Atmospheric Cold Front-Generated Waves in the Coastal Louisiana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wave Parameter and Wave Spectra Data
2.2. Meteorological Data
2.3. CCMP Wind Vector Analysis Product
2.4. Low-Pass Filtered and Correlation Analysis
3. Results
3.1. Intra-Seasonal Variation of Atmospheric Parameters and Wave
3.2. Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lopez, G.; Conley, D.C. Comparison of HF Radar Fields of Directional Wave Spectra Against In Situ Measurements at Multiple Locations. J. Mar. Sci. Eng. 2019, 7, 271. [Google Scholar] [CrossRef] [Green Version]
- Penland, S.; Roberts, H.H.; Williams, S.J.; Sallenger, A.H., Jr.; Cahoon, D.R.; Davis, D.W.; Groat, C.G. Coastal land loss in Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 1990, 40, 685–699. [Google Scholar]
- Stone, G.W.; Williams, S.J.; Burruss, A.E. Louisiana’s barrier islands: An evaluation of their geological evolution, morphodynamics and rapid deterioration. J. Coast. Res. 1997, 13, 591–592. [Google Scholar]
- Guo, B.; Subrahmanyam, M.V.; Li, C. Waves on Louisiana Continental Shelf Influenced by Atmospheric Fronts. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Li, C.Y.; Roberts, H.; Stone, G.W.; Weeks, E.; Luo, Y.X. Wind surge and saltwater intrusion in Atchafalaya Bay during on- shore winds prior to cold front passage. Hydrobiologia 2011, 658, 27–39. [Google Scholar] [CrossRef]
- Roberts, H.H.; Huh, O.K.; Hsu, S.A.; Rouse, L.J.; Rickman, D. Winter storm impacts on the Chenier plain coast of southwestern Louisiana. Trans. Gulf Coast Assoc. Geol. Soc. 1989, 39, 515–522. [Google Scholar]
- Chaney, P.L. Extratropical Storms of the Gulf of Mexico and Their Effects along the Northern Coast of a Barrier Island: West Ship Island, Mississippi. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 1999. [Google Scholar]
- Li, C.Y.; Huang, W.; Wu, R.H.; Sheremet, A. Weather induced quasi-periodic motions in estuaries and bays: Meteorological tide. China Ocean Eng. 2020, 34, 1–15. [Google Scholar] [CrossRef]
- Maresca, J.W., Jr.; Georges, T.M. Measuring rms wave height and the scalar ocean wave spectrum with HF skywave radar. J. Geophys. Res. Oceans 1980, 85, 2759–2771. [Google Scholar] [CrossRef]
- Doyle, J.D. Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus A 1995, 47, 766–778. [Google Scholar] [CrossRef]
- Dragani, W.C. Numerical experiments on the generation of long ocean waves in coastal waters of the Buenos Aires province, Argentina. Cont. Shelf Res. 2007, 27, 699–712. [Google Scholar] [CrossRef]
- Zhao, P.; Jiang, W. A numerical study of storm surges caused by cold-air outbreaks in the Bohai Sea. Nat. Hazards 2011, 59, 1–15. [Google Scholar] [CrossRef]
- Appendini, C.M.; Hernández-Lasheras, J.; Meza-Padilla, R.; Kurczyn, J.A. Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico. Clim. Dyn. 2018, 51, 3747–3763. [Google Scholar] [CrossRef]
- Kita, Y.; Waseda, T.; Webb, A. Development of waves under explosive cyclones in the Northwestern Pacific. Ocean Dyn. 2018, 68, 1403–1418. [Google Scholar] [CrossRef]
- Chaichitehrani, N.; Li, C.; Xu, K.; Allahdadi, M.N.; Hestir, E.L.; Keim, B.D. A numerical study of sediment dynamics over Sandy Point dredge pit, west flank of the Mississippi River, during a cold front event. Cont. Shelf Res. 2019, 183, 38–50. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Q. Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Young, I.R.; Vinoth, J.; Zieger, S.; Babanin, A.V. Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res. 2012, 117, 13. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, C.; Uchiyama, Y.; Wang, J.; Yin, X. Multiple-scale variations of wind-generated waves in the Southern California Bight. J. Geophys. Res. Oceans 2018, 123, 9340–9356. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Kumar, B.P.; Sheremet, A.; Watzke, D. Complex morpho-hydrodynamic response of estuaries and bays to winter storms: North-central Gulf of Mexico. In High Resolution Morphodynamics and Sedimentary Evolution of Estuaries; Springer: Dordrecht, The Netherlands, 2005; pp. 243–267. [Google Scholar]
