Southern African Wave Model Sensitivities and Accuracies
Abstract
:1. Introduction
2. Data
2.1. Bathymetry Data
2.2. Wave Data
2.3. Altimetry Data
2.4. Wind Data
3. Numerical Models
3.1. WAVEWATCH III® (WW3)
3.2. Simulating Waves in the Nearshore (SWAN)
4. Boundary Spectral Reconstruction
4.1. Singular Partition Reconstruction
4.2. Five-Moment Reconstruction
5. Methodology
6. Results and Discussion
6.1. In situ Comparisons
6.2. Regional Altimetry Validation
6.3. Spatial Variations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Station | Hm0 | Tp | Peak Direction | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | RMSD | Bias | Willmott | RMSD | Bias | Willmott | RMSD | Bias | Willmott |
CP | 0.39 | 0.09 | 0.97 | 1.55 | 0.09 | 0.76 | 16.79 | −1.35 | 0.54 |
DB | 0.38 | 0.03 | 0.90 | 2.97 | −0.32 | 0.73 | 39.89 | −6.92 | 0.73 |
MB | 0.39 | −0.20 | 0.85 | 1.40 | −0.22 | 0.87 | - | - | - |
NG | 0.35 | −0.24 | 0.88 | 1.57 | −0.13 | 0.85 | 19.66 | 7.33 | 0.59 |
OL | 0.42 | 0.02 | 0.91 | 2.05 | −0.56 | 0.75 | 37.46 | −9.08 | 0.53 |
RB | 0.35 | −0.16 | 0.92 | 2.51 | −0.05 | 0.80 | 32.39 | −6.58 | 0.68 |
SB | 0.49 | 0.40 | 0.88 | 1.77 | 0.07 | 0.76 | - | - | - |
FA | 0.74 | 0.10 | 0.88 | 2.88 | 1.93 | 0.57 | 40.75 | -2.58 | 0.69 |
Station | Hm0 | Tp | Peak Direction | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | RMSD | Bias | Willmott | RMSD | Bias | Willmott | RMSD | Bias | Willmott |
CP | 0.72 | 0.66 | 0.85 | 1.06 | 0.16 | 0.81 | 13.71 | −0.68 | 0.76 |
DB | 0.47 | 0.34 | 0.75 | 4.71 | −3.49 | 0.60 | 28.87 | −5.15 | 0.82 |
MB | 0.33 | 0.22 | 0.82 | 2.66 | −1.07 | 0.54 | - | - | - |
NG | 0.37 | 0.30 | 0.74 | 3.19 | −1.41 | 0.49 | 22.13 | 11.80 | 0.31 |
OL | 0.55 | 0.39 | 0.78 | 2.03 | −0.41 | 0.72 | 31.80 | −7.22 | 0.35 |
RB | 0.34 | 0.23 | 0.87 | 4.71 | −3.28 | 0.61 | 35.24 | −6.56 | 0.61 |
SB | 0.58 | 0.52 | 0.76 | 1.08 | 0.37 | 0.81 | - | - | - |
FA | 0.97 | 0.77 | 0.58 | 2.56 | 1.99 | 0.45 | 27.84 | −1.65 | 0.60 |
Station | Hm0 | Tp | Peak Direction | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | RMSD | Bias | Willmott | RMSD | Bias | Willmott | RMSD | Bias | Willmott |
CP | 0.40 | 0.04 | 0.96 | 1.17 | 0.05 | 0.84 | 12.56 | −1.35 | 0.73 |
DB | 0.39 | 0.00 | 0.83 | 3.04 | −0.99 | 0.71 | 37.32 | −12.39 | 0.75 |
MB | 0.34 | −0.18 | 0.84 | 1.40 | 0.05 | 0.83 | - | - | - |
NG | 0.31 | −0.20 | 0.86 | 1.59 | 0.19 | 0.81 | 18.37 | 8.54 | 0.53 |
OL | 0.41 | 0.00 | 0.88 | 1.75 | −0.50 | 0.79 | 38.18 | −11.19 | 0.42 |
RB | 0.34 | −0.11 | 0.88 | 2.73 | −1.04 | 0.76 | 40.25 | −18.52 | 0.58 |
SB | 0.44 | 0.37 | 0.88 | 1.36 | 0.24 | 0.81 | - | - | - |
FA | 0.72 | 0.11 | 0.82 | 2.89 | 1.88 | 0.50 | 32.48 | 0.88 | 0.65 |
Station | Hm0 | Tp | Peak Direction | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | RMSD | Bias | Willmott | RMSD | Bias | Willmott | RMSD | Bias | Willmott |
CP | 0.51 | 0.25 | 0.95 | 1.52 | 0.12 | 0.79 | 18.30 | −0.65 | 0.54 |
DB | 0.58 | 0.46 | 0.77 | 4.59 | −3.32 | 0.48 | 40.98 | −15.92 | 0.72 |
MB | 0.37 | 0.06 | 0.85 | 2.84 | −1.18 | 0.69 | - | - | - |
NG | 0.29 | 0.13 | 0.90 | 3.75 | −1.83 | 0.59 | 19.69 | 4.00 | 0.64 |
OL | 0.61 | 0.43 | 0.82 | 3.59 | −2.43 | 0.57 | 45.38 | −14.43 | 0.46 |
