Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,396)

Search Parameters:
Keywords = micronization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3132 KB  
Article
Assessment of Formation Damage in Carbonate Rocks: Isolated Contribution of Filtration Control Agents in Aqueous Fluids
by Mário C. de S. Lima, Victória B. Romualdo, Gregory V. B. de Oliveira, Ernani D. da S. Filho, Karine C. Nóbrega, Anna C. A. Costa, Elessandre A. de Souza, Sergio T. C. Junior, Marcos A. F. Rodrigues and Luciana V. Amorim
Appl. Sci. 2025, 15(21), 11572; https://doi.org/10.3390/app152111572 - 29 Oct 2025
Abstract
Formation damage caused by wellbore fluids remains a key concern in carbonate reservoirs, where pore plugging and filtrate invasion can severely reduce permeability. This study investigates the influence of filtrate-control components in cellulose-based polymeric fluids on the potential for formation damage in carbonate [...] Read more.
Formation damage caused by wellbore fluids remains a key concern in carbonate reservoirs, where pore plugging and filtrate invasion can severely reduce permeability. This study investigates the influence of filtrate-control components in cellulose-based polymeric fluids on the potential for formation damage in carbonate rocks and evaluates the performance of HPA starch as an alternative to cellulose, focusing on its comparative effects on formation permeability. Experimental tests were performed using Indiana Limestone cores to measure filtration behavior and permeability recovery after exposure to different polymeric solutions. The results revealed distinct mechanisms associated with each additive: PAC LV controlled fluid loss mainly by adsorption and pore plugging, while HPA starch formed more deformable and permeable structures. Glycerin, when used alone, did not induce formation damage but increased fluid viscosity, favoring more stable dispersion of the polymeric phase. Micronized calcite enhanced external cake consolidation through particle bridging. The combined use of PAC LV, glycerin, and calcite provided the most efficient filtration control and minimized formation damage. These findings contribute to understanding the isolated and synergistic roles of filtrate-control agents and support the design of optimized polymer-based fluids for well intervention and abandonment operations. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

14 pages, 2275 KB  
Article
Surface Charge and Size Evolution of Silica–Iron Colloidal Particles in Simulated Late-Archaean Seawater
by Weiming Jiang, Xiao Wu, Hongmei Yang, Juan Fu, Qirui Zeng, Sizhe Li, Ruiyao Luo, Yiping Yang, Xiaoju Lin and Jianxi Zhu
Minerals 2025, 15(11), 1123; https://doi.org/10.3390/min15111123 - 28 Oct 2025
Abstract
Late-Archean seawater functioned as a vast, redox-tuned colloidal system for which its kinetics were largely governed by the surface chemistry of silica–iron nanoparticles. By reproducing Archean seawater (≈0.7 M ionic strength, 25 °C) in laboratory anoxic-to-mildly oxic reactors, the ζ potential (zeta-potential(ζ)) of [...] Read more.
Late-Archean seawater functioned as a vast, redox-tuned colloidal system for which its kinetics were largely governed by the surface chemistry of silica–iron nanoparticles. By reproducing Archean seawater (≈0.7 M ionic strength, 25 °C) in laboratory anoxic-to-mildly oxic reactors, the ζ potential (zeta-potential(ζ)) of silica–iron nanoparticles was investigated, and we tracked how transient O2 pulses (≤9 mg L−1) regulated it. The zeta (ζ) potential was applied as the key diagnostic parameter to quantify both the sign of the ζ potential and the colloidal stability of simulated silica–iron particles in dispersion. Under strictly anoxic conditions, silica colloids (SiO2(aq)) exhibit a persistently negative ζ potential (ζ ≈ −25 mV) in the simulated seawater (pH 6.5), arising from deprotonated silanol groups (≡Si–O). Upon the addition of Fe2+, the inner-sphere complexation of ferrous ions on SiO2 colloids partially replaces ≡Si–O with ≡Si–O–Fe+/≡Si–O–Fe–OH sites; the net negative charge density at the outer Stern plane nevertheless increases, and the ζ potential shifts from −25 mV to −30 mV. As the simulated seawater was oxygenated, the dissolved and surface-bound Fe2+ ions were oxidized to Fe3+, causing the ζ potential to exceed −30 mV. This study demonstrates that Fe2+–silica interactions generate electrostatic destabilization, suspending micron-scale aggregates and thus modulating the solubility and speciation of SiO2 in early oceans. Also, transient micro-oxic pulses are shown to shift silica–iron colloids between metastable aggregation and dispersion by modulating their ζ potential. Subsequently, AFM and TEM were used to characterize the morphological changes in the colloidal particles from the liquid state to the dry state. Furthermore, infrared and XPS analyses were conducted on the colloidal samples. These findings provide certain reference significance for reconstructing the chemical evolution process of seawater in the Late-Archean period and for understanding the factors influencing the silicon–iron cycle of seawater in the Late-Archean era. Full article
Show Figures

