Multiphase Storm Deposits Eroded from Andesite Sea Cliffs on Isla San Luis Gonzaga (Northern Gulf of California, Mexico)
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Materials and Methods
3.1. Data Collection
3.2. Aerial Photography and Applications for Topography
3.3. Hydraulic Model
4. Results
4.1. Base Maps and Transect Lines
4.2. Source of Joint-bound Blocks
4.3. Andesite Specific Gravity
4.4. Comparative Variation in Clast Shapes
4.5. Comparative Variation in Clast Size
4.6. Variation in Transect Profile Elevations
4.7. Biological Data from Encrusted Boulders
4.8. Storm Intensity as Function of Estimated Wave Height
5. Discussion
5.1. Phased Development During Holocene Time
5.2. Inference from Historical Hurricanes
5.3. Comparison with Other Gulf of California Deposits
5.4. Comparison with island deposits in the North Atlantic
6. Conclusions
- (1)
- Coastal boulder deposits and related boulder bars are described from the lower Gulf of California that experience episodic hurricanes, but the Isla San Luis Gonzaga spit composed of unconsolidated materials in the upper Gulf of California is larger and more complex than any features previously studied in the Lower Gulf of California.
- (2)
- All cobbles and boulders entrained in the 450-m long structure are derived from andesite sea cliffs with joint-bound blocks on the north side of Isla San Luis Gonzaga, bypassing a well-defined marine terrace from the Late Pleistocene.
- (3)
- Extensive data on variations in shape collected from seven transects across the structure show that clasts are mostly elongated in configuration. Data on variations in clast size from the same transects indicate changing ratios between boulders and cobbles that fall from 3:1 in favor of boulders to more equitable proportions in a progression toward the end of the structure.
- (4)
- Despite a general decrease in the boulder population along the length of the structure, large boulders continue to be present even in the most distal parts of the structure and the estimated wave heights required to move those blocks into place entails an average height of 5 m.
- (5)
- The overall complexity of the structure includes parallel bars that form side-by side as distinct swales through the distal half of the spit. These are interpreted as discrete additions from episodic storms. Assuming the structure began to form at the start of the Holocene, there was sufficient time for multiple mega-storms to reach the upper Gulf of California at a general rate of one per century to yield a possible growth rate between 7 and 8 m/century.
- (6)
