Breaching Flow Slides and the Associated Turbidity Current
Abstract
:1. Introduction
2. Phenomenology
2.1. Breaching Flow Slides
2.2. Turbidity Current
3. Governing Processes of Breaching Flow Slides
3.1. Initial Breaching
3.2. Generation of a Turbidity Current
3.3. Sediment Entrainment into Turbidity Current
3.4. Water Entrainment into Turbidity Current
3.5. Sedimentation and Erosion on Downstream Soil Bed
3.6. Deposition of Suspended Material
4. Modelling Slope Erosion During Breaching
4.1. Slope Erosion in Stagnant Water
4.2. Sediment Entrainment
4.2.1. Steady and Uniform Flows
4.2.2. Turbidity Currents
4.3. Discussion
- Van Rhee [68] stated that the adapted critical Shields parameter can be used in any existing pick-up function as long as it includes the critical Shields parameter. Nevertheless, the existing pick-up functions are empirical and the effect of dilatancy could be already included (maybe to a certain extent) in the function. Having this effect in the empirical pick-up function and also in the critical Shields parameter may result in underestimation of the erosion rate.
- All the pick-up functions presented above require an estimate of the flow-induced shear stress. As a result, estimating sediment erosion is highly sensitive to the method by which the bed shear stress is computed.
- The existing relationships proposed to estimate the sediment entrainment by turbidity currents are mainly expressed in terms of the local shear stress. Nonetheless, boundary shear stress is just one of several impelling forces that result in sediment erosion [30]. Other hydrodynamic quantities, such as turbulent stresses, and turbulent and mean velocities, also govern the mechanisms of sediment entrainment and transport [75].
- The existing sediment entrainment relations of turbidity currents were developed for a current propagating over a bed covered with loose sediment. Very little is known about the interaction of turbidity currents with densely-packed particles. In this case, dilatancy plays a major role in retarding the erosion process. Therefore, a sediment entrainment function for turbidity currents accounting for dilatancy effects is required to describe the breaching process properly.
5. Numerical Assessment of Breaching-Generated Turbidity Current
5.1. Three-Equation Model
5.2. Water Entrainment and Sediment Exchange
5.2.1. Breusers (1977)
5.2.2. Mastbergen and Van den Berg (2003)
5.2.3. Van Rhee (2015)
5.3. Comparison of Results
5.3.1. Uniform Flow
5.3.2. Developing Turbidity Current
5.4. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Beinssen, K.; Mastbergen, D.R. Flow Slides: Understanding their geo-mechanical mechanisms, the threats they pose and how these threats can be managed. In Proceedings of the 13th Hydraulics in Water Engineering Conference, Sydney, NSW, Australia, 13–16 November 2017; p. 132. [Google Scholar]
- Alhaddad, S.; Labeur, R.J.; Uijttewaal, W. The need for experimental studies on breaching flow slides. In Proceedings of the Second International Conference on the Material Point Method for Modelling Soil-Water-Structure Interaction, Cambridge, UK, 8–10 January 2019; pp. 166–172. [Google Scholar]
- Koppejan, A.; Van Wamelen, B.; Weinberg, L. Coastal Flow Slides in the Dutch Province of Zeeland. In Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands, 21–23 June 1948; pp. 89–96. [Google Scholar]
- Kramer, S. Triggering of liquefaction flow slides in coastal soil deposits. Eng. Geol. 1988, 26, 17–31. [Google Scholar] [CrossRef]
- Silvis, F.; Groot, M.D. Flow slides in the Netherlands: Experience and engineering practice. Can. Geotech. J. 1995, 32, 1086–1092. [Google Scholar] [CrossRef]
- Mastbergen, D.R.; Beinssen, K.; Nédélec, Y. Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures. J. Mar. Sci. Eng. 2019, 7, 368. [Google Scholar] [CrossRef] [Green Version]
- Mastbergen, D.; van den Ham, G.; Cartigny, M.; Koelewijn, A.; de Kleine, M.; Clare, M.; Hizzett, J.; Azpiroz, M.; Vellinga, A. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands. In Submarine Mass Movements and Their Consequences; Springer: Berlin/Heidelberg, Germany, 2015; pp. 241–249. [Google Scholar]
- Van Duinen, A.; Bezuijen, A.; van den Ham, G.; Hopman, V. Field measurements to investigate submerged slope failures. In Submarine Mass Movements and Their Consequences; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–21. [Google Scholar]
- Rogers, J.D. Levees. Available online: http://web.mst.edu/~rogersda/levees/Mississippi%20Delta%20Region.htm (accessed on 30 October 2018).