Graphical abstract

18 pages, 4894 KB  
Article
Study on Microdroplets Generation and Detection Method in Four-Way Microfluid Structure (FWMS) by Double Photoresist Method Pulses
by Lele Luo and Lu Zhang
Micromachines 2025, 16(11), 1205; https://doi.org/10.3390/mi16111205 - 23 Oct 2025
Viewed by 217
Abstract
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and [...] Read more.
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and complex systems for capacitance detection, and high-throughput imaging detections are challenging. In this study, four-way microfluid structure (FWMS) is proposed for microdroplets generation and detection. FWMS, fixed on a 3D-printed holder, is designed to generate microdroplets (100–500 µm), with optical fibers embedded to collect double photoresist method pulses of scattering light by fast-moving microdroplets. The size and volume of the microdroplets are retrieved by tracking the double pulse signal in the time sequence. In the experiments, 50 groups of microdroplets (a total of 105 microdroplets) with size ranging from 100 to 450 µm were generated and detected. Compared with traditional imaging detection, this method has a better sampling rate and detection error of less than 1.42%, which can provide a simple and accurate integrated microfluid system for microdroplet generation and synchronous detection. Full article
Show Figures

Figure 1

28 pages, 2591 KB  
Review
Standard Sample Preparation for Serial Femtosecond Crystallography
by Christina Schmidt, Kristina Lorenzen, Joachim Schulz and Huijong Han
Biomolecules 2025, 15(11), 1488; https://doi.org/10.3390/biom15111488 - 22 Oct 2025
Viewed by 243
Abstract
The development of serial crystallography (SX), including serial synchrotron crystallography (SSX) at synchrotron sources and serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs), has facilitated the collection of high-resolution diffraction data from micron-sized crystals, providing unique insights into the structures and dynamics [...] Read more.
The development of serial crystallography (SX), including serial synchrotron crystallography (SSX) at synchrotron sources and serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs), has facilitated the collection of high-resolution diffraction data from micron-sized crystals, providing unique insights into the structures and dynamics of biomolecules at room temperature. Standard samples are essential for the commissioning of new XFEL instruments and the validation of experimental setups. In this review, we summarize currently used standard proteins and describe representative microcrystal preparation workflows for four widely adopted models, lysozyme, myoglobin, iq-mEmerald, and photoactive yellow protein (PYP), drawing on established methodologies and accumulated experience from their applications at the European XFEL. By consolidating existing knowledge and integrating protocols that have been systematically refined and optimized through our experimental efforts, this review aims to provide practical guidance for the serial crystallography community, thereby enhancing reproducibility and ensuring consistent experimental performance across facilities. Full article
(This article belongs to the Special Issue Innovative Biomolecular Structure Analysis Techniques)
Show Figures