RB | 0.35 | 0.21 | 0.92 | 4.86 | −3.48 | 0.56 | 44.71 | −23.61 | 0.56 |
SB | 0.46 | 0.38 | 0.88 | 1.69 | 0.39 | 0.78 | - | - | - |
FA | 0.89 | 0.42 | 0.82 | 4.03 | 1.81 | 0.46 | 36.97 | 0.19 | 0.75 |
Station | Hm0 | Tp | Peak Direction | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | RMSD | Bias | Willmott | RMSD | Bias | Willmott | RMSD | Bias | Willmott |
CP | 0.40 | 0.03 | 0.96 | 1.18 | −0.03 | 0.84 | 12.84 | −2.27 | 0.76 |
DB | 0.44 | 0.23 | 0.79 | 2.68 | 0.13 | 0.71 | 30.90 | −7.90 | 0.79 |
MB | 0.33 | 0.02 | 0.82 | 1.39 | −0.53 | 0.82 | - | - | - |
NG | 0.27 | 0.05 | 0.85 | 1.61 | −0.38 | 0.78 | 15.20 | 6.13 | 0.51 |
OL | 0.46 | 0.22 | 0.84 | 1.62 | −0.52 | 0.78 | 29.99 | −10.09 | 0.50 |
RB | 0.33 | 0.09 | 0.88 | 2.43 | −0.38 | 0.75 | 31.41 | −13.68 | 0.66 |
SB | 0.39 | 0.31 | 0.91 | 1.37 | 0.24 | 0.81 | - | - | - |
FA | 0.74 | 0.21 | 0.81 | 3.65 | 1.98 | 0.41 | 32.99 | 0.44 | 0.66 |
Station | Hm0 | Tp | Peak Direction | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | RMSD | Bias | Willmott | RMSD | Bias | Willmott | RMSD | Bias | Willmott |
CP | 0.52 | 0.29 | 0.93 | 1.37 | −0.08 | 0.80 | 17.04 | −2.11 | 0.72 |
DB | 0.67 | 0.58 | 0.68 | 4.25 | −2.52 | 0.53 | 35.58 | −11.37 | 0.76 |
MB | 0.40 | 0.21 | 0.78 | 1.81 | −0.62 | 0.74 | - | - | - |
NG | 0.41 | 0.31 | 0.77 | 2.09 | −0.54 | 0.70 | 17.29 | 4.76 | 0.50 |
OL | 0.67 | 0.53 | 0.75 | 2.31 | −1.06 | 0.69 | 43.33 | −16.97 | 0.35 |
RB | 0.47 | 0.36 | 0.82 | 3.69 | −1.89 | 0.65 | 40.25 | −19.87 | 0.57 |
SB | 0.43 | 0.35 | 0.88 | 1.46 | 0.32 | 0.79 | - | - | - |
FA | 0.91 | 0.51 | 0.76 | 2.90 | 1.51 | 0.55 | 36.71 | −2.85 | 0.64 |
Appendix C. (Statistical Correlations Used in the Present Study)
References
- McKinney, T.E.; Davidson, B. Facts about the African Past. Phylon (1960-) 1960, 21, 196. [Google Scholar] [CrossRef]
- Crétat, J.; Richard, Y.; Pohl, B.; Rouault, M.; Reason, C.; Fauchereau, N. Recurrent daily rainfall patterns over South Africa and associated dynamics during the core of the austral summer. Int. J. Clim. 2010, 32, 261–273. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Hodges, K.I.; De Camargo, R. The properties and genesis environments of South Atlantic cyclones. Clim. Dyn. 2019, 53, 4115–4140. [Google Scholar] [CrossRef]
- Rautenbach, C.; Daniels, T.; De Vos, M.; Barnes, M.A. A coupled wave, tide and storm surge operational forecasting system for South Africa: Validation and physical description. Nat. Hazards 2020, 103, 1407–1439. [Google Scholar] [CrossRef]
- Veitch, J.; Rautenbach, C.; Hermes, J.; Reason, C. The Cape Point wave record, extreme events and the role of large-scale modes of climate variability. J. Mar. Syst. 2019, 198, 103185. [Google Scholar] [CrossRef]
- Amrutha, M.; Kumar, V.S.; Sandhya, K.; Nair, T.M.B.; Rathod, J. Wave hindcast studies using SWAN nested in WAVEWATCH III—comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea. Ocean Eng. 2016, 119, 114–124. [Google Scholar] [CrossRef]
- Zheng, C.; Li, C.Y. Analysis of temporal and spatial characteristics of waves in the Indian Ocean based on ERA-40 wave reanalysis. Appl. Ocean Res. 2017, 63, 217–228. [Google Scholar] [CrossRef]