- BBC. Inskip Point: Section of Australian Beach Collapses into Sea. Available online: https://www.bbc.com/news/world-australia-45622385 (accessed on 30 November 2019).
- Schiereck, G.J.; Verhagen, J.H. Introduction to Bed, Bank and Shore Protection; VSSD: Delft, The Netherlands, 2012. [Google Scholar]
- Torrey, V.H., III. Retrogressive Failures in Sand Deposits of the Mississippi River. Report 2. Empirical Evidence in Support of the Hypothesized Failure Mechanism and Development of the Levee Safety Flow Slide Monitoring System; Technical Report; Army Engineer Waterways Experiment Station Vicksburg Ms Geotechnical Lab.: Vicksburg, MS, USA, 1988. [Google Scholar]
- Van Rhee, C. Slope failure by unstable breaching. In Proceedings of the Institution of Civil Engineers-Maritime Engineering; Thomas Telford Ltd.: London, UK, 2015; Volume 168, pp. 84–92. [Google Scholar]
- Weij, D.; Keetels, G.; Goeree, J.; van Rhee, C. An Approach to research of the Breaching Process. In Proceedings of the WODCON XXI, Miami, FL, USA, 13–17 June 2016. [Google Scholar]
- Van den Berg, J.; Martinius, A.; Houthuys, R. Breaching-related turbidites in fluvial and estuarine channels: Examples from outcrop and core and implications to reservoir models. Mar. Pet. Geol. 2017, 82, 178–205. [Google Scholar] [CrossRef]
- Parker, G.; Fukushima, Y.; Pantin, H.M. Self-accelerating turbidity currents. J. Fluid Mech. 1986, 171, 145–181. [Google Scholar] [CrossRef]
- Eke, E.; Viparelli, E.; Parker, G. Field-scale numerical modeling of breaching as a mechanism for generating continuous turbidity currents. Geosphere 2011, 7, 1063–1076. [Google Scholar] [CrossRef]
- Van Den Berg, J.H.; Van Gelder, A.; Mastbergen, D.R. The importance of breaching as a mechanism of subaqueous slope failure in fine sand. Sedimentology 2002, 49, 81–95. [Google Scholar]
- Van Rhee, C.; Bezuijen, A. The breaching of sand investigated in large-scale model tests. In Proceedings of the 26th International Conference on Coastal Engineering, Copenhagen, Denmark, 22–26 June 1998; pp. 2509–2519. [Google Scholar]
- Van den Ham, G.A.; de Groot, M.B.; Mastbergen, D.R. A Semi-empirical Method to Assess Flow-Slide Probability. In Submarine Mass Movements and Their Consequences; Springer: Berlin/Heidelberg, Germany, 2014; pp. 213–223. [Google Scholar]
- You, Y.; Flemings, P.; Mohrig, D. Mechanics of dual-mode dilative failure in subaqueous sediment deposits. Earth Planet. Sci. Lett. 2014, 397, 10–18. [Google Scholar] [CrossRef]
- Mastbergen, D.R.; Van Den Berg, J.H. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 2003, 50, 625–637. [Google Scholar] [CrossRef]
- Meiburg, E.; Kneller, B. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 2010, 42, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Imran, J.; Pirmez, C.; Cantelli, A. Flow splitting modifies the helical motion in submarine channels. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Liu, J.T.; Wang, Y.H.; Yang, R.J.; Hsu, R.T.; Kao, S.J.; Lin, H.L.; Kuo, F.H. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Hu, P.; Cao, Z. Fully coupled mathematical modeling of turbidity currents over erodible bed. Adv. Water Resour. 2009, 32, 1–15. [Google Scholar] [CrossRef]