Figure 1

18 pages, 5360 KB  
Article
Anti-Icing and Frost Property of Superhydrophobic Micro-Nano Structures with Embossed Micro-Array Channels
by Han Luo, Xiaoliang Wang, Qiwei Li, Honglei Liu, Lei Chen, Debin Shan, Bin Guo and Jie Xu
Materials 2025, 18(20), 4813; https://doi.org/10.3390/ma18204813 - 21 Oct 2025
Viewed by 402
Abstract
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed [...] Read more.
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed to generate nanoscale cluster structures on hundreds of microns array channels to construct a superhydrophobic micro-nano composite structure. The droplet freezing and frosting behavior of the hydrophobic microstructures was analyzed, and it was found that the anti-icing and anti-frost properties of the microstructure surface improved with an increase in the microstructure period size (T). Compared with the original surface, the freezing time of the microstructure at T = 500 μm was delayed by 214.3% (7 s → 22 s), and the frost layer coverage time was delayed by 75.7% (70 s → 123 s). The maximum water contact angle of the superhydrophobic micro-nano composite structure was 153.3°, and the droplet freezing time was delayed to 95 s, which is a 1166.67% difference, indicating that the multi-stage micro-nano composite structure can significantly improve surface anti-icing performance. The main reason for this result is that the bottom of the microstructure can store air pockets, preventing droplet wetting and heat exchange. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 3526 KB  
Article
Selective Endocytosis-Mediated Omicron S1-RBD Internalization Revealed by Reconstitution of ACE2-S1-RBD Interaction on Micropatterned Membrane Substrates
by Angelin M. Philip, S. M. Nasir Uddin, Zeyaul Islam, Prasanna R. Kolatkar and Kabir H. Biswas
Int. J. Mol. Sci. 2025, 26(20), 10216; https://doi.org/10.3390/ijms262010216 - 21 Oct 2025
Viewed by 199
Abstract
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity [...] Read more.
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity for ACE2. While many reports are available describing the SARS-CoV-2 infection mechanism, there is a dearth of studies towards understanding the initial interaction of the S1-RBD with ACE2 on living host cells and the role of endocytosis and cytoskeleton in the process. Here, we reconstituted the interaction between S1-RBD- and ACE2-expressing host cells in a hybrid live cell-supported lipid bilayer (SLB) platform enabling live monitoring of the interaction between S1-RBD on SLBs and the ACE2 receptor on living cells and showed that cells depleted Omicron S1-RBD from SLB corrals, likely through endocytosis. Specifically, interaction of living host cells with S1-RBD-functionalized SLB substrates resulted in the enrichment of S1-RBD and ACE2 at the cell–SLB interface. Interaction of host cells with wild type (WT), Omicron, and Omicron Revertant S1-RBD functionalized on micron-scale SLB corrals, which mimic viral membranes but are flat, also resulted in their enrichment. However, cells interacting with Omicron S1-RBD revealed a depletion of the protein from many corrals, which was generally not observed with the WT S1-RBD and was reduced with the Omicron Revertant, which contains the Q493R mutation reversion, S1-RBD. Further, S1-RBD depletion coincided with the localization of the early endosomal marker EEA1. Importantly, treatment of cells with the clathrin inhibitor, pitstop 2, but not the myosin II inhibitor, blebbistatin, significantly reduced Omicron S1-RBD depletion. Collectively, these observations suggest that the SARS-CoV-2 Omicron variant has evolved, through mutations in its S1-RBD, to take advantage of the cellular endocytic pathway for enhanced infection, which is not observed with the parental SARS-CoV-2 and appears to be lost in the Omicron Revertant variant. Additionally, these results underscore the significance of the hybrid live cell–SLB platform in studying SARS-CoV-2 S1-RBD-ACE2 interaction and the potential impact of mutations in the S1-RBD on adapting to a specific cellular entry mechanism. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 2612 KB  
Article
A Novel Liposomal Palmitoylethanolamide (PEA) with Enhanced Gastrointestinal Permeating Properties
by Giada Ceccarelli, Chiara Pennetta, Francesco Montalbano, Mariano Licciardi, Valentina Melfi and Rossana G. Iannitti
Nutraceuticals 2025, 5(4), 34; https://doi.org/10.3390/nutraceuticals5040034 - 20 Oct 2025
Viewed by 339
Abstract
Palmitoylethanolamide (PEA) is a naturally occurring fatty acid amide and an endocannabinoid-related lipid that has been extensively studied for its analgesic, immunomodulatory, antimicrobial, and anti-inflammatory properties. It has demonstrated efficacy in various applications and is currently utilized as a nutraceutical for its antinociceptive, [...] Read more.
Palmitoylethanolamide (PEA) is a naturally occurring fatty acid amide and an endocannabinoid-related lipid that has been extensively studied for its analgesic, immunomodulatory, antimicrobial, and anti-inflammatory properties. It has demonstrated efficacy in various applications and is currently utilized as a nutraceutical for its antinociceptive, neuroprotective, and immunomodulatory effects, particularly in supporting brain and joint health and in mitigating inflammatory processes. Background/Objectives: Despite its significant therapeutic potential, the clinical effectiveness of PEA is limited by its poor water solubility and, consequently, low oral bioavailability. Additionally, degradation in the acidic gastrointestinal environment further compromises its absorption. To address these challenges, several technological strategies have been explored to improve its pharmacokinetic profile, including conventional micronization and ultra-micronization techniques. The objective of this study was to characterize a novel liposomal formulation based on PEA and evaluate its intestinal permeation and absorption. Methods: Comparative permeation studies of PEA were conducted using ex vivo models to evaluate its absorption characteristics across gastrointestinal mucosae. The experiments were performed in a Franz diffusion cell system using a porcine colon mucosa in two physiologically relevant media: Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF). Results: Liposomal PEA showed a more efficient and continuous release over time, reaching higher concentrations of PEA permeated through the membrane. Conclusions: Our findings demonstrate a significant improvement in PEA’s permeability and absorption in an ex vivo simulated gastrointestinal environment. Liposomal PEA appears to be more affine to biological membranes. These results suggest that liposomal PEA may represent a promising therapeutic strategy for managing chronic pain and inflammatory conditions such as chronic pelvic pain. Full article
(This article belongs to the Special Issue New Insights into Nano Nutraceuticals)
Show Figures