- Civil engineers evaluate hurricane damage to infrastructure as due to storm wind speed ashore and the impact of wave surge in coastal waters, but the geomorphology of coastal boulder deposits and related boulder bars provides another means to assess the potential for storm risk in regions like Mexico’s Baja California peninsula and the adjacent Gulf of California.
- (7)
- The concept of the 100-year storm as an event exceeding human memory at any point in time has changed during the historic rise in global warning experienced over the last two decades. It is not a question of if, but rather when, the next hurricane comparable to the Category 5 Patricia in 2014 will strike the gulf coast of Mexico’s Baja California peninsula. As a follow-up to the region’s various studies on coastal boulder deposits, consideration must be given to a monitoring program whereby some of the largest boulders are tagged to test movements after the next big storm.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 75% | Weight (kg) | EWH Nott [18] (m) | EWH Pepe [20] (m) |
---|---|---|---|---|---|---|---|---|
1 | 80 | 55 | 50 | 220,000 | 165,000 | 421 | 5.6 | 8.0 |
4 | 42 | 28 | 13 | 15,288 | 11,466 | 29 | 3.0 | 2.1 |
6 | 68 | 60 | 53 | 216,240 | 162,180 | 414 | 4.8 | 8.4 |
8 | 32 | 22 | 10 | 7040 | 5280 | 13 | 2.3 | 1.6 |
10 | 38 | 27 | 16 | 16,416 | 12,312 | 31 | 2.7 | 2.5 |
12 | 50 | 29 | 10 | 14,500 | 10,875 | 28 | 3.5 | 1.6 |
14 | 46 | 30 | 12 | 16,560 | 12,420 | 32 | 3.2 | 1.9 |
16 | 40 | 28 | 11 | 12,320 | 9240 | 24 | 2.8 | 1.8 |
19 | 50 | 28 | 25 | 35,000 | 26,250 | 67 | 3.5 | 4.0 |
21 | 60 | 45 | 21 | 56,700 | 42,525 | 108 | 4.2 | 3.3 |
23 | 90 | 76 | 48 | 328,320 | 246,240 | 628 | 6.3 | 7.6 |
27 | 56 | 40 | 12 | 26,880 | 20,160 | 51 | 3.9 | 1.9 |
29 | 44 | 30 | 15 | 19,800 | 14,850 | 38 | 3.1 | 2.4 |
31 | 57 | 29 | 17 | 28,101 | 21,076 | 54 | 4.0 | 2.7 |
35 | 25 | 13 | 7 | 2275 | 1706 | 4.4 | 1.8 | 1.1 |
37 | 27 | 22 | 11 | 6534 | 4900 | 12.5 | 1.9 | 1.8 |
40 | 53 | 48 | 15 | 38,160 | 28,620 | 73 | 3.7 | 2.4 |
42 | 28 | 23 | 15 | 9660 | 7245 | 18.5 | 2.0 | 2.4 |
44 | 40 | 24 | 20 | 19,200 | 14,400 | 37 | 2.8 | 3.2 |
46 | 27 | 21 | 20 | 11,340 | 8505 | 22 | 1.9 | 3.2 |
49 | 32 | 30 | 24 | 23,040 | 17,280 | 44 | 2.3 | 3.8 |
52 | 35 | 28 | 20 | 19,600 | 14,700 | 37 | 2.5 | 3.2 |
56 | 50 | 20 | 18 | 18,000 | 13,500 | 34 | 3.5 | 2.9 |
59 | 59 | 30 | 23 | 40,710 | 30,533 | 78 | 4.2 | 3.7 |
63 | 28 | 21 | 20 | 11,760 | 8,820 | 22.5 | 2.0 | 3.2 |
65 | 46 | 40 | 37 | 68,080 | 51,060 | 130 | 3.2 | 5.9 |
70 | 30 | 23 | 16 | 11,040 | 8280 | 21 | 2.1 | 2.5 |
73 | 44 | 35 | 16 | 24,640 | 18,480 | 47 | 3.1 | 2.5 |
77 | 27 | 22 | 10 | 5940 | 4455 | 11.4 | 1.9 | 1.6 |
80 | 41 | 35 | 22 | 31,570 | 23,678 | 60 | 2.9 | 3.5 |
82 | 25 | 16 | 10 | 4000 | 3000 | 7.5 | 1.8 | 1.6 |
87 | 25 | 14 | 4 | 1400 | 1050 | 2.8 | 1.8 | 0.6 |
