Medicanes Triggering Chlorophyll Increase
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Medicane of 13 to 15 December 2005
3.2. The Medicane of 4 December 2008
3.3. The Medicane of 7–8 November 2014
4. Discussion
5. Conclusions
- (a)
- An increase in chlorophyll concentration was observed after the medicanes’ passage in all cases exceeding 73.4% of the study area;
- (b)
- Chlorophyll post-medicane values that were greater than the climatological ones referred at least to 46.3% of the affected area and in most cases to much wider regions, showing the significant influence of medicanes on the Sea’s phytoplankton abundance and primary production;
- (c)
- The above percentages were extremely high when absolute chlorophyll differences exceeding 50% were concerned;
- (d)
- A drop in SST was observed which initiated some days before the event;
- (e)
- The November 2014 case presented the largest chlorophyll increases, that were mainly observed on the right side of the cyclone’s track, and the most pronounced SST cooling;
- (f)
- The possible mechanisms for the observed chlorophyll increase caused by medicanes could be the cyclone induced upwelling and the wind mixing processes, a possible chl-a entrainment from the DCM plus a complementary favoring role of heavy precipitation at places;
- (g)
- The increase in chlorophyll was comparable, though on smaller scale, to the one caused by hurricanes in oligotrophic environments.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hoskins, B.; Hodges, K. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Wernli, H.; Schwierz, C. Surface cyclones in the ERA–40 dataset (1958–2001), Part I: Novel identification method and global climatology. J. Atmos. Sci. 2006, 2486–2507. [Google Scholar] [CrossRef]
- Campins, J.; Genovés, A.; Picornell, M.A.; Jansà, A. Climatoloty of Mediterranean cyclones using the ERA-40 dataset. Int. J. Climatol. 2011, 31, 1596–1614. [Google Scholar] [CrossRef]
- Emanuel, K. Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci. 2005, 2, 217–220. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mastrangelo, D.; Conte, D. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos. Res. 2015, 153, 360–375. [Google Scholar] [CrossRef]
- Nastos, P.T.; Karavana Papadimou, K.; Matsangouras, I.T. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmos. Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Fita, L.; Romero, R.; Luque, A.; Emanuel, K.; Ramis, C. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, non-hydrostatic, cloud-resolving model. Nat. Hazard. Earth Syst. Sci. 2007, 7, 1–16. [Google Scholar] [CrossRef]
- Flaounas, E.; Raveh-Rubin, S.; Wernli, H.; Drobinski, P.; Bastin, S. The dynamical structure of intense Mediterranean cyclones. Clim. Dyn. 2015, 44, 2411–2427. [Google Scholar] [CrossRef]
- Carrió, D.S.; Homar, V.; Jansα, A.; Romero, R.; Picornell, M.A. Tropicalization process of the 7 november 2014 Mediterranean cyclone: Numerical sensitivity study. Atmos. Res. 2017, 197, 300–312. [Google Scholar] [CrossRef]
- Raveh-Rubin, S.; Flaounas, E. A dynamical link between deep atlantic extratropical cyclones and intense Mediterranean cyclones. Atmos. Sci. Lett. 2017, 18, 215–221. [Google Scholar] [CrossRef]
- Moscatello, A.; Miglietta, M.M.; Rotunno, R. Observational analysis of a Mediterranean “hurricane” over south-eastern Italy. Mon. Weather Rev. 2008, 136, 4373–4397. [Google Scholar] [CrossRef]
- Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B. Medicanes in an ocean–atmosphere coupled regional climate model. Nat. Hazard. Earth Syst. Sci. 2014, 14, 2189–2201. [Google Scholar] [CrossRef] [Green Version]