Figure 1

19 pages, 4661 KB  
Article
The Influence of Various Guar Meal Types on Growth Performance, Carcass Composition and Histology of the Liver of Broiler Chickens
by Anna Milczarek, Magdalena Pachnik, Maria Osek and Renata Świnarska
Agriculture 2025, 15(20), 2171; https://doi.org/10.3390/agriculture15202171 - 20 Oct 2025
Viewed by 322
Abstract
This study evaluated how various types of guar meal in diets of broiler chickens affect their rearing results, carcass composition, and liver histology. The experiment was conducted in one hundred sixty Ross 308 broilers randomly allocated to four groups consisting of the same [...] Read more.
This study evaluated how various types of guar meal in diets of broiler chickens affect their rearing results, carcass composition, and liver histology. The experiment was conducted in one hundred sixty Ross 308 broilers randomly allocated to four groups consisting of the same number of birds (C, GM1, GM2, and GM3). The birds were reared for over 42 days and fed with starter (days 1–21), grower (days 22–35), and finisher (days 36–42) rations. All feed rations were prepared using maize meal, soybean meal, oil, mineral, and feed additives. The experimental factor was guar meal type included in feed rations (starter, grower, and finisher stage) at 6% each: C (control group)—without guar meal, GM1—raw guar meal, GM2—Microlam, and GM3—roasted guar meal. Microlam is a high-protein animal feed produced by laminating and micronizing guar meal for enhanced digestibility and protein content, while roasted guar meal (also called korma) is a more basic protein supplement for livestock and poultry that has undergone roasting to improve its taste and digestibility. It was shown that 6% of raw guar meal in the feed rations affected significantly higher (2646 g) body weight of broilers in comparison to birds fed the same amount of Microlam (2583 g), however feed conversion ratio were similar (1.63–1.65 kg/kg; p > 0.05) in all groups. Thus similar musculature and fatness, broiler chickens from GM1 and GM2 groups obtained higher dressing percentage in compare to group GM3 (p ≤ 0.05). No significant effect of guar meal on the physical characteristics (except pH1), or the results of the proximate composition of the breast muscles was found. Rations fed to broiler chickens had no effect on the microscopic image of the liver or reaction to the presence of neutral fats. In summary, 6% inclusion of raw guar meal should be recommended in broiler chicken diets as a partial substitute for soybean meal because it contributes to achieving the best growth performance results as well as dressing percentage, without deterioration carcass composition, and liver histology. Full article
(This article belongs to the Special Issue Effects of Dietary Interventions on Monogastric Animal Production)
Show Figures

