book_of_abstracts_2016.pdf (accessed on 16 October 2019).
- Vermaas, T.; Mastbergen, D.; Van Dijk, T.; De Kleine, M.; Mesdag, C.; Hoogland, R.; Gaida, T. Geology and Morphology at Ameland South West. In Poster, NCK Days; Netherlands Centre for Coastal Research: Delft, The Netherlands, 2018; Available online: https://www.nck-web.org/content/documents/BoA_2018-compressed.pdf (accessed on 16 October 2019).
- Nédélec, Y.; Revel, J. Phénomènes D’érosion Côtière: Instabilité et Consolidation de Talus Littoraux Sur la Façade est du cap Ferret (Gironde); Rencontres Universitaires de Génie Civil: Bayonne, France, 2015; Available online: https://hal.archives-ouvertes.fr/hal-01167635/document (accessed on 16 October 2019).
- De Koning, J. Neue Erkenntnisse Beim Gewinnen und Transport von Sand im Spülproject Venserpolder; Tagung, V.D.I., Ed.; Bauen im Ausland: Hamburg, Germany, 1970; pp. 1–9. [Google Scholar]
- Helbo, T. Flow Slide Failure of Excavated Subaqueous Slopes. Master’s Thesis, Delft University, Delft, The Netherlands, Fugro, The Netherlands, 1996. Available online: http://resolver.tudelft.nl/uuid:5330b22e-f6db-4d59-8d00-7e0924e496e1 (accessed on 16 October 2019).
- Van Rhee, C.; Bezuijen, A. The Breaching of Sand Investigated in Large-scale Model Tests. Proc. Int. Conf. Coast. Eng. (ASCE) 1998, 3, 2509–2519. [Google Scholar]
- Van Rhee, C. Slope failure by unstable breaching. Proc. Inst. Civ. Eng. Marit. Eng. 2015, 168, 84–92. [Google Scholar] [CrossRef]
- Weij, D.; Keetels, G.H.; Goeree, J.; Van Rhee, C. An approach to research of the breaching process. In Proceedings of the WODCON XXI, Miami, FL, USA, 13–17 June 2016; Available online: https://www.westerndredging.org/images/2016/proceedings/7B-1.Weij%20final%20for%20proceedings%202.pdf (accessed on 16 October 2019).
- Parker, G.; Fukushima, Y.; Pantin, H.M. Self-accelerating turbidity currents. J. Fluid Mech. 1986, 171, 145–181. [Google Scholar] [CrossRef]
- Mastbergen, D.R.; Van den Berg, J.H. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 2003, 50, 625–637. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Extreme transport due to turbidity currents in coastal waters. Coast. Eng. 2004, 4547–4559. [Google Scholar]
- Eke, E.; Parker, G.; Wang, R. Breaching as a mechanism for generating sustained turbidity currents. In Proceedings of the 33rd IAHR Congress, Vancouver, BC, Canada, 9–14 August 2009. [Google Scholar]
- Eke, E.; Viparelli, E.; Parker, G. Field-scale numerical modeling of breaching as a mechanism for generating continuous turbidity currents. Geosphere 2011, 7, 1063–1076. [Google Scholar] [CrossRef]
- Martinelli, M.; Rohe, A.; Soga, K. Modeling Dike Failure using the Material Point Method. Procedia Eng. 2017, 175, 341–348. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Randolph, M.F. Runout of submarine landslide simulated with material point method. J. Hydrodyn. 2017, 29, 438–444. [Google Scholar] [CrossRef]
- Labooij, H. De Helderse Zeewering sinds 1750; Vrienden van de Hondsbossche: Heerhugowaard, The Netherlands, 2013. [Google Scholar]
- Mastbergen, D.; Taccari, M.L.; Van den Ham, G. Beoordeling drie onderwateroevers Den Helder en Texel; Deltares: Delft, The Netherlands, 2018. [Google Scholar]
- O’Brien, P. Amity Point Shoreline Erosion Management Plan; Water Technology: Brisbane, Australia, 2019. Available online: https://yoursay.redland.qld.gov.au/amity-point-shoreline-erosion (accessed on 16 October 2019).