- Pérez, J.; Méndez, F.; Menéndez, M.; Losada, I.J. ESTELA: A method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dyn. 2014, 64, 1181–1191. [Google Scholar] [CrossRef]
- Camus, P.; Menéndez, M.; Méndez, F.; Izaguirre, C.; Espejo, A.; Cánovas, V.; Pérez, J.; Rueda, A.; Losada, I.J.; Medina, R. A weather-type statistical downscaling framework for ocean wave climate. J. Geophys. Res. Oceans 2014, 119, 7389–7405. [Google Scholar] [CrossRef] [Green Version]
- Semedo, A.; Suselj, K.; Rutgersson, A.; Sterl, A. A Global View on the Wind Sea and Swell Climate and Variability from ERA-40. J. Clim. 2011, 24, 1461–1479. [Google Scholar] [CrossRef]
- Chen, G.; Chapron, B.; Ezraty, R.; VanDeMark, D. A Global View of Swell and Wind Sea Climate in the Ocean by Satellite Altimeter and Scatterometer. J. Atmos. Ocean. Technol. 2002, 19, 1849–1859. [Google Scholar] [CrossRef]
- Camus, P.; Losada, I.J.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J. Statistical wave climate projections for coastal impact assessments. Earth’s Future 2017, 5, 918–933. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M.; et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Chang. 2019, 9, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Young, I.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Marcos, M.; Rohmer, J.; Vousdoukas, M.I.; Mentaschi, L.; Le Cozannet, G.; Amores, A. Increased Extreme Coastal Water Levels Due to the Combined Action of Storm Surges and Wind Waves. Geophys. Res. Lett. 2019, 46, 4356–4364. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Stopa, J.E.; Chapron, B.; Collard, F.; Husson, R.; Jensen, R.E.; Johannessen, J.; Mouche, A.; Passaro, M.; Quartly, G.; et al. Observing Sea States. Front. Mar. Sci. 2019, 6, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.; Bill, C.; Branch, G.; Brown, B.; Hara, M.; Harris, J. Waves of Change; University of Cape Town Press: Cape Town, South Africa, 2003. [Google Scholar]
- Corbella, S.; Stretch, D.D. Multivariate return periods of sea storms for coastal erosion risk assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 2699–2708. [Google Scholar] [CrossRef] [Green Version]
- Seabloom, E.W.; Ruggiero, P.; Hacker, S.D.; Mull, J.; Zarnetske, P.L. Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems. Glob. Chang. Boil. 2012, 19, 824–832. [Google Scholar] [CrossRef]
- Melet, A.; Meyssignac, B.; Almar, R.; le Cozannet, G. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Chang. 2018, 8, 234–239. [Google Scholar] [CrossRef]
- Morris, T.; Rautenbach, C.; Stander, J. A new era for marine forecasting in South Africa. S. Afr. J. Sci. 2019, 115, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Quilfen, Y.; Yurovskaya, M.V.; Chapron, B.; Ardhuin, F. Storm waves focusing and steepening in the Agulhas current: Satellite observations and modeling. Remote Sens. Environ. 2018, 216, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.A.; Rautenbach, C. Toward Operational Wave-Current Interactions over the Agulhas Current System. J. Geophys. Res. Oceans 2020, 125, 1–21. [Google Scholar] [CrossRef]