Figure 1

23 pages, 29181 KB  
Article
Achieving Simultaneous Enhancement of Strength and Ductility in Aluminum Matrix Composites Reinforced by Dual-Scale Hybrid Reinforcement via Friction Stir Processing
by Zikun Wang, Xianyong Zhu, Chen Wang, Xiong Xiao, Ke Zhang, Cheng Jiang and Jiaan Liu
Materials 2025, 18(20), 4780; https://doi.org/10.3390/ma18204780 - 19 Oct 2025
Viewed by 338
Abstract
Overcoming the strength–ductility trade-off in conventional aluminum matrix composites (AMCs) remains a significant challenge. This study employs dual-scale hybrid reinforcement particles comprising micron-sized Cu and nano-sized Ti, alongside bimodal micro-sized pure Al powders as matrix fillers. The AMCs were fabricated through ball milling [...] Read more.
Overcoming the strength–ductility trade-off in conventional aluminum matrix composites (AMCs) remains a significant challenge. This study employs dual-scale hybrid reinforcement particles comprising micron-sized Cu and nano-sized Ti, alongside bimodal micro-sized pure Al powders as matrix fillers. The AMCs were fabricated through ball milling (BM) combined with multi-pass friction stir processing (FSP). The homogenously distributed hybrid reinforcement particles generate an integrated composite region consisting of both coarse-grained (CG) and fine-grained (FG) structures, demonstrating enhanced material characteristics. The interwoven network of coarse- and fine-crystalline domains constructs a heterogeneous architecture that enables simultaneous improvement in both strength and ductility properties. The micron-Cu acts as a skeletal support within the matrix, enhancing load transfer efficiency and effectively hindering dislocation motion. The nano-Ti and in situ intermetallics facilitate grain refinement via the pinning effect and promote heterogeneous nucleation, which contributes to stress dispersion and dislocation obstruction. The addition of dual-scale micron-sized pure Al powder particles promotes the formation of the heterogeneous architecture, which enhances the balancing of strength and ductility in the composite. Following compositing (Al10-5Cu-10Ti-10Al20), the alloy exhibits an ultimate tensile strength (UST) of 267 MPa, a hardness of 98 HV, and an elongation of 16.7%, representing increases of 193.4%, 226.7%, and 9.9%, respectively, relative to the base metal. Full article
Show Figures

Figure 1

10 pages, 13588 KB  
Article
Densification and Conductivity of Li-Doped NiO Targets for Hole-Transport Layer of Perovskite Solar Cells
by Juan Li, Jiwen Xu, Guisheng Zhu, Xianjie Zhou, Fei Shang and Huarui Xu
Ceramics 2025, 8(4), 128; https://doi.org/10.3390/ceramics8040128 - 18 Oct 2025
Viewed by 249
Abstract
NiO-based hole-transport layers are crucial for high-efficiency perovskite solar cells. An industrial deposition method of NiO films is magnetron sputtering using ceramic targets. NiO targets doped with Li contents at 1%, 3%, and 5% were designed, and the doping contents and sintering temperatures [...] Read more.
NiO-based hole-transport layers are crucial for high-efficiency perovskite solar cells. An industrial deposition method of NiO films is magnetron sputtering using ceramic targets. NiO targets doped with Li contents at 1%, 3%, and 5% were designed, and the doping contents and sintering temperatures were investigated. All the targets have a face-centered cubic phase, dense microstructure, and an average size of a few microns. The NLO targets sintered at an optimal temperature of 1400 °C exhibited high relative density (>98%) and low resistivity (<6 Ω∙cm). These results pave the way for depositing NiO-based hole-transport layer by magnetron sputtering. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

17 pages, 988 KB  
Review
Estradiol and Micronized Progesterone: A Narrative Review About Their Use as Hormone Replacement Therapy
by Martina Foschi, Giulia Groccia, Maria Laura Rusce, Celeste Medaglia, Claudia Aio, Alessandra Sponzilli, Veronica Setti, Christian Battipaglia and Alessandro D. Genazzani
J. Clin. Med. 2025, 14(20), 7328; https://doi.org/10.3390/jcm14207328 - 16 Oct 2025
Viewed by 670
Abstract
Hormone replacement therapy (HRT) currently represents the first-line treatment to manage and reduce menopausal symptoms. Standard regimens generally combine 17β-estradiol (E2) or conjugated equine estrogens (CEEs) with micronized progesterone (P4) or synthetic progestins. While synthetic progestins ensure endometrial protection against estrogen-induced stimulation of [...] Read more.
Hormone replacement therapy (HRT) currently represents the first-line treatment to manage and reduce menopausal symptoms. Standard regimens generally combine 17β-estradiol (E2) or conjugated equine estrogens (CEEs) with micronized progesterone (P4) or synthetic progestins. While synthetic progestins ensure endometrial protection against estrogen-induced stimulation of the endometrium, their impact on metabolic, cardiovascular, skeletal, and cognitive systems is heterogeneous and not always beneficial. In contrast, progesterone, as a micronized preparation (P4), allows for more physiological effects because it is chemically identical to endogenous progesterone. This narrative review provides an updated overview of the clinical benefits of HRT regimens based on E2/P4, with a focus on their impact on endometrial thickness, venous thromboembolism (VTE), cardiovascular diseases (CVDs), breast cancer risk, cognitive effects, bone protection, and quality of life (QoL). Full article
(This article belongs to the Special Issue Recent Developments in Gynecological Endocrinology)
Show Figures

