Numerical Investigation of Hydrodynamics and Cohesive Sediment Transport in Cua Lo and Cua Hoi Estuaries, Vietnam
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Hydrodynamic Model
3.2. Wave Model
3.3. Mud Transport Model
3.4. Model Calibration and Verification
4. Results and Discussion
4.1. Hydrodynamic Characteristics
4.2. Wave Characteristics
4.3. Sediment Transport Characteristics
5. Conclusions
- (1)
- Nearshore currents flow from the north to the south during NE monsoon while the opposite direction from the south to the north is found during SE monsoon.
- (2)
- The ebb and flood tides in the Cua Lo estuary occur earlier than in the Cua Hoi estuary.
- (3)
- Wave transformation plays an important role in sediment transport in the study area. NE wave controls the sediment transport and causes sedimentation in Cua Lo port and the Cua Hoi estuary. SE wave governs the evolution of the spits in Cua Hoi estuary and has a less significant impact on the Cua Lo estuary.
- (4)
- The water areas in front of Cua Lo port and the navigation channel to Cua Lo port show deposition during the NE monsoon. The sediment transport from Cua Lo port to the south is responsible for the growth of the shallow bar in the northern bank of the Cua Hoi estuary, but the sediment from Cua Hoi cannot be transported to the Cua Lo estuary due to the presence of Hon Ngu Island and Lan Chau rocky headland.
- (5)
- The development of two shallow bars in the Cua Hoi estuary is the main reason for the shallow water depth in front of the Cua Hoi estuary, leading to the inability to construct a deep-water channel as well as a deep-water port in Lam River.
Author Contributions
Funding
Conflicts of Interest
References
- Moore, R.D.; Wolf, J.; Souza, A.J.; Flint, S.S. Morphological evolution of the Dee Estuary, Eastern Irish Sea, UK: A tidal asymmetry approach. Geomorphology 2009, 103, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Franz, G.; Pinto, L.; Ascione, I.; Mateus, M.; Fernandes, R.; Leitão, P.; Neves, R. Modelling of cohesive sediment dynamics in tidal estuarine systems: Case study of Tagus estuary, Portugal. Estuar. Coast. Shelf Sci. 2014, 151, 34–44. [Google Scholar] [CrossRef]
- Hayter, E.; Mehta, A. Modelling cohesive sediment transport in estuarial waters. Appl. Math. Model. 1986, 10, 294–303. [Google Scholar] [CrossRef]
- Guan, W.; Wolanski, E.; Dong, L. Cohesive Sediment Transport in the Jiaojiang River Estuary, China. Estuar. Coast. Shelf Sci. 1998, 46, 861–871. [Google Scholar] [CrossRef]
- Guan, W.; Kot, S.; Wolanski, E. 3-D fluid-mud dynamics in the Jiaojiang Estuary, China. Estuar. Coast. Shelf Sci. 2005, 65, 747–762. [Google Scholar] [CrossRef]
- Wu, Y.; Falconer, R.; Uncles, R. Modelling of Water Flows and Cohesive Sediment Fluxes in the Humber Estuary, UK. Mar. Pollut. Bull. 1999, 37, 182–189. [Google Scholar] [CrossRef]
- Cancino, L.; Neves, R. Hydrodynamic and sediment suspension modelling in estuarine systems: Part II: Application to the Western Scheldt and Gironde estuaries. J. Mar. Syst. 1999, 22, 117–131. [Google Scholar] [CrossRef]
- Cheviet, C.; Violeau, D.; Guesmia, M. Numerical simulation of cohesive sediment transport in the Loire estuary with a three-dimensional model including new parameterisations. In Proceedings in Marine Science; Winterwerp, J.C., Kranenburg, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 529–543. [Google Scholar] [CrossRef]
- Liu, W.-C.; Hsu, M.-H.; Kuo, A.Y. Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Mar. Pollut. Bull. 2002, 44, 1076–1088. [Google Scholar] [CrossRef]
- Lumborg, U.; Windelin, A. Hydrography and cohesive sediment modelling: Application to the Rømø Dyb tidal area. J. Mar. Syst. 2003, 38, 287–303. [Google Scholar] [CrossRef]
- Pandoe, W.W.; Edge, B.L. Cohesive sediment transport in the 3D-hydrodynamic-baroclinic circulation model. Ocean. Eng. 2004, 31, 2227–2252. [Google Scholar] [CrossRef]
- van Kessel, T.; Vanlede, J.; de Kok, J. Development of a mud transport model for the Scheldt estuary. Cont. Shelf Res. 2011, 31, S165–S181. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Jia, L.; He, Z.; Yu, M.; Shi, Y. Application of parameters and paradigms of the erosion and deposition for cohesive sediment transport modelling in the Lingdingyang Estuary, China. Appl. Ocean Res. 2020, 94, 101999. [Google Scholar] [CrossRef]
- Giardino, A.; Ibrahim, E.; Adam, S.; Toorman, E.A.; Monbaliu, J. Hydrodynamics and Cohesive Sediment Transport in the IJzer Estuary, Belgium: Case Study. J. Waterw. Port Coast. Ocean. Eng. 2009, 135, 176–184. [Google Scholar]
- Wang, C.H.; Wai, O.W.H.; Hu, C.H. Three-dimensional modeling of sediment transport in the Pearl river estuary. In Proceedings of the US-China Workshop on Advanced Computational Modelling in Hydroscience and Engineering, Oxford, MI, USA, 19–21 September 2005. [Google Scholar]
- Huan, N.M.; Trinh, N.Q.; Dat, P.T. Numerical Simulation of Sediment Transport and Morphology Changes at the Bach Dang Estuary. VNU J. Sci. Earth Sci. 2010, 26, 90–97. Available online: https://js.vnu.edu.vn/EES/article/view/1779 (accessed on 10 September 2021).