Mean | 43.6 | 31 | 19 | 42,504 | 31,878 | 81 | 3.1 | 3.1 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 75% | Weight (kg) | EWH Nott [18] (m) | EWH Pepe [20] (m) |
---|---|---|---|---|---|---|---|---|
1 | 33 | 25 | 24 | 19,800 | 14,850 | 38 | 2.3 | 3.8 |
5 | 47 | 35 | 33 | 54,285 | 40,714 | 104 | 3.3 | 5.3 |
7 | 42 | 22 | 20 | 18,480 | 13,860 | 35 | 3.0 | 3.2 |
9 | 52 | 40 | 35 | 72,800 | 54,600 | 139 | 3.7 | 5.6 |
11 | 58 | 47 | 26 | 70,876 | 53,157 | 136 | 4.1 | 4.1 |
13 | 31 | 18 | 6 | 3348 | 2511 | 6.4 | 2.2 | 1.0 |
15 | 50 | 29 | 16 | 23,200 | 17,400 | 44 | 3.5 | 2.5 |
17 | 36 | 13 | 11 | 5148 | 3861 | 9.8 | 2.5 | 1.8 |
20 | 54 | 37 | 25 | 49,550 | 37,463 | 96 | 3.8 | 4.0 |
22 | 46 | 25 | 18 | 20,700 | 15,525 | 40 | 3.2 | 2.9 |
23 | 42 | 33 | 18 | 328,320 | 246,240 | 628 | 3.0 | 2.9 |
26 | 28 | 21 | 10 | 5880 | 4410 | 11 | 2.0 | 1.6 |
28 | 26 | 24 | 10 | 6240 | 4680 | 12 | 1.8 | 1.6 |
30 | 33 | 30 | 29 | 28,710 | 21,533 | 55 | 2.3 | 4.6 |
32 | 28 | 18 | 12 | 6048 | 4536 | 12 | 2.0 | 1.9 |
34 | 30 | 15 | 7 | 3150 | 2363 | 6 | 2.1 | 1.1 |
39 | 29 | 23 | 11 | 7337 | 5503 | 14 | 2.0 | 1.8 |
41 | 45 | 25 | 24 | 27,000 | 20,250 | 52 | 3.2 | 3.8 |
45 | 39 | 36 | 18 | 25,272 | 18,954 | 48 | 2.7 | 2.9 |
47 | 50 | 38 | 16 | 30,400 | 22,800 | 58 | 3.5 | 2.5 |
51 | 44 | 20 | 12 | 10,560 | 7,920 | 20 | 3.1 | 1.9 |
53 | 64 | 51 | 11 | 35,904 | 26,928 | 69 | 4.5 | 1.8 |
55 | 30 | 30 | 18 | 16,200 | 12,150 | 31 | 2.1 | 2.9 |
57 | 50 | 28 | 8 | 11,200 | 8400 | 21 | 3.5 | 1.3 |
59 | 44 | 42 | 10 | 18,480 | 13,860 | 35 | 3.1 | 1.6 |
63 | 43 | 23 | 13 | 12,857 | 9643 | 25 | 3.0 | 2.1 |
66 | 29 | 28 | 20 | 16,240 | 12,180 | 31 | 2.0 | 3.2 |
68 | 41 | 36 | 13 | 19,188 | 14,391 | 37 | 2.9 | 2.1 |
73 | 37 | 29 | 20 | 21,460 | 16,095 | 41 | 2.6 | 3.2 |
75 | 26 | 19 | 15 | 7410 | 5558 | 14 | 1.8 | 2.4 |
77 | 40 | 25 | 25 | 25,000 | 18,750 | 48 | 2.8 | 4.0 |
80 | 23 | 23 | 8 | 4600 | 3450 | 8.8 | 1.6 | 1.3 |
84 | 36 | 21 | 18 | 13,608 | 10,206 | 26 | 2.5 | 2.9 |
Mean | 40 | 28 | 17 | 30,886 | 23,174 | 59 | 2.8 | 2.7 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 75% | Weight (kg) | EWH Nott [18] (m) | EWH Pepe [20] (m) |
---|---|---|---|---|---|---|---|---|
1 | 31 | 16 | 6 | 2976 | 2232 | 5.7 | 2.2 | 1.0 |
17 | 61 | 38 | 8 | 18,544 | 13,908 | 35 | 4.3 | 1.3 |
19 | 31 | 14 | 9 | 3906 | 2930 | 7.5 | 2.2 | 1.4 |
40 | 40 | 27 | 8 | 8640 | 6480 | 16.5 | 2.8 | 1.3 |
76 | 28 | 14 | 8.5 | 3332 | 2499 | 6.4 | 2.0 | 1.4 |
77 | 31 | 13 | 7 | 2821 | 2116 | 5.4 | 2.2 | 1.1 |
Mean | 36 | 20.3 | 7.75 | 5664 | 4248 | 12.75 | 2.6 | 1.2 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 75% | Weight (kg) | EWH Nott [18] (m) | EWH Pepe [20] (m) |
---|---|---|---|---|---|---|---|---|
1 | 27 | 20 | 10 | 5400 | 4050 | 10 | 1.9 | 1.6 |
2 | 70 | 39 | 30 | 81,900 | 61,425 | 157 | 4.9 | 4.8 |
