Experimental Investigation on Small-Strain Stiffness of Marine Silty Sand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Apparatus
2.2. Tested Materials
2.3. Specimen Preparation, Saturation and Consolidation
2.4. Testing Program and Process
3. Results and Discussion
3.1. Factors Influencing Maximum Shear Modulus
3.2. Modified Hardin Model Based on Binary Packing Model
4. Conclusions
- (1)
- Under otherwise similar conditions, Gmax decreases with decreasing e or FC, but decreases with increasing FC. In addition, the reduction rate of Gmax with e increasing is not sensitive to , but obviously sensitive to changes in FC.
- (2)
- For a specific FC, the traditional Hardin model can well characterize the influence of e and on the Gmax of silty sands. The stress exponent n does not appear to be sensitive to changes in FC and e, but sensitive to changes in the types of silty sand. In addition, the soil-specific constant n increases with increasing and shows a logarithmic function. However, the material-specific fitting parameter A in the Hardin model is sensitive to FC. The traditional Hardin model cannot incorporate the influence of FC on Gmax of marine silty sand.
- (3)
- e*, instead of e, can be an appropriate proxy to characterize the Gmax of marine silty sand with various FC. The modified Hardin model, established in the framework of the binary packing model, allowing unified characterization of Gmax values for silty sands, only considering basic indices of the clean sand and pure fines. The predicted errors are within 10% for the Nantong marine silty sand tested. Independent test data in the literature validate the applicability of this modified model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Payan, M.; Khoshghalb, A.; Senetakis, K.; Khalili, N. Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression. Comput. Geotech. 2016, 72, 28–41. [Google Scholar] [CrossRef]
- Yang, J.; Yan, X.R. Site response to multi-directional earthquake loading: A practical procedure. Soil Dyn. Earthq. Eng. 2009, 29, 710–721. [Google Scholar] [CrossRef]
- Andrus, R.D.; Stokoe, K.H., II. Liquefaction resistance of soils from shear-wave velocity. J. Geotech. Geoenviron. Eng. 2000, 126, 1015–1025. [Google Scholar] [CrossRef]
- Chen, G.X.; Kong, M.Y.; Khoshnevisan, S.; Chen, W.Y.; Li, X.J. Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database. Bull. Eng. Geol. Environ. 2019, 78, 945–957. [Google Scholar]
- Hardin, B.O.; Black, W.L. Sand stiffness under various triaxial stresses. J. Soil Mech. Found. Div. 1966, 92, 27–42. [Google Scholar]
- Hardin, B.O.; Drnevich, V.P. Shear modulus and damping in soil: Design equation and curves. J. Soil Mech. Found. Div. 1972, 98, 667–692. [Google Scholar]
- Hardin, B.O.; Richart, F.E. Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. 1963, 89, 39–56. [Google Scholar]
- Seed, H.B.; Wong, R.T.; Idriss, I.M.; Tokimatsu, K. Moduli and damping factors for dynamic analyses of cohesionless soil. J. Geotech. Eng. 1986, 112, 1016–1032. [Google Scholar] [CrossRef]
- Youn, J.U.; Choo, Y.W.; Kim, D.S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests. Can. Geotech. J. 2008, 45, 1426–1438. [Google Scholar] [CrossRef]
- Yang, J.; Gu, X.Q. Shear stiffness of granular material at small-strain: Does it depend on grain size? Géotechnique 2013, 63, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, T.; Tatsuoka, F. Effect of grain size and grading on dynamic shear moduli of sand. Soils Found. 1977, 17, 19–35. [Google Scholar] [CrossRef]
- Wichtmann, T.; Hernandez, M.; Triantafyllidis, T. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dyn. Earthq. Eng. 2015, 69, 103–114. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lo, S.R.; Gnanendran, C.T. On equivalent granular void ratio and steady state behaviour of loose sand with fines. Can. Geotech. J. 2008, 45, 1439–1455. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, X. Shear wave velocity and stiffness of sand: The role of non-plastic fines. Géotechnique 2016, 66, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Goudarzy, M.; Rahemi, N.; Rahman, M.M.; Schanz, T. Predicting the maximum shear modulus of sands containing nonplastic fines. J. Geotech. Geoenviron. Eng. 2017, 143, 06017013. [Google Scholar] [CrossRef]