- De León, S.P.; Soares, C.G. Sensitivity of wave model predictions to wind fields in the Western Mediterranean sea. Coast. Eng. 2008, 55, 920–929. [Google Scholar] [CrossRef]
- Gorrell, L.; Raubenheimer, B.; Elgar, S.; Guza, R. SWAN predictions of waves observed in shallow water onshore of complex bathymetry. Coast. Eng. 2011, 58, 510–516. [Google Scholar] [CrossRef]
- Hoque, A.; Perrie, W.; Solomon, S.M. Application of SWAN model for storm generated wave simulation in the Canadian Beaufort Sea. J. Ocean Eng. Sci. 2020, 5, 19–34. [Google Scholar] [CrossRef]
- Rautenbach, C.; Barnes, M.A.; De Vos, M. Tidal characteristics of South Africa. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 150, 103079. [Google Scholar] [CrossRef]
- Vaze, P.; Neeck, S.; Bannoura, W.; Green, J.; Wade, A.; Mignogno, M.; Zaouche, G.; Couderc, V.; Thouvenot, E.; Parisot, F. The Jason-3 Mission: Completing the transition of ocean altimetry from research to operations. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XIV, Toulouse, France, 20–23 September 2010; Volume 7826, p. 78260Y. [Google Scholar]
- Verron, J.; Sengenes, P.; Lambin, J.; Noubel, J.; Steunou, N.; Guillot, A.; Picot, N.; Coutin-Faye, S.; Sharma, R.; Gairola, R.M.; et al. The SARAL/AltiKa Altimetry Satellite Mission. Mar. Geodesy 2015, 38, 2–21. [Google Scholar] [CrossRef]
- Cummings, J.A.; Smedstad, O.M. Variational Data Assimilation for the Global Ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II); Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–343. [Google Scholar]
- Harding, J.; Rigney, J. Operational Oceanography in the U.S. Navy: A GODAE Perspective. In Ocean Weather Forecasting; Springer: Berlin/Heidelberg, Germany, 2006; pp. 467–482. [Google Scholar]
- Brown1, A.R.; Milton, S.; Cullen, M.; Golding, B.; Mitchell, J.; Shelly, A. Unified Modeling and Prediction of Weather and Climate: A 25-Year Journey. Bull. Am. Meteorol. Soc. 2012, 93, 1865–1877. [Google Scholar] [CrossRef]
- Tolman, H.L. A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Tolman, H.L.; Balasubramaniyan, B.; Burroughs, L.D.; Chalikov, D.V.; Chao, Y.Y.; Chen, H.S.; Gerald, V.M. Development and Implementation of Wind-Generated Ocean Surface Wave Modelsat NCEP. Weather Forecast. 2002, 17, 311–333. [Google Scholar] [CrossRef]
- WAVEWATCH III Development Group. User Manual and System Documentation of WAVEWATCH III® version 5.16; NOAA/NWS/NCEP/MMAB, Technical Note 329: College Park, MD, USA, 2016. [Google Scholar]
- Tolman, H.L. A mosaic approach to wind wave modeling. Ocean Model. 2008, 25, 35–47. [Google Scholar] [CrossRef]
- Rogers, W.E.; Linzell, R.S. The IRI Grid System for Use with WAVEWATCH III®; NRL Memorandum Report 7320-18; Naval Research Laboratory: Washington, DC, USA, 2018. [Google Scholar]
- Wittmann, P.A.; Cummings, J.A. Assimilation of Altimeter Wave Measurements into Wavewatch III, In 8th International Workshop on Wave Hindcasting and Foreecasting and 2nd Coastal Hazards Symposium, 2004; pp. 14–19. Available online: https://www.semanticscholar.org/paper/Assimilation-of-Altimeter-Wave-Measurements-into-Wittmann-Cummings/5d28aa4f6df6f93aaf9eda8a03e1b4ef2cc121fc (accessed on 30 August 2020).