3 | 39 | 20 | 12 | 9360 | 7020 | 18 | 2.7 | 1.9 |
7 | 63 | 39 | 20 | 49,140 | 36,855 | 94 | 4.4 | 3.2 |
8 | 75 | 38 | 35 | 99,750 | 74,813 | 191 | 5.3 | 5.6 |
9 | 25 | 14 | 12 | 4200 | 3150 | 8 | 1.8 | 1.9 |
10 | 38 | 29 | 19 | 20,938 | 15,704 | 40 | 2.7 | 3.0 |
12 | 29 | 23 | 17 | 11,339 | 8504 | 22 | 2.0 | 2.7 |
13 | 43 | 27 | 19 | 22,059 | 16,544 | 42 | 3.0 | 3.0 |
14 | 42 | 26 | 16 | 17,472 | 13,104 | 33 | 3.0 | 2.5 |
15 | 28 | 11 | 7 | 2156 | 1617 | 4 | 2.0 | 1.1 |
16 | 28 | 20 | 8 | 4480 | 3360 | 8.6 | 2.0 | 1.3 |
17 | 29 | 20 | 10 | 5800 | 4350 | 11 | 2.0 | 1.6 |
18 | 48 | 25 | 20 | 24,000 | 18,000 | 46 | 3.4 | 3.2 |
19 | 63 | 27 | 23 | 39,123 | 29,342 | 75 | 4.4 | 3.7 |
20 | 27 | 14 | 13 | 4914 | 3686 | 9 | 1.9 | 2.1 |
22 | 44 | 25 | 10 | 11,000 | 8250 | 21 | 3.1 | 1.6 |
25 | 40 | 34 | 15 | 20,400 | 15,300 | 39 | 2.8 | 2.4 |
26 | 32 | 23 | 5 | 3680 | 2760 | 7 | 2.3 | 0.8 |
27 | 61 | 25 | 19 | 28,975 | 21,731 | 55 | 4.3 | 3.0 |
29 | 38 | 27 | 13 | 13,338 | 10,004 | 26 | 2.7 | 2.1 |
31 | 40 | 16 | 15 | 9600 | 7200 | 18 | 2.8 | 2.4 |
32 | 50 | 34 | 25 | 42,500 | 31,875 | 81 | 3.5 | 4.0 |
34 | 35 | 19 | 18 | 11,970 | 8978 | 23 | 2.5 | 2.9 |
35 | 35 | 23 | 10 | 8050 | 6038 | 15 | 2.5 | 1.6 |
36 | 33 | 24 | 10 | 7920 | 5940 | 15 | 2.3 | 1.6 |
37 | 28 | 13 | 20 | 7280 | 5460 | 14 | 2.0 | 3.2 |
40 | 27 | 20 | 11 | 5940 | 4455 | 11 | 1.9 | 1.8 |
41 | 30 | 21 | 10 | 6300 | 4725 | 12 | 2.1 | 1.6 |
42 | 40 | 20 | 13 | 10,400 | 7800 | 20 | 2.8 | 2.1 |
45 | 40 | 38 | 10 | 15,200 | 11,400 | 29 | 2.8 | 1.6 |
48 | 27 | 17 | 10 | 4590 | 3443 | 9 | 1.9 | 1.6 |
Mean | 40 | 24 | 15 | 19,037 | 14,278 | 36 | 2.8 | 2.4 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 75% | Weight (kg) | EWH Nott [18] (m) | EWH Pepe [20] (m) |
---|---|---|---|---|---|---|---|---|
1 | 57 | 40 | 38 | 86,640 | 64,980 | 166 | 4.0 | 6.1 |
2 | 38 | 26 | 9 | 8892 | 6669 | 17 | 2.7 | 1.4 |
3 | 35 | 32 | 4 | 4480 | 3360 | 8.6 | 2.5 | 0.6 |
7 | 40 | 23 | 10 | 9200 | 6900 | 17.6 | 2.8 | 1.6 |
8 | 27 | 20 | 9 | 4860 | 3645 | 9.3 | 1.9 | 1.4 |
10 | 32 | 23 | 10 | 7360 | 5520 | 14 | 2.3 | 1.6 |
18 | 26 | 24 | 14 | 8736 | 6552 | 17 | 1.8 | 2.2 |
19 | 25 | 12 | 10 | 3000 | 2250 | 5.7 | 1.8 | 1.6 |
20 | 36 | 27 | 14 | 13,608 | 10,206 | 26 | 2.5 | 2.2 |
24 | 35 | 23 | 12 | 9660 | 7245 | 18.5 | 2.5 | 1.9 |
29 | 55 | 31 | 25 | 42,625 | 31,969 | 82 | 3.9 | 4.0 |
30 | 44 | 40 | 23 | 4480 | 3360 | 8.6 | 3.1 | 3.7 |
33 | 37 | 33 | 26 | 31,746 | 23,910 | 61 | 2.6 | 4.1 |
37 | 25 | 18 | 17 | 7650 | 5738 | 14.6 | 1.8 | 2.7 |
38 | 38 | 23 | 8 | 6992 | 5244 | 13 | 2.7 | 1.3 |
44 | 30 | 19 | 12 | 6840 | 5130 | 13 | 2.1 | 1.9 |
46 | 79 | 43 | 21 | 71,337 | 53,503 | 136 | 5.6 | 3.3 |
47 | 35 | 17 | 12 | 7140 | 5355 | 14 | 2.5 | 1.9 |
56 | 36 | 20 | 12 | 8640 | 6480 | 17 | 2.5 | 1.9 |