- Salgado, R.; Bandini, P.; Karim, A. Shear strength and stiffness of silty sand. J. Geotech. Geoenviron. Eng. 2000, 126, 451–462. [Google Scholar] [CrossRef]
- Evans, M.D.; Zhou, S.P. Liquefaction behavior of sand-gravel composites. J. Geotech. Geoenviron. Eng. 1995, 121, 287–298. [Google Scholar] [CrossRef]
- Chang, W.J.; Chang, C.W.; Zeng, J.K. Liquefaction characteristics of gap-graded gravelly soils in K0 condition. Soil Dyn. Earthq. Eng. 2014, 56, 74–85. [Google Scholar] [CrossRef]
- Chen, G.X.; Wu, Q.; Sun, T.; Zhao, K.; Zhou, E.Q.; Xu, L.Y.; Zhou, Y.G. Cyclic behaviors of saturated sand gravel mixtures under undrained cyclic triaxial loading. J. Earthq. Eng. 2018, 1–34. [Google Scholar] [CrossRef]
- Chen, G.X.; Wu, Q.; Zhou, Z.L.; Ma, W.J.; Chen, W.Y.; Sara, K.; Yang, J. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation. Géotechnique 2020, 70, 317–331. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table; ASTM D4253; ASTM: West Conshohocken, PA, USA, 2006. [Google Scholar]
- ASTM. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density; ASTM D4254; ASTM: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Polito, C.P.; Martin, J.R., II. Effects of nonplastic fines on the liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. 2001, 127, 408–415. [Google Scholar] [CrossRef]
- Ishihara, K. Soil Behaviour in Earthquake Geotechnics; Clarendon Press: Oxford, UK, 1996. [Google Scholar]
- Skempton, A.W. The pore-pressure coefficients A and B. Geotechnique 1954, 4, 143–147. [Google Scholar] [CrossRef]
- Huang, Y.T.; Huang, A.B.; Kuo, Y.C.; Tsai, M.D. A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn. Earthq. Eng. 2004, 24, 733–743. [Google Scholar] [CrossRef]
- Baxter, C.D.P.; Bradshaw, A.S.; Green, R.A.; Wang, J.H. Correlation between cyclic resistance and shear-wave velocity for providence silts. J. Geotech. Geoenviron. Eng. 2008, 134, 37–46. [Google Scholar] [CrossRef]
- Oka, L.G.; Dewoolkar, M.; Olson, S.M. Comparing laboratory-based liquefaction resistance of a sand with non-plastic fines with shear wave velocity-based field case histories. Soil Dyn. Earthq. Eng. 2018, 113, 162–173. [Google Scholar] [CrossRef]
- Yoo, J.K.; Park, D.; Baxter, C.D.P. Estimation of Drained Shear Strength of Granular Soil from Shear Wave Velocity and Confining Stress. J. Geotech. Geoenviron. Eng. 2018, 144, 04018027. [Google Scholar] [CrossRef]
- Lee, J.S.; Santamarina, J.C. Bender elements: Performance and signal interpretation. J. Geotech. Geoenviron. Eng. 2005, 131, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Thevanayagam, S.; Shenthan, T.; Mohan, S.; Liang, J. Undrained fragility of clean sands, silty sands, and sandy silts. J. Geotech. Geoenviron. Eng. 2002, 128, 849–859. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lo, S.R.; Baki, M.A.L. Equivalent granular state parameter and undrained behaviour of sand–fines mixtures. Acta Geotech. 2011, 6, 183–194. [Google Scholar] [CrossRef]
- Rahman, M.; Cubrinovski, M.; Lo, S.R. Initial shear modulus of sandy soils and equivalent granular void ratio. Geomech. Geoengin. 2012, 7, 219–226. [Google Scholar] [CrossRef]
- Thevanayagam, S. Liquefaction potential and undrained fragility of silty sands. In Proceedings of the 12th World Conference Earthquake Engineering CD-ROM, New Zealand Society for Earthquake Engineering, Wellington, New Zealand, 5–8 July 2000. [Google Scholar]
- Goudarzy, M.; Rahman, M.M.; König, D.; Schanz, T. Influence of non-plastic fines content on maximum shear modulus of granular materials. Soils Found 2016, 56, 973–983. [Google Scholar] [CrossRef]
- Goudarzy, M.; Rahemi, N.; Rahman, M.M. Closure to “Predicting the maximum shear modulus of sands containing nonplastic fines” by Meisam Goudarzy, Negar Rahemi, Md. Mizanur Rahman, and Tom Schanz. J. Geotech. Geoenviron. Eng. 2019, 145, 07019006. [Google Scholar] [CrossRef] [Green Version]
