Mineral Composition of Subcritical Water Extracts of Saccorhiza Polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Seaweeds Collection and Preparation
2.3. Subcritical Water Extraction
2.4. Dry Residue
2.5. Organic Content
2.6. Chloride and pH Determination
2.7. Iodine Determination
2.8. Nitrogen Content
2.9. Sulfur Determination
2.10. Determination of Minerals and Trace Elements
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Nabti, E.; Jha, B.; Hartmann, A. Impact of seaweeds on agricultural crop production as biofertilizer. Int. J. Environ. Sci. Technol. 2017, 14, 1119–1134. [Google Scholar] [CrossRef]
- Santos, P.H. Biotechnological Evaluation of Seaweeds as Bio-Fertilizer. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2016. [Google Scholar]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Sharma, H.S.; Fleming, C.; Selby, C.; Rao, J.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illera-Vives, M.; Labandeira, S.S.; Loureiro, L.I.; López-Mosquera, M.E. Agronomic assessment of a compost consisting of seaweed and fish waste as an organic fertilizer for organic potato crops. J. Appl. Phycol. 2017, 29, 1663–1671. [Google Scholar] [CrossRef]
- Nkemka, V.N.; Murto, M. Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J. Environ. Manag. 2010, 91, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, K.R.; Kulkarni, M.G.; Papenfus, H.B.; Van Staden, J. Quantification of plant growth biostimulants, phloroglucinol and eckol, in four commercial seaweed liquid fertilizers and some by-products. Algal Res. 2016, 20, 57–60. [Google Scholar] [CrossRef]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Gougoulias, N.; Papapolymerou, G.; Karayannis, V.; Spiliotis, X.; Chouliaras, N. Effects of Manure Enriched with Algae Chlorella vulgaris on Soil Chemical Properties. Soil Water Res. 2018, 13, 52–59. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Plant Nutrition and Soil Fertility Manual, 2nd ed.; CRC press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Production of seaweed extracts by biological and chemical methods. In Marine Algae Extracts: Processes, Products, and Applications; Kim, S.-K., Chojnacka, K., Eds.; Wiley: Weinheim, Germany, 2015; Volume 1, pp. 121–144. [Google Scholar] [CrossRef]
- Uthirapandi, V.; Suriya, S.; Boomibalagan, P.; Eswaran, S.; Ramya, S.S.; Vijayanand, N.; Kathiresan, D. Bio-fertilizer potential of seaweed liquid extracts of marine macro algae on growth and biochemical parameters of Ocimum sanctum. J. Pharm. Phytochem. 2018, 7, 3528–3532. Available online: http://www.phytojournal.com/archives/2018/vol7issue3/PartAV/7-3-244-742.pdf (accessed on 22 January 2020).
- Godlewska, K.; Michalak, I.; Tuhy, Ł.; Chojnacka, K. The Influence of pH of Extracting Water on the Composition of Seaweed Extracts and Their Beneficial Properties on Lepidium sativum. Biomed Res. Int. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Godlewska, K.; Michalak, I.; Tuhy, Ł.; Chojnacka, K. Plant growth biostimulants based on different methods of seaweed extraction with water. Biomed Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Tuhy, Ł.; Chojnacka, K. Seaweed extract by microwave-assisted extraction as plant growth biostimulant. Open Chem. 2015, 13, 1183–1195. [Google Scholar] [CrossRef]
- Lötze, E.; Hoffman, E.W. Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. J. Appl. Phycol. 2016, 28, 1379–1386. [Google Scholar] [CrossRef]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P.B. Alternative and efficient extraction methods for marine-derived compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef] [Green Version]