101 | 42.5 | 28 | 19 | 22,610 | 16,958 | 43 | 3.0 | 3.0 |
102 | 39 | 23 | 13 | 11,661 | 8746 | 22 | 2.7 | 2.1 |
103 | 42 | 24 | 6 | 6048 | 4536 | 11.5 | 3.0 | 1.0 |
104 | 26 | 21 | 10 | 5460 | 4095 | 10 | 1.8 | 1.6 |
106 | 36 | 25 | 11 | 9900 | 7425 | 19 | 2.5 | 1.8 |
107 | 45 | 18 | 14 | 11,340 | 8505 | 22 | 3.2 | 2.2 |
108 | 34 | 24 | 7 | 5712 | 4284 | 11 | 2.4 | 1.1 |
115 | 28 | 26 | 12 | 8736 | 6552 | 17 | 2.0 | 1.9 |
119 | 40 | 30 | 12 | 14,400 | 10,800 | 27.5 | 2.8 | 1.9 |
123 | 25 | 15 | 15 | 5625 | 4219 | 11 | 1.8 | 2.4 |
Mean | 37.5 | 25 | 14 | 15,358 | 11,519 | 29.4 | 2.6 | 2.2 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 75% | Weight (kg) | EWH Nott [18] (m) | EWH Pepe [20] (m) |
---|---|---|---|---|---|---|---|---|
1 | 33 | 22 | 22 | 15,972 | 11,979 | 30.5 | 2.3 | 3.5 |
2 | 37 | 30 | 12 | 13,320 | 9990 | 17 | 2.6 | 1.9 |
3 | 39 | 33 | 5 | 6435 | 4826 | 8.6 | 2.7 | 0.8 |
15 | 40 | 23 | 14 | 12,880 | 9660 | 24.6 | 2.8 | 2.2 |
16 | 39 | 30 | 25 | 29,250 | 21,938 | 56 | 2.7 | 4.0 |
20 | 29 | 26 | 6 | 4524 | 3393 | 8.6 | 2.0 | 1.0 |
26 | 29 | 19 | 11 | 6061 | 4546 | 12 | 2.0 | 1.8 |
30 | 80 | 54 | 23 | 99,360 | 74,520 | 190 | 5.6 | 3.7 |
41 | 26 | 21 | 6 | 3276 | 2457 | 6 | 1.8 | 1.0 |
69 | 31 | 26 | 7 | 5642 | 4232 | 11 | 2.2 | 1.1 |
73 | 44 | 16 | 14 | 9856 | 7392 | 19 | 3.1 | 2.2 |
80 | 27 | 14 | 8 | 3024 | 2268 | 6 | 1.9 | 1.3 |
83 | 26 | 18 | 13 | 6084 | 4563 | 12 | 1.8 | 2.1 |
93 | 35 | 15 | 7 | 3675 | 2756 | 7 | 2.5 | 1.1 |
94 | 32 | 24 | 23 | 17,664 | 13,248 | 34 | 2.3 | 3.7 |
96 | 37 | 25 | 11 | 10,175 | 7631 | 20 | 2.6 | 1.8 |
97 | 26 | 16 | 13 | 5408 | 4056 | 10 | 1.8 | 2.1 |
101 | 38 | 16 | 12 | 7296 | 5472 | 14 | 2.7 | 1.9 |
102 | 26 | 13 | 11 | 3718 | 2789 | 7 | 1.8 | 1.8 |
103 | 34 | 19 | 9 | 5814 | 4361 | 11 | 2.4 | 1.4 |
Average | 35 | 23 | 12.6 | 13,472 | 10,104 | 25 | 2.5 | 2.0 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 75% | Weight (kg) | EWH Nott [18] (m) | EWH Pepe [20] (m) |
---|---|---|---|---|---|---|---|---|
5 | 53 | 49 | 32 | 83,104 | 62,328 | 159 | 3.7 | 5.1 |
7 | 58 | 41 | 20 | 47,560 | 35,670 | 91 | 4.1 | 3.2 |
12 | 26 | 15 | 12 | 5760 | 4320 | 11 | 1.8 | 1.9 |
15 | 34 | 22 | 15 | 11,220 | 8415 | 22 | 2.4 | 2.4 |
17 | 38 | 26 | 15 | 14,820 | 11,115 | 28 | 2.7 | 2.4 |
21 | 55.5 | 53 | 41 | 120,602 | 90,451 | 231 | 3.9 | 6.5 |
24 | 44 | 25 | 22 | 24,200 | 18,150 | 46 | 3.1 | 3.5 |
29 | 30 | 29 | 24 | 20,880 | 15,660 | 40 | 2.1 | 3.8 |
31 | 36 | 20 | 20 | 14,400 | 10,800 | 28 | 2.5 | 3.2 |
34 | 39 | 27 | 22 | 23,166 | 17,375 | 44 | 2.7 | 3.5 |
37 | 34 | 30 | 14 | 14,280 | 10,710 | 27 | 2.4 | 2.2 |
41 | 28 | 15 | 10 | 4200 | 3150 | 8 | 2.0 | 1.6 |
47 | 27 | 23 | 19 | 11,799 | 8849 | 23 | 1.9 | 3.0 |
50 | 44 | 20 | 14 | 12,320 | 9240 | 24 | 3.1 | 2.2 |