- Deltares, D. Delft3D Flexible Mesh Suite. In Delft3D-FLOW, User Manual; Deltares: Delft, The Netherlands, 2018. [Google Scholar]
- Sembiring, L.; Van Ormondt, M.; Van Dongeren, A.; Roelvink, D. A validation of an operational wave and surge prediction system for the Dutch coast. Nat. Hazards Earth Syst. Sci. 2015, 15, 1231–1242. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Hasselmann, K. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Van Der Westhuysen, A.J.; Zijlema, M.; Battjes, J.A. Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng. 2007, 54, 151–170. [Google Scholar] [CrossRef]
- Mulligan, R.P.; Bowen, A.J.; Hay, A.E.; Van Der Westhuysen, A.J.; Battjes, J.A. Whitecapping and wave field evolution in a coastal bay. J. Geophys. Res. Space Phys. 2008, 113, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Madsen, O.S.; Poon, Y.-K.; Graber, H.C. Spectral Wave Attenuation by Bottom Friction: Theory. In Proceedings of the 21st International Conference on Coastal Engineering, Malaga, Spain, 20–25 June 1988; pp. 492–504. [Google Scholar]
- Battjes, J.A.; Janssen, J.P. Energy Loss and Set-Up Due to Breaking of Random Waves. Coast. Eng. 1978 1978, 2, 569–587. [Google Scholar]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press (CUP): Cambridge, UK, 2007. [Google Scholar]
- Gweba, B. Developing a Methodology for the Assessment of Wave Energy along the South African Coast. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2018. [Google Scholar]
- Longuet-Higgins, M.S.; Cartwright, D.E.; Smith, N. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra 1961, 111–132. [Google Scholar]
- Oltman-Shay, J.; Guza, R.T. A Data-Adaptive Ocean Wave Directional-Spectrum Estimator for Pitch and Roll Type Measurements. J. Phys. Oceanogr. 1984, 14, 1800–1810. [Google Scholar] [CrossRef] [Green Version]
- Lygre, A.; Krogstad, H.E. Maximum Entropy Estimation of the Directional Distribution in Ocean Wave Spectra. J. Phys. Oceanogr. 1986, 16, 2052–2060. [Google Scholar] [CrossRef] [Green Version]
- Earle, M.; Steele, K.; Wang, D. Use of advanced directional wave spectra analysis methods. Ocean Eng. 1999, 26, 1421–1434. [Google Scholar] [CrossRef]
- Williams, J.J.; Esteves, L.S. Guidance on Setup, Calibration, and Validation of Hydrodynamic, Wave, and Sediment Models for Shelf Seas and Estuaries. Adv. Civ. Eng. 2017, 2017, 1–25. [Google Scholar] [CrossRef]
- Cavaleri, L.; Abdalla, S.; Benetazzo, A.; Bertotti, L.; Bidlot, J.-R.; Øyvind, B.; Carniel, S.; Jensen, R.; Portilla-Yandún, J.; RogersiD, E.; et al. Wave modelling in coastal and inner seas. Prog. Oceanogr. 2018, 167, 164–233. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Space Phys. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Maze, G. Taylor Diagram. 2010. Available online: http://codes.guillaumemaze.org/ (accessed on 5 July 2020).
- Toffoli, A.; Bitner-Gregersen, E.M. Types of Ocean Surface Waves, Wave Classification. In Encyclopedia of Maritime and Offshore Engineering; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–8. [Google Scholar]
- Kolbusz, J.; Pattiaratchi, C.; Mann, L. Validation of the wave climate in south-west Australia predicted using the Climate Forecast System Reanalysis. Aust. J. Marit. Ocean Aff. 2015, 7, 3–11. [Google Scholar] [CrossRef]
- Jolliff, J.; Kindle, J.C.; Shulman, I.; Penta, B.; Friedrichs, M.A.M.; Helber, R.; Arnone, R.A. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 2009, 76, 64–82. [Google Scholar] [CrossRef]
- Van Der Westhuysen, A.; Van Dongeren, A.; Groeneweg, J.; Van Vledder, G.P.; Peters, H.; Gautier, C.; Van Nieuwkoop, J.C.C. Improvements in spectral wave modeling in tidal inlet seas. J. Geophys. Res. Space Phys. 2012, 117, C11. [Google Scholar] [CrossRef]