- Piper, D.J.; Normark, W.R. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective. J. Sediment. Res. 2009, 79, 347–362. [Google Scholar] [CrossRef]
- Pirmez, C.; Imran, J. Reconstruction of turbidity currents in Amazon Channel. Mar. Pet. Geol. 2003, 20, 823–849. [Google Scholar] [CrossRef]
- Talling, P.J.; Allin, J.; Armitage, D.A.; Arnott, R.W.; Cartigny, M.J.; Clare, M.A.; Felletti, F.; Covault, J.A.; Girardclos, S.; Hansen, E.; et al. Key Future Directions For Research On Turbidity Currents and Their Deposits. J. Sediment. Res. 2015, 85, 153–169. [Google Scholar] [CrossRef] [Green Version]
- Zordan, J.; Juez, C.; Schleiss, A.J.; Franca, M.J. Experimental Results on Sediment Entrainment By Gravity Currents. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017; pp. 1453–1458. [Google Scholar]
- Krause, D.C.; White, W.C.; Piper, D.J.W.; Heezen, B.C. Turbidity currents and cable breaks in the western New Britain Trench. Geol. Soc. Am. Bull. 1970, 81, 2153–2160. [Google Scholar] [CrossRef]
- Hsu, S.K.; Kuo, J.; Lo, C.L.; Tsai, C.H.; Doo, W.B.; Ku, C.Y.; Sibuet, J.C. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terr. Atmos. Ocean. Sci. 2008, 19, 7. [Google Scholar] [CrossRef] [Green Version]
- Meiburg, E.; Radhakrishnan, S.; Nasr-Azadani, M. Modeling gravity and turbidity currents: computational approaches and challenges. Appl. Mech. Rev. 2015, 67, 040802. [Google Scholar] [CrossRef]
- Xu, J.; Noble, M.; Rosenfeld, L.K. In-situ measurements of velocity structure within turbidity currents. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Andrieux, O.; Cooper, C.K.; Wood, J. Turbidity Current Measurements in the Congo Canyon. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 9 May 2013. [Google Scholar]
- Azpiroz-Zabala, M.; Cartigny, M.J.; Talling, P.J.; Parsons, D.R.; Sumner, E.J.; Clare, M.A.; Simmons, S.M.; Cooper, C.; Pope, E.L. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Sci. Adv. 2017, 3, e1700200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sequeiros, O.E.; Mosquera, R.; Pedocchi, F. Internal Structure of a Self-Accelerating Turbidity Current. J. Geophys. Res. Oceans 2018, 123, 6260–6276. [Google Scholar] [CrossRef]
- Salaheldin, T.; Imran, J.; Chaudhry, M.; Reed, C. Role of fine-grained sediment in turbidity current flow dynamics and resulting deposits. Mar. Geol. 2000, 171, 21–38. [Google Scholar] [CrossRef]
- Mulder, T.; Migeon, S.; Savoye, B.; Faugères, J.C. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents? Geo-Mar. Lett. 2001, 21, 86–93. [Google Scholar]
- Locat, J.; Lee, H.J. Submarine landslides: Advances and challenges. Can. Geotech. J. 2002, 39, 193–212. [Google Scholar] [CrossRef]
- Jonkman, S.; Schweckendiek, T. Flood Defences. In Lecture Notes CIE5314; Delft University of Technology: Delft, The Netherlands, 2015. [Google Scholar]