55 | 50 | 48 | 35 | 84,000 | 63,000 | 161 | 3.5 | 5.6 |
64 | 29 | 25 | 24 | 17,400 | 13,050 | 33 | 2.0 | 3.8 |
67 | 27 | 24 | 5 | 3240 | 2430 | 6 | 1.9 | 0.8 |
71 | 30 | 27 | 14 | 11,340 | 8505 | 22 | 2.1 | 2.2 |
73 | 26 | 22 | 14 | 8008 | 6006 | 15 | 1.8 | 2.2 |
79 | 25 | 16 | 12 | 4800 | 3600 | 9 | 1.8 | 1.9 |
81 | 52 | 29 | 13 | 19,604 | 14,703 | 38 | 3.7 | 2.1 |
83 | 27.5 | 19 | 12 | 6270 | 4703 | 12 | 1.9 | 1.9 |
88 | 30 | 26 | 14 | 10,920 | 8190 | 21 | 2.1 | 2.2 |
94 | 43 | 43 | 25 | 46,225 | 34,669 | 88 | 3.0 | 4.0 |
97 | 44 | 30 | 20 | 26,400 | 19,800 | 51 | 3.1 | 3.2 |
100 | 30 | 21 | 13 | 8190 | 6143 | 16 | 2.1 | 2.1 |
103 | 35 | 20 | 10 | 7000 | 5250 | 13 | 2.5 | 1.6 |
105 | 26 | 23 | 16 | 9568 | 7176 | 18 | 1.8 | 2.5 |
107 | 84 | 38 | 20 | 63,840 | 47,880 | 122 | 5.9 | 3.2 |
112 | 34 | 17 | 15 | 8670 | 6503 | 17 | 2.4 | 2.4 |
Mean | 38 | 27 | 18 | 24,793 | 18,595 | 47 | 2.7 | 2.9 |
References
- Romero-Vadillo, E.; Zaystev, O.; Morales-Pérez, R. Tropical cyclone statistics in the northeastern Pacific. Atmósfera 2007, 20, 197–213. [Google Scholar]
- Muriá-Vila, D.; Jaimes, M.Á.; Pozos-Estrada, A.; López, A.; Reinoso, E.; Chávez, M.M.; Peña, F.; Sánchez-Sesma, J.; López, O. Effects of hurricane Odile on the infrastructure of Baja California Sur, Mexico. Nat. Hazards 2018, 9, 963–981. [Google Scholar] [CrossRef]
- Gross, M.; Magar, V. Wind-induced currents in the Gulf of California from extreme events and their impact on tidal energy devices. J. Mar. Sci. Eng. 2020, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Merrifield, M.A.; Winant, C.D. Shelf-circulation in the Gulf of California: A description of the variability. J. Geophys. Res. 1989, 94, 133–160. [Google Scholar] [CrossRef]
- May, S.M.; Engel, M.; Brill, D.; Squire, P.; Scheffers, A.; Kelletat, D. Coastal hazards from tropical cyclones and extratropical winter storms based on Holocene storm chronologies. In Coastal Hazards; Finkl, C.W., Ed.; Coastal Research Library: Cham, Switzerland, 2013; Volume 6, pp. 557–585. [Google Scholar]
- Switzer, A.D.; Burston, J.M. Competing mechanisms for boulder deposition on the southeast Australian coast. Geomorpholgy 2010, 114, 42–54. [Google Scholar] [CrossRef]
- Buchanan, D.H.; Naylor, L.A.; Hurst, M.D.; Stephenson, W.J. Erosion of rocky shore platforms by block detachment from layered stratigraphy. Earth Surf. Process. Landf. 2019, 45, 1028–1037. [Google Scholar] [CrossRef]
- Suursaar, Ü; Alari, V.; Tõnisson, H. Multi-scale analysis of wave conditions and coastal changes in the northeastern Baltic Sea. J. Coast. Res. 2014, 70, 223–228. [Google Scholar] [CrossRef]