- Claud, C.B.; Alhammoud Funatsu, B.M.; Chaboureau, J.-P. Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazard. Earth Syst. Sci. 2010, 10, 2199–2213. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; Price, C. Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys. Res. Lett. 2013, 40, 2400–2405. [Google Scholar] [CrossRef] [Green Version]
- Romero, R.; Emanuel, K. Medicane risk in a changing climate. J. Geophys. Res.-Atmos. 2013, 118, 5992–6001. [Google Scholar] [CrossRef] [Green Version]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2014, 43, 1183–1195. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Climatol. 2013, 33, 1–14. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. Mediterranean tropical-like cyclones in present and future climate. J. Clim. 2014, 27, 7493–7501. [Google Scholar] [CrossRef]
- Walsh, K.; Giorgi, F.; Coppola, E. Mediterranean warm-core cyclones in a warmer world. Clim. Dyn. 2014, 42, 1053–1066. [Google Scholar] [CrossRef]
- Romera, R.; Gaertner, M.Á.; Sánchez, E.; Domínguez, M.; González-Alemán, J.J.; Miglietta, M.M. Climate change projections of medicanes with a large multi-model ensemble of regional climate models. Glob. Planet. Chang. 2017, 151, 134–143. [Google Scholar] [CrossRef]
- Fogel, M.; Aguilar, C.; Cuhel, R.; Hollander, D.; Willey, J.; Paerl, H. Biological and isotopic changes in coastal waters induced by Hurricane Gordon. Limnol. Oceanogr. 1999, 44, 1359–1369. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.; Yan, X.-H. Hurricane forcing on chlorophyll-a concentration off the northeast coast of the U.S. Geophys. Res. Lett. 2004, 31, L17304. [Google Scholar] [CrossRef]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 2004, 109, C03043. [Google Scholar] [CrossRef]
- Walker, N.D.; Leben, R.R.; Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 2005, 32, L18610. [Google Scholar] [CrossRef]
- Son, S.; Platt, T.; Fuentes-Yaco, C.; Bouman, H.; Devred, E.; Wu, Y. Possible biogeochemical response to the passage of Hurricane Fabian observed by satellites. J. Plankton Res. 2007, 29, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wang, M. Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico. Geophys. Res. Lett. 2007, 34, L11607. [Google Scholar] [CrossRef]
- Merritt-Takeuchi, A.M.; Chiao, S. Case Studies of Tropical Cyclones and Phytoplankton Blooms over Atlantic and Pacific Regions. Earth Interact. 2013, 17, 1–19. [Google Scholar] [CrossRef]
- Chang, J.; Chung, C.-C.; Gong, G.-C. Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Mar. Ecol. Prog. Ser. 1996, 140, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.; Timothy Liu, W.; Wu, C.-C.; Wong, G.T.F.; Hu, C.; Chen, Z.; Liang, W.-D.; Yang, Y.; Liu, K.-K. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30, 1718. [Google Scholar] [CrossRef]
- Ye, H.; Kalhoro, M.A.; Sun, J.; Tang, D. Clorophyll blooms induced by tropical cyclone Vardah in the Bay of Bengal. Indian J. Geo-Mar. Sci. 2018, 47, 1383–1390. [Google Scholar]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Sanford, T.B.; Black, P.G.; Haustein, J.R.; Feeney, J.W.; Forristall, G.Z.; Price, J.F. Ocean response to a hurricane, Part I: Observations. J. Phys. Oceanogr. 1987, 17, 2065–2083. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Ribera D’Alcalà, M. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 2009, 6, 139–148. [Google Scholar] [CrossRef]
- Barale, V.; Jaquet, J.M.; Ndiaye, M. Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998–2003). Remote Sens. Environ. 2008, 112, 3300–3313. [Google Scholar] [CrossRef]
- Gaertner, M.Á.; González-Alemán, J.J.; Romera, R.; Domínguez, M.; Gil, V.; Sánchez, E.; Gallardo, C. Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: Impact of ocean–atmosphere coupling and increased resolution. Clim. Dyn. 2018, 51, 1041–1057. [Google Scholar] [CrossRef]