- Chu, J.; Ho, M.; Loke, W.; Leong, W. Effects of scour and hydraulic gradient on the stability of granular soil slope. In Proceedings of the Second International Conference on Scour and Erosion, Singapore, 14–17 November 2004. [Google Scholar]
- Hadala, P.F.; Torrey, V. Mississippi riverbank flowslides. In The Art and Science of Geotechnical Engineering; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1989; pp. 13–30. [Google Scholar]
- Torrey, V.H., III; Dunbar, J.B.; Peterson, R.W. Retrogressive Failures in Sand Deposits of the Mississippi River; Report 1: Field Investigations, Laboratory Studies, and Analysis of Hypothesized Failure Mechanism; Army Engineer Waterways Experiment Station Vicksburg MS Geotechnical Lab.: Vicksburg, MS, USA, 1988. [Google Scholar]
- Simpson, J.E. Gravity Currents: In the Environment and the Laboratory; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Kneller, B.C.; Bennett, S.J.; McCaffrey, W.D. Velocity structure, turbulence and fluid stresses in experimental gravity currents. J. Geophys. Res. Oceans 1999, 104, 5381–5391. [Google Scholar] [CrossRef]
- Gray, T.E.; Alexander, J.; Leeder, M.R. Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope. Sedimentology 2005, 52, 467–488. [Google Scholar] [CrossRef]
- Middleton, G.; Southard, J. Mechanics of sediment movement. Soc. Econ. Paleontol. Mineral. Short Course 1984, 3, 401. [Google Scholar]
- Pratson, L.F.; Imran, J.; Parker, G.; Syvitski, J.P.; Hutton, E. AAPG Memoir 72/SEPM Special Publication No. 68, Chapter 6: Debris Flows vs. Turbidity Currents: A Modeling Comparison of Their Dynamics and Deposits; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2000; pp. 57–72. [Google Scholar]
- Sequeiros, O.E.; Naruse, H.; Endo, N.; Garcia, M.H.; Parker, G. Experimental study on self-accelerating turbidity currents. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef]
- Yi, A.; Imran, J. The role of erosion rate formulation on the ignition and subsidence of turbidity current. In Proceedings of the 4th IAHR symposium on River, Coastal and Estuarine Morphodynamics, Urbana, IL, USA, 4–7 October 2006; pp. 543–551. [Google Scholar]
- Garcia, M.; Parker, G. Experiments on the entrainment of sediment into suspension by a dense bottom current. J. Geophys. Res. Oceans 1993, 98, 4793–4807. [Google Scholar] [CrossRef]
- Ottolenghi, L.; Adduce, C. LES Investigation on Entrainment in Gravity Currents, River Flow 2016: Iowa City, USA, July 11–14, 2016; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Mulder, T.; Syvitski, J.P.; Skene, K.I. Modeling of erosion and deposition by turbidity currents generated at river mouths. J. Sediment. Res. 1998, 68, 124–137. [Google Scholar] [CrossRef]
- Turner, J. Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 1986, 173, 431–471. [Google Scholar] [CrossRef]
- Parker, G.; Garcia, M.; Fukushima, Y.; Yu, W. Experiments on turbidity currents over an erodible bed. J. Hydraul. Res. 1987, 25, 123–147. [Google Scholar] [CrossRef]
- Cenedese, C.; Adduce, C. A new parameterization for entrainment in overflows. J. Phys. Oceanogr. 2010, 40, 1835–1850. [Google Scholar] [CrossRef] [Green Version]