Figure 1

47 pages, 19308 KB  
Review
Research Progress of Electrochemical Machining Technology in Surface Processing: A Review
by Yiran Wang, Yong Yang, Chaoyang Han, Guibing Pang, Shuangjiao Fan, Yunchao Xu, Zhen He and Jianru Fang
Micromachines 2025, 16(10), 1174; https://doi.org/10.3390/mi16101174 - 16 Oct 2025
Viewed by 602
Abstract
Traditional mechanical processing techniques are confronted with significant challenges when machining advanced materials possessing excellent mechanical properties. Electrochemical machining (ECM), as a material removal technology based on the principle of anodic dissolution, demonstrates distinctive advantages including the absence of contact stress, independence from [...] Read more.
Traditional mechanical processing techniques are confronted with significant challenges when machining advanced materials possessing excellent mechanical properties. Electrochemical machining (ECM), as a material removal technology based on the principle of anodic dissolution, demonstrates distinctive advantages including the absence of contact stress, independence from material hardness, and elimination of mechanical residual stress and recast layers. These characteristics render ECM particularly suitable for high-precision applications requiring superior surface quality. This review systematically summarizes the applications, recent progress, and current challenges of ECM in surface processing. According to diverse surface requirements, ECM technology is classified into two core directions based on primary objectives. The first direction focuses on surface quality enhancement, where nanoscale planarization, residual stress reduction, and uniform surface performance are achieved through precise regulation of anodic dissolution. The second direction concerns material shaping, which is subdivided into macro-scale and micro-scale processing. Macro-scale forming combines electrochemical dissolution with mechanical action to maintain high material removal rate (MRR) while achieving micron-level precision. Micro-scale forming employs nanosecond pulse power supplies and precision electrode/mask designs to overcome manufacturing limitations of micro-nano features on hard-brittle materials. Despite progress achieved, key technical bottlenecks persist, including unstable dynamic control of the inter-electrode gap, environmental concerns regarding electrolytes, and tooling degradation. Future research should prioritize the development of green processing technologies, intelligent control systems, multi-scale manufacturing strategies, and multi-energy field hybrid technologies to enhance the capability of ECM in meeting increasingly stringent surface requirements for advanced materials. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

8 pages, 1353 KB  
Communication
Plant Cuticles Exhibit Significant Mid-Infrared Emissivity in the Atmospheric Windows
by Antonio Heredia, Ana González-Moreno, José J. Benítez and Eva Domínguez
Int. J. Mol. Sci. 2025, 26(20), 9917; https://doi.org/10.3390/ijms26209917 - 12 Oct 2025
Viewed by 295
Abstract
As sessile organisms, plants have developed strategies to cope with exposure to high radiation. The plant cuticle is located at the interface between the plant and the surrounding environment, thus acting as a first barrier that protects plants against environmental conditions, including solar [...] Read more.
As sessile organisms, plants have developed strategies to cope with exposure to high radiation. The plant cuticle is located at the interface between the plant and the surrounding environment, thus acting as a first barrier that protects plants against environmental conditions, including solar radiation. The isolated cuticles displayed notable absorptance in the infrared spectral range which, according to Kirchhoff’s law of thermal radiation, equals the emission dissipation ability. Comparison among the different cuticles showed that a significant range of their reflectance, transmittance, and absorbance spectra match the spectral regions known as atmospheric windows, between 3–4 and 8–13 microns, located within the mid-infrared region (MIR). They allow energy to pass through into the outer space. These optical parameters varied between cuticles from different plant species and they were not a simple function of the cuticle’s thickness but the product of its specific composition in combination with its molecular arrangement. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Research: New Findings and Perspectives)
Show Figures