- Volpe, G.; Colella, S.; Forneris, V.; Tronconi, C.; Santoleri, R. The Mediterranean Ocean Colour Observing System—System development and product validation. Ocean Sci. 2012, 8, 869–883. [Google Scholar] [CrossRef]
- Fita, L.; Flaounas, E. Medicanes as subtropical cyclones: The December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q. J. R. Meteorol. Soc. 2018, 144, 1028–1044. [Google Scholar] [CrossRef]
- Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res. 2018, 208, 167–179. [Google Scholar] [CrossRef]
- Thomas, W.H.; Gibson, C.H. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep Sea Res. 1990, 37, 1583–1593. [Google Scholar] [CrossRef]
- Wu, Y.; Platt, T.; Tang, C.C.L.; Sathyendranath, S. Short-term changes in chlorophyll distribution in response to a moving storm: A modelling study. Mar. Ecol. Prog. Ser. 2007, 335, 57–68. [Google Scholar] [CrossRef]
- Delesalle, B.; Pichon, M.; Frankignoulle, M.; Gattuso, J.P. Effects of a cyclone on coral reef phytoplankton biomass, primary production and composition (Moorea Island, French Polynesia). J. Plankton Res. 1993, 15, 1413–1423. [Google Scholar] [CrossRef]
- Stramma, L.; Cornillon, P.; Price, J.F. Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res. 1986, 91, 5031–5035. [Google Scholar] [CrossRef]
- Monaldo, F.M.; Sikora, T.D.; Babin, S.M.; Sterner, R.E. Satellite imagery of sea surface temperature cooling in the wake of Hurricane Edouard (1996). Mon. Weather Rev. 1997, 125, 2716–2721. [Google Scholar] [CrossRef]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, L07801. [Google Scholar] [CrossRef]
- De Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 2004, 109, C12003. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Iudicone, D.; Montegut, C.D.; Testor, P.; Antoine, D.; Marullo, S.; Santoleri, R.; Madec, G. Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophys. Res. Lett. 2005, 32, L12605. [Google Scholar] [CrossRef]
- Houpert, L.; Testor, P.; Durrieu de Madron, X.; Somot, S.; D’Ortenzio, F.; Estournel, C.; Lavigne, H. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog. Oceanogr. 2015, 132, 333–352. [Google Scholar] [CrossRef]
- Siokou-Frangou, I.; Christaki, U.; Mazzocchi, M.G.; Montresor, M.; Ribera D’Alcalá, M.; Vaqué, D.; Zingone, A. Plankton in the open Mediterranean Sea: A review. Biogeosciences 2010, 7, 1543–1586. [Google Scholar] [CrossRef]
Medicane | Chlorophyll Increase after-before (Area %) | Chlorophyll Increase after-Climatology (Area %) |
---|---|---|
13–15 December 2005 | 5d: 77.5 (95.3) w: 81.7 (95.7) | 5d: 63.0 (96.2) w: 46.3 (94.4) |
4 December 2008 | 5d: 79.1 (94.1) w: 73.4 (97.9) | 5d: 73.1 (96.0) w: 83.6 (99.5) |
7–8 November 2014 | 5d: 91.1 (100) w: 94.8 (100) | 5d: 93.3 (100) w: 95.5 (100) |
Medicane/Areas | Chlorophyll Increase (%) | SST Decrease (°C) |
---|---|---|
13–15 December 2005 | ||
14 Dec track area | 36.4 | 1.5 |
15 Dec track area | 52.6 | 1.6 |
P area | 51.6 | 2.5 |
Open sea area | 24.3 | 1.1 |
4 December 2008 | ||
4 Dec track area | 55.6 | 1.0 |
P area | 128 | 1.2 |
Open sea area | 32.5 | 0.1 |
7–8 November 2014 | ||
7 Nov track area | 47.5 | 1.8 |
P area | 145 | 2.5 |
Open sea area | 58.7 | 1.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotta, D.; Kitsiou, D. Medicanes Triggering Chlorophyll Increase. J. Mar. Sci. Eng. 2019, 7, 75. https://doi.org/10.3390/jmse7030075
Kotta D, Kitsiou D. Medicanes Triggering Chlorophyll Increase. Journal of Marine Science and Engineering. 2019; 7(3):75. https://doi.org/10.3390/jmse7030075
Chicago/Turabian StyleKotta, Dionysia, and Dimitra Kitsiou. 2019. "Medicanes Triggering Chlorophyll Increase" Journal of Marine Science and Engineering 7, no. 3: 75. https://doi.org/10.3390/jmse7030075
APA StyleKotta, D., & Kitsiou, D. (2019). Medicanes Triggering Chlorophyll Increase. Journal of Marine Science and Engineering, 7(3), 75. https://doi.org/10.3390/jmse7030075