- Stagnaro, M.; Pittaluga, M.B. Velocity and concentration profiles of saline and turbidity currents flowing in a straight channel under quasi-uniform conditions. Earth Surf. Dyn. 2014, 2, 167. [Google Scholar] [CrossRef] [Green Version]
- Cossu, R.; Wells, M.G. A comparison of the shear stress distribution in the bottom boundary layer of experimental density and turbidity currents. Eur. J. Mech.-B/Fluids 2012, 32, 70–79. [Google Scholar] [CrossRef]
- Dutta, S.; Pantano-Rubino, C.; Cantaero, M.I.; Garcia, M.H.; Parker, G. Effects of self-stratification on turbidity currents: A large eddy simulation approach. In Proceedings of the XIX International Conference on Water Resources, Urbana-Champaign, IL, USA, 17–22 June 2012. [Google Scholar]
- Breusers, H. Hydraulic excavation of sand. In Proceedings of the International Course in Modern Dredging, The Hague, The Netherlands, 5–10 June 1977. [Google Scholar]
- Van der Schrieck, G. Lecture Notes Dredging Technology; Delft University of Technology: Delft, The Netherlands, 2012. [Google Scholar]
- You, Y. Dynamics of Dilative Slope Failure. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2013. [Google Scholar]
- Eke, E.C. Breaching as a Mechanism for Generating Sustained Turbidity Currents. Master’s Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 2008. [Google Scholar]
- Van Rijn, L.C. Sediment pick-up functions. J. Hydraul. Eng. 1984, 110, 1494–1502. [Google Scholar] [CrossRef]
- Winterwerp, J.C.; Bakker, W.T.; Mastbergen, D.R.; van Rossum, H. Hyperconcentrated sand-water mixture flows over erodible bed. J. Hydraul. Eng. 1992, 118, 1508–1525. [Google Scholar] [CrossRef]
- Einstein, H.A. The Bed-Load Function for Sediment Transportation in Open Channel Flows; United States Department of Agriculture: Washington, DC, USA, 1950; Volume 1026.
- Van Rhee, C. Sediment entrainment at high flow velocity. J. Hydraul. Eng. 2010, 136, 572–582. [Google Scholar] [CrossRef]
- Bisschop, F. Erosion of Sand at High Flow Velocities: An Experimental Study. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar]
- Van Rhee, C.; Talmon, A. Sedimentation and erosion of sediment at high solids concentration. In Proceedings of the 18th International Conference on Hydrotransport, Rio de Janeiro, Brazil, 22–24 September 2010; BHR Group: Cranfield, UK, 2010; pp. 211–222. [Google Scholar]
- Bisschop, F.; Visser, P.; van Rhee, C.; Verhagen, H.J. Erosion due to high flow velocities: A description of relevant processes. Coast. Eng. Proc. 2010, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Parker, G. Entrainment of bed sediment into suspension. J. Hydraul. Eng. 1991, 117, 414–435. [Google Scholar] [CrossRef]
- Akiyama, J.; Fukushima, Y. Entrainment of Noncohesive Bed Sediment into Suspension, External Memorandom No. 195, St.; Anthony Falls Hydraulic Laboratory, U. of Minnessota: Minneapolis, MN, USA, 1985. [Google Scholar]
- Smith, J.D.; McLean, S. Spatially averaged flow over a wavy surface. J. Geophys. Res. 1977, 82, 1735–1746. [Google Scholar] [CrossRef]