- Stone, G.W.; Liu, B.; Jose, F. Winter storm and tropical cyclone impacts on the short- term evolution of beaches and barriers along the northeastern Gulf of Mexico. In Proceedings of the Coastal Sediments ’07, New Orleans, LA, USA, 13–17 May 2007; pp. 935–950. [Google Scholar]
- Jose, F.; Kobashi, D.; Stone, G.W. Spectral wave transformation over an elongated sand shoal off south-central Louisiana, USA. J. Coast. Res. 2007, 50, 757–761. [Google Scholar]
- Sorourian, S.; Huang, H.; Li, C.; Justic, D.; Payandeh, A.R. Wave dynamics near Barataria Bay tidal inlets during spring–summer time. Ocean Model. 2020, 147, 101553. [Google Scholar] [CrossRef]
- Zhang, X. Design and Implementation of an Ocean Observing System: WAVCIS (Wave-Current-Surge Information System) and Its Application to the Louisiana Coast. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2003. [Google Scholar]
- WavesMon User’s Guide; P/N 957-6148-00; RD Instruments: San Diego, CA, USA, 2011; p. 74.
- Herbers, T.H.C.; Lentz, S.J. Observing directional properties of ocean swell with an acoustic Doppler current profiler (ADCP). J. Atmos. Ocean. Technol. 2010, 27, 210–225. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Leidner, S.M.; Henderson, J.M.; Atlas, R.; Ardizzone, J.V.; Bloom, S.C. Bloom. A two-dimensional variational analysis method for NSCAT ambiguity removal: Methodology, sensitivity, and tuning. J. Atmos. Ocean. Technol. 2003, 20, 585–605. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data analysis methods in physical oceanography. Estuaries 2001, 80, 638. [Google Scholar]
- Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Computation of the Complex Fourier Series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of methods. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Li, C.; Weeks, E.; Milan, B.; Huang, W.; Wu, R. Weather Induced Transport through a Tidal Channel Calibrated by an Unmanned Boat. J. Atmospheric Ocean. Technol. 2018, 35, 261–279. [Google Scholar] [CrossRef]
- Roberts, H.H.; Huh, O.K.; Hsu, S.A.; Rouse, L.J., Jr.; Rickman, D. Impact of Cold- Front Passages on Geomorphic Evolution and Sediment Dynamics of the Complex Louisiana Coast. Coastal Sediments ’87, Proceedings of a Specialty Conference, New Orleans, Louisiana, 12–14 May 1987; American Society of Civil Engineers: New York, NY, USA, 1987; pp. 1950–1963. [Google Scholar]
- Pepper, D.A.; Stone, G.W. Hydrodynamic and sedimentary responses to two contrasting winter storms on the inner shelf of the northern gulf of mexico. Mar. Geol. 2004, 210, 43–62. [Google Scholar] [CrossRef]
- Eldeberky, Y. Nonlinear transformation of wave spectra in the nearshore zone. Oceanogr. Lit. Rev. 1997, 4, 297. [Google Scholar]
- Van de Voorde, N.E.; Dinnel, S.P. Observed directional wave spectra during a frontal passage. J. Coast. Res. 1998, 14, 337–346. [Google Scholar]
- Herbers, T.H.C.; Elgar, S.; Guza, R.T. Directional spreading of waves in the nearshore. J. Geophys. Res. Ocean. 1999, 104, 7683–7693. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.X.; Li, C.Y. Cold-front-induced flushing of the Louisiana Bays. J. Mar. Syst. 2010, 82, 252–264. [Google Scholar] [CrossRef]