Location | Year/Date | Volume | Channel Depth | Retrogression Length | Latitude | Longitude | Video Internet URL |
---|---|---|---|---|---|---|---|
- | - | 1000 m3 | m | m | ° | ° | - |
Amity Point, QL, Australia | 17-8-2014 | - | 14 | 210 | 27°23′35″S | 153°26′23″E | - |
Amity Point, QL, Australia | 2017 | - | - | - | 27°23′35″S | 153°26′23″E | - |
Inskip Point, QL, Australia | 2005 | - | - | - | 25°48′31″S | 153°03′38″E | https://www.youtube.com/watch?v=ILptlF7P6LI |
Inskip Point, QL, Australia | 26-6-2011 | - | - | - | 25°48′31″S | 153°03′38″E | https://www.youtube.com/watch?v=I9ieYvYdvdw |
Inskip Point, QL, Australia | 26-9-2015 | - | 22 | 330 | 25°48′32.96″S | 153°3′39.93″E | https://www.brisbanetimes.com.au/national/queensland/car-and-caravan-in-sinkhole-at-qld-beach-20150927-gjvq44.html |
Inskip Point, QL, Australia | 2-4-2016 | - | - | 300 | 25°48′31″S | 153°03′38″E | https://www.youtube.com/watch?time_continue=12&v=cqGi2S69XLs |
Inskip Point, QL, Australia | 24-9-2018 | - | - | - | 25°48′31.11″S | 153°3′4.90″E | https://www.abc.net.au/news/2018-09-24/inskip-point-beach-collapses-into-the-ocean/10297840 |
Jumpinpin, NSW, Australia | 24-11-2016 | - | 20 | 300 | 27°43′43.50″S | 153°26′57.52″E | https://globalnews.ca/video/2363621/sinkhole-as-big-as-a-football-field-opens-up-on-australian-beach/ |
Pelican, NSW, Australia | 8-2-2016 | - | 6 | 90 | 33°04′06″S | 151°38′30″E | - |
Cap Ferret, Bassin d’Arcachon, France | 8-2-2018 | - | 22 | 330 | 44°37′17.32″N | 1°14′44.49″W | https://france3-regions.francetvinfo.fr/nouvelle-aquitaine/gironde/arcachon/video-cap-ferret-littoral-interdit-face-au-risque-effondrement-1621487.html |
Ameland SW, Netherlands | 10-3-2017 | 12 | 14 | 210 | 53°25′56.63″N | 5°37′34.32″E | - |
Ameland SW, Netherlands | 3-11-2017 | - | - | - | 53°25′56.63″N | 5°37′34.32″E | https://www.youtube.com/watch?v=zKKvYitUsj8 |
Ameland SW, Netherlands | 11-11-2017 | - | - | - | 53°25′56.63″N | 5°37′34.32″E | https://www.youtube.com/watch?v=ZQfbTkmJg8s |
Ameland SW, Netherlands | 16-11-2017 | - | - | - | 53°25′56.63″N | 5°37′34.32″E | https://www.youtube.com/watch?v=rD6tAmoxyeE |
Ameland SW, Netherlands | 27-1-2019 | - | - | - | 53°25Ȃ48.20″N | 5°37′47.82″E | https://www.youtube.com/watch?v=vubgtLRbkho |
Ameland SW, Netherlands | 8-3-2019 | - | - | - | 53°25′56.63″N | 5°37′34.32″E | https://www.youtube.com/watch?v=vZERSlpQpdg |
Oost-Vlieland, Netherlands | 1-2-2006 | 18 | 20 | 300 | 53°17′43.05″N | 5°5′34.83″E | - |
Eastern Scheldt Barrier, Netherlands | 2007 | 850 | 30 | 450 | 51°36′59.26″N | 3°40′31.26″E | - |
Hoofdplaatpolder, Netherlands | 10-6-1964 | - | 30 | 208 | 51°22′51.39″N | 3°37′3.32″E | - |
Oud Noord-Bevelandse Polder, Neth. | 11-8-1881 | - | 34 | 185 | 51°36′18.30″N | 3°47′53.01″E | - |
Plaat van Ossenisse, Netherlands | 2018 | 1100 | 37 | 555 | 51°25′34.42″N | 4°0′12.74″E | - |
Plaat van Walsoorden, Netherlands | 1-10-2014 | 60 | 6 | 90 | 51°22′38.02″N | 4°4′5.45″E | - |
Plaat van Walsoorden, Netherlands | 22-7-2014 | 850 | 25 | 375 | 51°22′42.10″N | 4°4′1.70″E | - |
Vlietepolder, Netherlands | 10-3-1864 | 195 | 24 | 320 | 51°36′2.03″N | 3°45′27.86″E | - |
Vlietepolder, Netherlands | 28-10-1886 | 540 | 40 | 380 | 51°35′55.53″N | 3°44′57.32″E | - |
Candelaria, Zambales, Philippines | 23-6-2013 | - | - | - | 15°38′31.99″N | 119°55′27.54″E | https://www.youtube.com/watch?v=k736TXjVij0 |
Celotex, LA, USA | 30-7-1985 | 230 | 36 | 540 | 29°54′14.99″N | 90°7′0.59″W | - |
Free Negro Point, LA, USA | 24-3-1949 | - | - | - | 30°30′48.98″N | 91°12′43.24″W | - |
Montz, LA, USA | 1973 | - | - | - | 30°0′13.48″N | 90°27′57.58″W | - |
Fort Popham, MN, USA | 18-3-2011 | - | - | - | 43°45′11.44″N | 69°47′0.23″W | https://www.youtube.com/watch?v=BEN5SR0yXfU |
North Wildwood, NJ, USA | 19-9-2012 | - | - | - | 39°0′39.02″N | 74°47′29.92″W | https://www.nbcphiladelphia.com/news/local/Severe-Beach-Erosion-in-North-Wildwood-170430206.html |
Seabrook Island, SC, USA | 15-7-2016 | - | - | - | 32°33′34.99″N | 80°10′41.30″W | - |
Nerlerk Berm, Canada | 1983 | - | - | - | 70°6′26.09″N | 134°51′3.54″W | - |
Jamuna river, India | 1999 | - | - | - | 24°23′50.41″N | 89°45′46.24″E | - |
Fraser river, Canada | 1985 | - | - | - | 49°7′28.42″N | 123°12′37.87″W | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastbergen, D.R.; Beinssen, K.; Nédélec, Y. Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures. J. Mar. Sci. Eng. 2019, 7, 368. https://doi.org/10.3390/jmse7100368
Mastbergen DR, Beinssen K, Nédélec Y. Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures. Journal of Marine Science and Engineering. 2019; 7(10):368. https://doi.org/10.3390/jmse7100368
Chicago/Turabian StyleMastbergen, Dick R., Konrad Beinssen, and Yves Nédélec. 2019. "Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures" Journal of Marine Science and Engineering 7, no. 10: 368. https://doi.org/10.3390/jmse7100368