- Zordan, J.; Juez, C.; Schleiss, A.J.; Franca, M.J. Entrainment, transport and deposition of sediment by saline gravity currents. Adv. Water Resour. 2018, 115, 17–32. [Google Scholar] [CrossRef]
- Fukushima, Y.; Parker, G.; Pantin, H. Prediction of ignitive turbidity currents in Scripps Submarine Canyon. Mar. Geol. 1985, 67, 55–81. [Google Scholar] [CrossRef]
- Miedema, S.A. OE4607 Introduction Dredging Engineering, 2nd ed.; MSc Offshore and Dredging Engineering Delft University of Technology: Delft, The Netherlands, 2016. [Google Scholar]
- Richardson, J.; Zaki, W. Fluidization and sedimentation—Part I. Trans. Inst. Chem. Eng. 1954, 32, 38–58. [Google Scholar]
0.100 mm | 0.39 | 0.48 | 30 | 1.65 | 6.7 × 10−3 m/s | 3.6 × 10−4 m/s |
0.135 mm | 0.40 | 0.52 | 36 | 1.65 | 11.7 × 10−3 m/s | 1.0 × 10−3 m/s |
Erosion Formula | (a) Wall Velocity, Equation (3) | (b) Mastbergen & Van Den Berg (2003), Equation (23) | (c) Van Rhee (2015), Equation (24) | Percentage of Difference between (b) & (c) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Input Parameter | ||||||||||||||||||||||||||
Run | (m) | (m) | (m/s) | (mm/s) | (m/s) | (m) | (m/s) | (mm/s) | (m/s) | (m) | (m/s) | (mm/s) | (m/s) | h% | u% | c% | % | % | ||||||||
1 | 135 | 60 | 36 | 0.015 | 0.52 | 0.21 | 1.66 | 0.05 | 2.9 | 0.017 | 0.24 | 2.83 | 0.17 | 33 | 0.114 | 0.24 | 2.37 | 0.11 | 13 | 0.061 | 2.9 | 17.4 | 46.9 | 86.4 | 60.3 | |
2 | 135 | 60 | 36 | 0.02 | 0.52 | 0.20 | 1.63 | 0.05 | 2.9 | 0.017 | 0.24 | 3.07 | 0.22 | 46 | 0.159 | 0.23 | 2.43 | 0.12 | 15 | 0.070 | 0.8 | 23.1 | 56.1 | 100.8 | 77.4 | |
3 | 135 | 60 | 36 | 0.025 | 0.52 | 0.18 | 1.61 | 0.06 | 2.9 | 0.017 | 0.23 | 3.26 | 0.27 | 60 | 0.203 | 0.22 | 2.47 | 0.14 | 17 | 0.078 | 4.1 | 27.4 | 62.5 | 111.7 | 89.6 | |
4 | 100 | 60 | 30 | 0.02 | 0.48 | 0.19 | 1.65 | 0.06 | 3.2 | 0.019 | 0.25 | 3.30 | 0.25 | 60 | 0.205 | 0.23 | 2.42 | 0.12 | 15 | 0.068 | 5.9 | 30.9 | 69.7 | 120.6 | 100.0 | |
5 | 100 | 60 | 30 | 0.02 | 0.48 | 0.20 | 1.83 | 0.07 | 4.6 | 0.028 | 0.25 | 3.31 | 0.25 | 61 | 0.208 | 0.24 | 2.48 | 0.13 | 16 | 0.075 | 4.3 | 28.6 | 66.1 | 116.3 | 93.8 | |
6 | 100 | 50 | 30 | 0.02 | 0.48 | 0.17 | 1.60 | 0.07 | 3.1 | 0.019 | 0.22 | 3.17 | 0.27 | 57 | 0.194 | 0.21 | 2.348 | 0.13 | 15 | 0.067 | 5.3 | 29.9 | 67.7 | 118.4 | 97.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaddad, S.; Labeur, R.J.; Uijttewaal, W. Breaching Flow Slides and the Associated Turbidity Current. J. Mar. Sci. Eng. 2020, 8, 67. https://doi.org/10.3390/jmse8020067
Alhaddad S, Labeur RJ, Uijttewaal W. Breaching Flow Slides and the Associated Turbidity Current. Journal of Marine Science and Engineering. 2020; 8(2):67. https://doi.org/10.3390/jmse8020067
Chicago/Turabian StyleAlhaddad, Said, Robert Jan Labeur, and Wim Uijttewaal. 2020. "Breaching Flow Slides and the Associated Turbidity Current" Journal of Marine Science and Engineering 8, no. 2: 67. https://doi.org/10.3390/jmse8020067
APA StyleAlhaddad, S., Labeur, R. J., & Uijttewaal, W. (2020). Breaching Flow Slides and the Associated Turbidity Current. Journal of Marine Science and Engineering, 8(2), 67. https://doi.org/10.3390/jmse8020067