- Kobashi, D.; Jose, F.; Stone, G.W. Impacts of fluvial fine sediments and winter storms on a transgressive shoal, off south-central Louisiana, USA. J. Coast. Res. 2007, 23, 858–862. [Google Scholar]
Month | Date (12 A.M. UTC) | Moving Direction | Atmospheric Pressure (hPa) | Type |
---|---|---|---|---|
Jan. | 05 | NW | 1016 | MC storm 1 |
09 | NW | 1020 | MC storm | |
15 | N | 1018 | AS storm 2 | |
18 | W | 1008 | MC storm | |
30 | NW | 1014 | MC storm | |
Feb. | 02 | W | 1014 | MC storm |
06 | W | 1012 | MC storm | |
12 | NW | 1016 | MC storm | |
21 | NW | 1016 | MC storm | |
Mar. | 06 | NW | 1018 | MC storm |
13 | N | 1022 | MC storm | |
16 | NW | 1015 | MC storm | |
21 | N | 1022 | AS storm | |
29 | NW | 1021 | MC storm | |
Apr. | 03 | NE | 1016 | MC storm |
05 | N | 1016 | AS storm | |
09 | N | 1010 | MC storm | |
12 | W | 1007 | MC storm | |
26 | NW | 1016 | MC storm | |
Sep. | 07 | NW | 1010 | MC storm |
10 | N | 1016 | MC storm | |
18 | NE | 1014 | MC storm | |
29 | NW | 1014 | MC storm | |
Oct. | 05 | NW | 1019 | AS storm |
10 | W | 1004 | MC storm | |
12 | NW | 1012 | MC storm | |
14 | W | 1010 | MC storm | |
Nov. | 03 | W | 1014 | MC storm |
08 | N | 1018 | MC storm | |
10 | NE | 1021 | AS storm | |
11 | NW | 1018 | MC storm | |
24 | W | 1006 | MC storm | |
27 | NW | 1011 | MC storm | |
30 | W | 1015 | MC storm | |
Dec. | 07 | NW | 1014 | MC storm |
09 | NW | 1012 | MC storm | |
13 | NW | 1018 | MC storm |
Case | Type | Moving Direction | Characteristics of Parameters | |||||
---|---|---|---|---|---|---|---|---|
I | MC storm | NW | Wind speed (mean; unit: ms−1) | Hs (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
4.9 | 8.2 | 6.4 | 0.35 | 0.72 | 0.71 | |||
Tp (mean; unit: s) | Spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
4.5 | 3.3 | 2.9 | 0.3–0.7 | 3–5 | 3–10 | |||
II | AS storm | N | Wind speed (mean; unit: ms−1) | Hs (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
3.2 | 7.5 | 6.1 | 0.22 | 0.58 | 0.63 | |||
Tp (mean) | Wave spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
3.5 | 2.8 | 2.7 | 0.06–0.08 | 1–5 | 0.3–0.5 | |||
III | MC storm | W | Wind speed (mean; unit: ms−1) | Hs of CSI 3 (CSI 6) (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
5.3 | 9.3 | 4.6 | 0.64(1.19) | 0.68(1.81) | 0.40(0.60) | |||
Tp of CSI 3 (CSI 6) (mean; unit: s) | Wave spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
5.8(5.6) | 4.8(7.5) | 3.7(5.9) | 1–2.5 (7–12) | 1.5–2.5 (15–25) | 0.4–1 (1.5–2) | |||
IV | MC storm (Tropical Storm) | NW | Wind speed (mean; unit: ms−1) | Hs of CSI 3 (CSI 6) (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
7.0 | 7.1 | 4.20 | 0.24(0.90) | 0.34(0.81) | 0.26(0.60) | |||
Tp of CSI 3 (CSI 6) (mean; unit: s) | Wave spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
4.4(6.4) | 3.2(2.9) | 2.8(2.2) | 0.6–1 | 1.5–2 | 0.6–1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Li, C.; Dong, C. Atmospheric Cold Front-Generated Waves in the Coastal Louisiana. J. Mar. Sci. Eng. 2020, 8, 900. https://doi.org/10.3390/jmse8110900
Cao Y, Li C, Dong C. Atmospheric Cold Front-Generated Waves in the Coastal Louisiana. Journal of Marine Science and Engineering. 2020; 8(11):900. https://doi.org/10.3390/jmse8110900
Chicago/Turabian StyleCao, Yuhan, Chunyan Li, and Changming Dong. 2020. "Atmospheric Cold Front-Generated Waves in the Coastal Louisiana" Journal of Marine Science and Engineering 8, no. 11: 900. https://doi.org/10.3390/jmse8110900
APA StyleCao, Y., Li, C., & Dong, C. (2020). Atmospheric Cold Front-Generated Waves in the Coastal Louisiana. Journal of Marine Science and Engineering, 8(11), 900. https://doi.org/10.3390/jmse8110900