- Chien, L.K.; Oh, Y.N. Influence on the shear modulus and damping ratio of hydraulic reclaimed soil in West Taiwan. Int. J. Offshore Polar 1998, 8, 228–235. [Google Scholar]
- Thevanayagam, S.; Liang, J. Shear wave velocity relations for silty and gravely soils. In Proceedings of the 4th International Conference on Soil Dynamics & Earthquake Engineering, San Diego, CA, USA, 7–9 March 2001; pp. 1–15. [Google Scholar]
- Rahman, M.M.; Lo, S.C.R.; Dafalias, Y.F. Modelling the static liquefaction of sand with low-plasticity fines. Géotechnique 2014, 64, 881–894. [Google Scholar] [CrossRef]
- Nguyen, H.B.K.; Rahman, M.M.; Fourie, A.B. Characteristic behavior of drained and undrained triaxial compression tests: DEM Study. J. Geotech. Geoenviron. Eng. 2018, 144, 04018060. [Google Scholar] [CrossRef]
- Barnett, N.; Rahman, M.M.; Karim, M.R.; Nguyen, H.B.K.; Carraro, J.A.H. Equivalent state theory for mixtures of sand with non-plastic fines: A DEM investigation. Géotechnique 2020, 1–18. [Google Scholar] [CrossRef]
- Chen, G.X.; Wu, Q.; Zhao, K.; Shen, Z.F.; Yang, J. A binary packing material-based procedure for evaluating soil liquefaction triggering during earthquakes. J. Geotech. Geoenviron. Eng. 2020. [Google Scholar] [CrossRef]
Clean Sand | Pure Fines | |
---|---|---|
Material | Nantong sand | Nantong silt |
/mm | 0.114 | 0.040 |
/mm | 0.080 | 0.016 |
1.672 | 2.931 | |
2.672 | 2.719 | |
1.262 | 1.481 | |
0.662 | 0.764 |
FC of Silty Sand (%) | ||||
---|---|---|---|---|
0 | 10 | 20 | 30 | |
emax | 1.290 | 1.232 | 1.221 | 1.212 |
emin | 0.731 | 0.587 | 0.431 | 0.364 |
G | 2.669 | 2.680 | 2.690 | 2.701 |
d50 | 0.113 | 0.104 | 0.097 | 0.091 |
Cc | 0.796 | 0.829 | 1.453 | 1.752 |
Cu | 1.646 | 1.681 | 2.826 | 3.201 |
ID | FC/% | Dr/% | e | ρ (g/cm3) | b Value | e* | |
---|---|---|---|---|---|---|---|
S1 | 0 | 35 | 1.076 | 1.286 | 0 | 1.286 | 100 200 250 300 400 |
S2 | 0 | 50 | 0.973 | 1.352 | 0 | 1.352 | |
S3 | 0 | 60 | 0.890 | 1.412 | 0 | 1.412 | |
S4 | 10 | 35 | 1.009 | 1.334 | 0.321 | 1.155 | |
S5 | 10 | 50 | 0.934 | 1.386 | 0.321 | 1.075 | |
S6 | 10 | 60 | 0.883 | 1.424 | 0.321 | 0.953 | |
S7 | 20 | 35 | 0.936 | 1.348 | 0.454 | 1.189 | |
S8 | 20 | 50 | 0.947 | 1.382 | 0.454 | 1.077 | |
S9 | 20 | 60 | 0.824 | 1.475 | 0.454 | 0.998 | |
S10 | 30 | 35 | 0.948 | 1.386 | 0.555 | 1.248 | |
S11 | 30 | 50 | 0.865 | 1.448 | 0.555 | 1.152 | |
S12 | 30 | 60 | 0.792 | 1.506 | 0.555 | 1.042 |
Data from | Material | Index Properties | In Equation (8) | In Equation (10) | ||||
---|---|---|---|---|---|---|---|---|
erange(s) | Cu(s) | χ | μ | nb | A* | R2 | ||
This study | Nantong sand + Nantong silt | 0.60 | 1.67 | 2.0 | 0.32 | 0.94 | 62.1 | 0.932 |
Goudarzy et al. (2017) | Hostun sand + Quartz powder | 0.35 | 2.01 | 63.3 | 0.33 | 1.05 | 30.3 | 0.943 |
Salgado et al. (2000) | Ottawa sand + Sil-co-Sil | 0.30 | 1.48 | 11.8 | 0.34 | 0.92 | 44.7 | 0.895 |
Chien and Oh (1998) | Yunling sand + Yunling silt | 0.55 | 1.69 | 2.17 | 0.27 | 1.08 | 64.9 | 0.883 |
Thevanayagam and Liang (2001) | Foundary sand + Sil-co-Sil | 0.19 | 1.69 | 17.1 | 0.29 | 0.89 | 43.2 | 0.902 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Lu, Q.; Guo, Q.; Zhao, K.; Chen, P.; Chen, G. Experimental Investigation on Small-Strain Stiffness of Marine Silty Sand. J. Mar. Sci. Eng. 2020, 8, 360. https://doi.org/10.3390/jmse8050360
Wu Q, Lu Q, Guo Q, Zhao K, Chen P, Chen G. Experimental Investigation on Small-Strain Stiffness of Marine Silty Sand. Journal of Marine Science and Engineering. 2020; 8(5):360. https://doi.org/10.3390/jmse8050360
Chicago/Turabian StyleWu, Qi, Qingrui Lu, Qizhou Guo, Kai Zhao, Pen Chen, and Guoxing Chen. 2020. "Experimental Investigation on Small-Strain Stiffness of Marine Silty Sand" Journal of Marine Science and Engineering 8, no. 5: 360. https://doi.org/10.3390/jmse8050360
APA StyleWu, Q., Lu, Q., Guo, Q., Zhao, K., Chen, P., & Chen, G. (2020). Experimental Investigation on Small-Strain Stiffness of Marine Silty Sand. Journal of Marine Science and Engineering, 8(5), 360. https://doi.org/10.3390/jmse8050360