- Johnson, M.E.; Ledesma-Vázquez, J.; Guardado-France, R. Coastal geomorphology of a Holocene hurricane deposit on a Pleistocene marine terrace from Isla Carmen (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Guardado-France, R.; Johnsob, E.M.; Ledesma-Vázquez, J. Geomorphology of a Holocene Hurricane deposit eroded from rhyolite sea cliffs on Ensenada Almeja (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Johnson, E.M.; Guardado-France, R.; Ledesma-Vázquews, J. Holocene hurricane deposits eroded as coastal barriers from andesite sea cliffs at Puerto Escondido (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2020, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Backus, D.H.; Johnson, M.E.; Ledesma-Vazquez, J. Peninsular and island rocky shores in the Gulf of California. In Atlas of Coastal Ecosystems in the Western Gulf of California; Johnson, M.E., Ledesma-Vazquez, J., Eds.; University Arizona Press: Tucson, AZ, USA, 2009; pp. 11–27. ISBN 978-0-8165-2530-0. [Google Scholar]
- Gastil, R.G.; Phillips, R.P.; Allison, E.C. Reconnaissance Geological Map of the State of Baja California; Geological Society America; Map Sheets a, b, and c; Geological Society of America: Boulder, CO, USA, 1971. [Google Scholar]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 27, 377–392. [Google Scholar] [CrossRef]
- Sneed, E.D.; Folk, R.L. Pebbles in the lower Colorado River of Texas: A study in particle morphogenesis. J. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Yeh, F.-H.; Huang, C.-J.; Han, J.-Y.; Ge, L. Modeling slope topography using unmanned aerial vehicle image technique. MATEC Web Conf. 2018, 147, 07002. [Google Scholar] [CrossRef] [Green Version]
- Casella, E.; Drechsel, J.; Winbter, C.; Benninghoff, M.; Rovere, A. Accuracy of sand beach topography surveying by drones and photogrammetry. Geo-Mar. Lett. 2020, 40, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Nott, J. Waves, coastal bolder deposits and the importance of pre-transport setting. Earth Planet. Sci. Lett. 2003, 210, 269–276. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 2011, 281, 70–84. [Google Scholar] [CrossRef]
- Pepe, F.; Corradino, M.; Parrino, N.; Besio, G.; Presti, V.L.; Renda, P.; Calcagnile, L.; Quarta, G.; Sulli, A.; Antonioli, F. Boulder coastal deposits at Favignana Island rocky coast (Sicily, Italy): Litho-structural and hydrodynamic control. Geomorphology 2018, 303, 191–209. [Google Scholar] [CrossRef]
- Rebman, J.P.; Roberts, N.C. Baja California Plant Field Guide, 3rd ed.; Sun Belt Publications: San Diego, CA, USA, 2012; p. 451. ISBN 978-0-916251-18-5. [Google Scholar]
- Brusca, R.C. Common Intertidal Invertebrates of the Gulf of California, 2nd ed.; University of Arizona Press: Tucson, AZ, USA, 1980; p. 513. ISBN 0-8165-0682-5. [Google Scholar]