- Cvetanović, A.; Švarc-Gajić, J.; Mašković, P.; Savić, S.; Nikolić, L. Antioxidant and biological activity of chamomile extracts obtained by different techniques: Perspective of using superheated water for isolation of biologically active compounds. Ind. Crops Prod. 2015, 65, 582–591. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Gašić, U.; Tešić, Ž.; Zengin, G.; Zeković, Z.; Đurović, S. Isolation of apigenin from subcritical water extracts: Optimization of the process. J. Supercrit. Fluids 2017, 120, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.G.; Mammucari, R.; Foster, N. A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 2011, 172, 1–17. [Google Scholar] [CrossRef]
- Dalvi, S.V.; Mukhopadhyay, M. A novel process for precipitation of ultra-fine particles using sub-critical CO2. Powder Technol. 2009, 195, 190–195. [Google Scholar] [CrossRef]
- Araújo, R.; Bárbara, I.; Tibaldo, M.; Berecibar, E.; Tapia, P.D.; Pereira, R.; Santos, R.; Pinto, I.S. Checklist of benthic marine algae and cyanobacteria of northern Portugal. Bot. Mar. 2009, 52, 24–46. [Google Scholar] [CrossRef]
- Pereira, T.R.; Engelen, A.H.; Pearson, G.A.; Serrào, E.A.; Destombe, C.; Valero, M. Temperature effects on the microscopic haploid stage development of Laminaria ochroleuca and Sacchoriza polyschides, kelps with contrasting life histories. Cah. Biol. Mar. 2011, 52, 395–403. [Google Scholar]
- Pereira, T.R.; Engelen, A.H.; Pearson, G.A.; Valero, M.; Serrão, E.A. Response of kelps from different latitudes to consecutive heat shock. J. Exp. Mar. Bio. Ecol. 2015, 463, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L. Littoral of Viana do Castelo-ALGAE: Uses in Agriculture, Gastronomy and Food Industry (Bilingual); Câmara Municipal de Viana do Castelo: Viana do Castelo, Portugal, 2010; Available online: https://www.researchgate.net/publication/235767693_Littoral_of_Viana_do_CasteloAlage_-_Uses_in_Agriculture_Gastronomy_and_Food_Industry (accessed on 15 January 2020).
- Santos, R.; Duarte, P. Marine plant harvest in Portugal. J. Appl. Phycol. 1991, 3, 11. [Google Scholar] [CrossRef]
- Bragança, I.; Plácido, A.; Paíga, P.; Domingues, V.F.; Delerue-Matos, C. QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci. Total Environ. 2012, 433, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, E.I.; García, V.P. Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresour. Technol. 1992, 41, 265–272. [Google Scholar] [CrossRef]
- Machado, S.; Oliva-Teles, T.; Soares, C.; Antunes, F.; Carvalho, A.; Correia, M.; Ramalhosa, M.J.; Domingues, V.F.; Morais, S.; Oliveira, T.A.C.; et al. Chloride in edible seaweeds from North Atlantic Portuguese coast. In Disponibilidade, Valorização e Inovação: Uma Abordagem Multidimensional dos Alimentos, Proceedings of the XII Encontro de Química dos Alimentos. Universidade do Porto, LAQV/REQUIMTE, Porto, Portugal, 14–16 September 2016; Sociedade Portuguesa de Química: Porto, Portugal, 2016; pp. 198–201. [Google Scholar]
- Haap, M.; Roth, H.J.; Huber, T.; Dittmann, H.; Wahl, R. Urinary iodine: Comparison of a simple method for its determination in microplates with measurement by inductively coupled plasma mass spectrometry. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- AOAC. AOAC-Association of Official Analytical Chemists, 18th ed.; Official Methods of Analysis of AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- HACH. Method 8039, Cadmium Reduction Method, 0.3 to 30.0 mg/L NO3–N (HR); Hach: Loveland, CO, USA, 2014. [Google Scholar]
- Kolmert, Å.; Wikström, P.; Hallberg, K.B. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods. 2000, 41, 179–184. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Wolfram, Mathematica (Computer Software); Wolfram Research, Inc.: Champaign, IL, USA, 2017. [Google Scholar]
- Tavakoli, O.; Yoshida, H. Application of sub-critical water technology for recovery of heavy metal ions from the wastes of Japanese scallop Patinopecten yessoensis. Sci. Total Environ. 2008, 398, 175–184. [Google Scholar] [CrossRef]