- Van Der Westhuysen, A.J. Modeling of depth-induced wave breaking under finite depth wave growth conditions. J. Geophys. Res. Space Phys. 2010, 115, C01008. [Google Scholar] [CrossRef]
- Collins, J.I. Prediction of shallow-water spectra. J. Geophys. Res. Space Phys. 1972, 77, 2693–2707. [Google Scholar] [CrossRef]
- Rogers, D.E.; Babanin, A.; Wang, D.W. Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations. J. Atmos. Ocean. Technol. 2012, 29, 1329–1346. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1987, 2, 184–194. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, M.; Matsuura, K. Short Communication A refined index of model performance. Int. J. Climatol. 2012, 2094, 2088–2094. [Google Scholar] [CrossRef]
Description | SB | SK * (CT) | MB | PE | EL | FHP | DB | RB |
---|---|---|---|---|---|---|---|---|
Water depth [m] | 23 | 70 | 24 | 21 | 27 | 95 | 30 | 22 |
Latitude [o] | −33.05 | −34.204 | −34.12467 | −33.83333 | −33.038 | −34.97 | −29.884 | −28.8265 |
Longitude [o] | 17.978 | 18.28667 | 22.1535 | 25.71666 | 27.93083 | 22.17 | 31.07067 | 32.104 |
Directional Model | ND SG | MD MK2 | ND SG | MD MK3 | MD MK3 | MD WMS II | MD MK4 | MD MK 4 |
SWAN 40.72 (3rd-Generation Model) | Model | Additional Information |
---|---|---|
Open boundaries | WW3 Global | NRL model |
Meteorological forcing | Down scaled Unified Model | SAWS operational model |
Bottom Friction | Madsen [44] | Kn = 0.05m |
Depth induced breaking | Battjes [45] | Alpha (dissipation) = 1, Gamma (breaker) = 0.8. |
Whitecapping | Komen [41] | Exponential growth, Dissipation rate coeff. (Cds) = 2.36 × 10−5, Pierson-Moskowitz spectrum wave steepness = 3.02 × 10−3. |
Van der Westhuysen [42] | Non-linear saturation-based whitecapping. |
M1 | M2 | M3 | |||
Spectrum | Whitecapping | Spectrum | Whitecapping | Spectrum | Whitecapping |
JONSWAP | van der Westhuysen | JONSWAP | Komen | Fully Spectral | van der Westhuysen |
M4 | M5 | M6 | |||
Spectrum | Whitecapping | Spectrum | Whitecapping | Spectrum | Whitecapping |
Fully Spectral | Komen | 5-parm | van der Westhuysen | 5-parm | Komen |
Month | June | July | August | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stats | RMSD | cRMSD | SI | R | RMSD | cRMSD | SI | R | RMSD | cRMSD | SI | R |
M1 | 0.56 | 0.55 | 0.14 | 0.93 | 0.55 | 0.47 | 0.12 | 0.94 | 0.49 | 0.48 | 0.14 | 0.93 |
M2 | 0.79 | 0.61 | 0.13 | 0.93 | 0.89 | 0.51 | 0.12 | 0.93 | 0.49 | 0.48 | 0.14 | 0.92 |
M3 | 0.54 | 0.54 | 0.13 | 0.94 | 0.45 | 0.43 | 0.12 | 0.94 | 0.45 | 0.45 | 0.13 | 0.94 |
M4 | 0.72 | 0.56 | 0.13 | 0.94 | 0.67 | 0.46 | 0.12 | 0.94 | 0.45 | 0.45 | 0.12 | 0.94 |
M5 | 0.59 | 0.57 | 0.14 | 0.94 | 0.49 | 0.45 | 0.12 | 0.94 | 0.50 | 0.46 | 0.13 | 0.94 |
M6 | 0.80 | 0.57 | 0.13 | 0.94 | 0.75 | 0.45 | 0.11 | 0.94 | 0.66 | 0.48 | 0.12 | 0.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rautenbach, C.; Barnes, M.A.; Wang, D.W.; Dykes, J. Southern African Wave Model Sensitivities and Accuracies. J. Mar. Sci. Eng. 2020, 8, 773. https://doi.org/10.3390/jmse8100773
Rautenbach C, Barnes MA, Wang DW, Dykes J. Southern African Wave Model Sensitivities and Accuracies. Journal of Marine Science and Engineering. 2020; 8(10):773. https://doi.org/10.3390/jmse8100773
Chicago/Turabian StyleRautenbach, Christo, Michael A. Barnes, David W. Wang, and James Dykes. 2020. "Southern African Wave Model Sensitivities and Accuracies" Journal of Marine Science and Engineering 8, no. 10: 773. https://doi.org/10.3390/jmse8100773
APA StyleRautenbach, C., Barnes, M. A., Wang, D. W., & Dykes, J. (2020). Southern African Wave Model Sensitivities and Accuracies. Journal of Marine Science and Engineering, 8(10), 773. https://doi.org/10.3390/jmse8100773