- Nott, J.; Haig, J.; Neil, H.; Gillierson, D. Greater frequency of landfalling tropical cyclones at centennial compared to seasonal and decadal scales. Earth Planet. Sci. Let. 2007, 255, 367–372. [Google Scholar] [CrossRef]
- Avila, L. The 2015 Eastern North Pacific Hurricane Season: A very active year. Weatherwise 2016, 69, 36–42. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef]
- Ávila, S.P.; Johnson, M.E.; Rebelo, A.C.; Baptista, L.; Melo, C.S. Comparison of modern and Pleistocene (MIS 5e) coastal Boulder deposits from Santa Maria Island (Azores Archipelago, NE Atlantic Ocean). J. Mar. Sci. Eng. 2020, 8, 386. [Google Scholar] [CrossRef]
Transect | Length (m) | Compass Orientation | Total Clasts Measured | Cobbles (%) | Boulders (%) | Clast Density (Clast/m) |
---|---|---|---|---|---|---|
1 | 37 | 181.15° | 95 | 36 | 64 | 2.6 |
2 | 33 | 147.22° | 85 | 36 | 64 | 2.6 |
3 | 24 | 60.77° | 77 | 92 | 8 | 3.2 |
4 | 25 | 147.29° | 56 | 45 | 55 | 2.2 |
5 | 28 | 143.58° | 125 | 77 | 23 | 4.5 |
6 | 28 | 146.31° | 110 | 75 | 25 | 4.4 |
7 | 30 | 122.66° | 112 | 51 | 49 | 3.7 |
Mean | 29 | 135.55° | 94 | 59 | 41 | 3.3 |
Transect | Number of Samples | Mean Boulder Size (cm3) | Mean Boulder Weight (kg) | Estimated Mean Wave ht. Nott [18] (m) | Max. Boulder Size (cm3) | Max. Boulder Weight (kg) | Max. EWH Nott [18] (m) | Max. EWH Pepe et al. [20] (m) |
---|---|---|---|---|---|---|---|---|
1 | 32 | 43.5 | 81 | 3.0 | 90 | 628 | 6.3 | 7.6 |
2 | 33 | 40 | 59 | 2.8 | 64 | 139 | 3.7 | 5.6 |
3 | 6 | 36 | 12.75 | 2.7 | 61 | 35 | 4.3 | 1.3 |
4 | 32 | 40 | 36 | 2.8 | 75 | 191 | 5.3 | 5.6 |
5 | 29 | 25 | 29.5 | 2.6 | 57 | 166 | 4.0 | 6.1 |
6 | 20 | 35 | 25 | 2.4 | 80 | 190 | 5.6 | 3.7 |
7 | 30 | 38 | 47 | 2.6 | 84 | 122 | 5.9 | 3.2 |
Mean | 26 | 37 | 43 | 2.7 | 73 | 200 | 5.0 | 4.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardado-France, R.; Johnson, M.E.; Ledesma-Vázquez, J.; Santa Rosa-del Rio, M.A.; Herrera-Gutiérrez, Á.R. Multiphase Storm Deposits Eroded from Andesite Sea Cliffs on Isla San Luis Gonzaga (Northern Gulf of California, Mexico). J. Mar. Sci. Eng. 2020, 8, 525. https://doi.org/10.3390/jmse8070525
Guardado-France R, Johnson ME, Ledesma-Vázquez J, Santa Rosa-del Rio MA, Herrera-Gutiérrez ÁR. Multiphase Storm Deposits Eroded from Andesite Sea Cliffs on Isla San Luis Gonzaga (Northern Gulf of California, Mexico). Journal of Marine Science and Engineering. 2020; 8(7):525. https://doi.org/10.3390/jmse8070525
Chicago/Turabian StyleGuardado-France, Rigoberto, Markes E. Johnson, Jorge Ledesma-Vázquez, Miguel A. Santa Rosa-del Rio, and Ángel R. Herrera-Gutiérrez. 2020. "Multiphase Storm Deposits Eroded from Andesite Sea Cliffs on Isla San Luis Gonzaga (Northern Gulf of California, Mexico)" Journal of Marine Science and Engineering 8, no. 7: 525. https://doi.org/10.3390/jmse8070525