- Cabrita, A.R.; Maia, M.R.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Arnon, D.; Stout, P. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 1939, 14, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.; Stout, P. Molybdenum as an essential element for higher plants. Plant Physiol. 1939, 14, 599–602. [Google Scholar] [CrossRef] [Green Version]
- Santos, J. Fertilização: Fundamentos Agroambientais da Utilização dos Adubos e Corretivos; Publindustria: Porto, Portugal, 2015. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Gonzali, S.; Kiferle, C.; Perata, P. Iodine biofortification of crops: Agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 2017, 44, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Otieno, S.B. Selenium an essential micronutrient for human health. EC Nutr. 2017, 7, 261–263. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I.; Eichler-Löbermann BMalusa, E. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl. Microbiol. Biotechnol. 2015, 99, 4983–4996. [Google Scholar] [CrossRef]
Element. | Concentration | Units Per Extract | ||
---|---|---|---|---|
Main Macronutrients | ||||
TOM | 34.1 ± 0.3 | g/L | ||
TOC = TC – IC 1 | 12.7 ± 0.2 | g/L | ||
K | 15.7 ± 0.2 | g/L | ||
N—total | 80.9 ± 2.1 | mg/L | ||
52.0 ± 1.3 | mg/L | |||
28.9 ± 1.7 | mg/L | |||
P | 363 ± 20 | mg/L | ||
Secondary macronutrients | ||||
1.52 ± 0.06 | g/L | |||
Ca | 1.09 ± 0.11 | g/L | ||
Mg | 1.02 ± 0.08 | g/L | ||
Micronutrients | ||||
Cl | 17.4 ± 0.2 | g/L | ||
Zn | 21.0 ± 0.9 | mg/L | ||
Fe | 10.2 ± 0.3 | mg/L | ||
B | 6.02 ± 0.11 | mg/L | ||
Ni | 2.11 ± 0.08 | mg/L | ||
Mn | 1.12 ± 0.01 | mg/L | ||
Mo | 0.533 ± 0.027 | mg/L | ||
Cu | 0.368 ± 0.007 | mg/L | ||
Beneficial nutrients | ||||
Na | 5.46 ± 0.11 | g/L | ||
Bi | 36.0 ± 0.2 | mg/L | ||
Ba | 30.0 ± 0.2 | mg/L | ||
In | 18.0 ± 3.0 | mg/L | ||
Rb | 6.7 ± 0.29 | mg/L | ||
Sr | 5.00 ± 0.90 | mg/L | ||
Li | 4.00 ± 0.90 | mg/L | ||
Cr | 1.76 ± 0.02 | mg/L | ||
As | 1.32 ± 0.07 | mg/L | ||
Se | 973 ± 39 | µg/L | ||
Pb | 533 ± 30 | µg/L | ||
Ti | 288 ± 10 | µg/L | ||
V | 243 ± 9 | µg/L | ||
I | 203 ± 19 | µg/L | ||
Cd | 74.6 ± 5.9 | µg/L | ||
Ag | 60.6 ± 5.6 | µg/L | ||
Sn | 27.8 ± 1.5 | µg/L | ||
Co | 11.3 ± 0.2 | µg/L | ||
Sb | 9.40 ± 0.50 | µg/L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, C.; Švarc-Gajić, J.; Oliva-Teles, M.T.; Pinto, E.; Nastić, N.; Savić, S.; Almeida, A.; Delerue-Matos, C. Mineral Composition of Subcritical Water Extracts of Saccorhiza Polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal. J. Mar. Sci. Eng. 2020, 8, 244. https://doi.org/10.3390/jmse8040244
Soares C, Švarc-Gajić J, Oliva-Teles MT, Pinto E, Nastić N, Savić S, Almeida A, Delerue-Matos C. Mineral Composition of Subcritical Water Extracts of Saccorhiza Polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal. Journal of Marine Science and Engineering. 2020; 8(4):244. https://doi.org/10.3390/jmse8040244
Chicago/Turabian StyleSoares, Cristina, Jaroslava Švarc-Gajić, Maria Teresa Oliva-Teles, Edgar Pinto, Nataša Nastić, Saša Savić, Agostinho Almeida, and Cristina Delerue-Matos. 2020. "Mineral Composition of Subcritical Water Extracts of Saccorhiza Polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal" Journal of Marine Science and Engineering 8, no. 4: 244. https://doi.org/10.3390/jmse8040244
APA StyleSoares, C., Švarc-Gajić, J., Oliva-Teles, M. T., Pinto, E., Nastić, N., Savić, S., Almeida, A., & Delerue-Matos, C. (2020). Mineral Composition of Subcritical Water Extracts of Saccorhiza Polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal. Journal of Marine Science and Engineering, 8(4), 244. https://doi.org/10.3390/jmse8040244