Figure 1

26 pages, 7654 KB  
Article
Enhancement of Poly(Lactic Acid) Fire Retardancy Through the Incorporation of Sludge Residue as a Synergistic Additive
by Jimena de la Vega, Antonio Vázquez-López and De-Yi Wang
Polymers 2025, 17(20), 2717; https://doi.org/10.3390/polym17202717 - 10 Oct 2025
Viewed by 499
Abstract
The escalating global challenge of waste production underscores the urgency for innovative waste management solutions. Sewage sludge, a byproduct derived from anaerobic digesters of wastewater treatment, was investigated as a flame-retardant synergist in Poly(Lactic Acid) (PLA). Micronized sludge was combined with ammonium polyphosphate [...] Read more.
The escalating global challenge of waste production underscores the urgency for innovative waste management solutions. Sewage sludge, a byproduct derived from anaerobic digesters of wastewater treatment, was investigated as a flame-retardant synergist in Poly(Lactic Acid) (PLA). Micronized sludge was combined with ammonium polyphosphate (APP) at different ratios. The formulation containing (4:1) APP:Sludge exhibited enhanced flame retardancy compared to APP alone, achieving higher Limiting Oxygen Index (LOI) values and a V-0 rating in the UL-94 test. Cone calorimeter analysis further confirmed that the sludge contributed to reducing heat release and smoke generation. SEM–EDS analysis indicated that microcrystals, mainly composed of phosphorus and calcium oxides from APP and sludge, likely acted as protective barriers against heat transfer. In addition, filament extrusion demonstrated that sludge incorporation is compatible with 3D printing. This approach preserved structural integrity, sustainably utilized sewage sludge, and reduced reliance on commercial flame retardants. Integrating sludge as a synergist offers a promising solution for waste management and safer, more sustainable flame-retardant materials, supporting a circular economy. Full article
(This article belongs to the Special Issue Novel Developments in Flame-Retardant Polymeric Materials)
Show Figures

Graphical abstract

21 pages, 3712 KB  
Article
CISC-YOLO: A Lightweight Network for Micron-Level Defect Detection on Wafers via Efficient Cross-Scale Feature Fusion
by Yulun Chi, Xingyu Gong, Bing Zhao and Lei Yao
Electronics 2025, 14(19), 3960; https://doi.org/10.3390/electronics14193960 - 9 Oct 2025
Viewed by 459
Abstract
With the development of the semiconductor manufacturing process towards miniaturization and high integration, the detection of microscopic defects on wafer surfaces faces the challenge of balancing precision and efficiency. Therefore, this study proposes a lightweight inspection model based on the YOLOv8 framework, aiming [...] Read more.
With the development of the semiconductor manufacturing process towards miniaturization and high integration, the detection of microscopic defects on wafer surfaces faces the challenge of balancing precision and efficiency. Therefore, this study proposes a lightweight inspection model based on the YOLOv8 framework, aiming to achieve an optimal balance between inspection accuracy, model complexity, and inference speed. First, we design a novel lightweight module called IRB-GhostConv-C2f (IGC) to replace the C2f module in the backbone, thereby significantly minimizing redundant feature computations. Second, a CNN-based cross-scale feature fusion neck network, the CCFF-ISC neck, is proposed to reduce the redundant computation of low-level features and enhance the expression of multi-scale semantic information. Meanwhile, the novel IRB-SCSA-C2f (ISC) module replaces the C2f in the neck to further improve the efficiency of feature fusion. In addition, a novel dynamic head network, DyHeadv3, is integrated into the head structure, aiming to improve the small-scale target detection performance by dynamically adjusting the feature interaction mechanism. Finally, so as to comprehensively assess the proposed algorithm’s performance, an industrial dataset of wafer defects, WSDD, is constructed, which covers “broken edges”, “scratches”, “oil pollution”, and “minor defects”. The experimental results demonstrate that the CISC-YOLO model attains an mAP50 of 93.7%, and the parameter amount is reduced to 1.92 M, outperforming other mainstream leading algorithms in the field. The proposed approach provides a high-precision and low-latency real-time defect detection solution for semiconductor industry scenarios. Full article
Show Figures

Figure 1

Back to TopTop