- Nguyen, V.-T.; Zheng, J.-H.; Zhang, J.-S. Mechanism of back siltation in navigation channel in Dinh An Estuary, Vietnam. Water Sci. Eng. 2013, 6, 178–188. [Google Scholar] [CrossRef]
- Thanh, N.V. Morphological Evolution and Back Siltation of Navigation Channel in Dinh an Estuary, Mekong River Delta: Understanding, Modelling and Soluting. Ph.D. Thesis, Hohai University, Nanjing, China, 2012. [Google Scholar]
- Vinh, V.D.; Ouillon, S.; Van Thao, N.; Tien, N.N. Numerical Simulations of Suspended Sediment Dynamics Due to Seasonal Forcing in the Mekong Coastal Area. Water 2016, 8, 255. [Google Scholar] [CrossRef]
- Thanh, V.Q.; Reyns, J.; Wackerman, C.; Eidam, E.F.; Roelvink, D. Modelling suspended sediment dynamics on the subaqueous delta of the Mekong River. Cont. Shelf Res. 2017, 147, 213–230. [Google Scholar] [CrossRef]
- Tu, L.X.; Thanh, V.Q.; Reyns, J.; Van, S.P.; Anh, D.T.; Dang, T.D.; Roelvink, D. Sediment transport and morphodynamical modeling on the estuaries and coastal zone of the Vietnamese Mekong Delta. Cont. Shelf Res. 2019, 186, 64–76. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Vu, C.D.; Van Nguyen, H.; Nguyen, T.D. Factors Controlling Variation in Sediment Transport at Nhat Le Estuary. In International Conference on Asian and Pacific Coasts; Springer: Hanoi, Vietnam, 2019. [Google Scholar] [CrossRef]
- Anh, N.D.Q.; Dien, D.C.; Tam, H.S.; Viet, N.T.; Tanaka, H. Numerical simulation of hydrodynamic and sediment transport at Cua Lo inlet, Quang Nam province, Vietnam. In Proceedings of the 8th International Conference of Physical Modeling in Coastal Science and Engineering (COASTLAB2020), Zhoushan, China, 9–12 December 2020. [Google Scholar]
- Dien, D.C.; Tanaka, H.; Viet, N.T.; Van Manh, D. Numerical Model for Simulating Sand Terrace Formation in Front of the Cua Dai River Mouth. In Proceedings of the International Conference on Asian and Pacific Coasts, Hanoi, Vietnam, 25–28 September 2019; Springer: Berlin/Heidelberg, Germany; pp. 587–592. [Google Scholar] [CrossRef]
- TEDIPORT. Report on Improvement Project-Investment Project to Upgrade the Navigation Channel for Vessel of 10,000 DWT Entering Cua Lo Port; TEDIPORT: Hanoi, Vietnam, 2016. (In Vietnamese) [Google Scholar]
- Nguyen, V.T.; Do Minh, D.; Zhang, C. Effectiveness of Maintenance Dredging in the Navigation Channel of Cua Lo Port, Vietnam. In Proceedings of the 3rd International Conference on Sustainability in Civil Engineering (ICSCE 2020), Hanoi, Vietnam, 26–27 November 2020. [Google Scholar]
- DHI, MIKE 21&3 Flow Model FM, Hydrodynamic and Transport Modulem; Scientific Documentation; DHI Water & Environment: Copenhagen, Denmark, 2009; p. 56.
- Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications; Thomas Telford: London, UK, 1997. [Google Scholar]
- Vu, M.T.; Lacroix, Y.; Nguyen, V.T. Investigating the impacts of the regression of Posidonia oceanica on hydrodynamics and sediment transport in Giens Gulf. Ocean Eng. 2017, 146, 70–86. [Google Scholar] [CrossRef]
- Qu, T.; Mitsudera, H.; Yamagata, T. Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res. Space Phys. 2000, 105, 6415–6424. [Google Scholar] [CrossRef]
- DHI, Spectral Wave Module, Scientific Documentation; DHI Water & Environment: Copenhagen, Denmark, 2009.
- DHI, MIKE 21&3 Flow Model FM, Mud Transport Module; Scientific Documentation; DHI Water & Environment: Copenhagen, Denmark, 2009.
- Rijn, V. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas; AQua Publications: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Parchure, T.M.; Mehta, A.J. Erosion of Soft Cohesive Sediment Deposits. J. Hydraul. Eng. 1985, 111, 1308–1326. [Google Scholar] [CrossRef]
- Hsu, M.-H.; Kuo, A.Y.; Kuo, J.-T.; Liu, W.-C. Procedure to Calibrate and Verify Numerical Models of Estuarine Hydrodynamics. J. Hydraul. Eng. 1999, 125, 166–182. [Google Scholar] [CrossRef]
- Dyer, K.R. Sediment processes in estuaries: Future research requirements. J. Geophys. Res. Space Phys. 1989, 94, 14327–14339. [Google Scholar] [CrossRef]
- Krone, R.B. Flume Studies of the Transport of Sediment in Estuarine Shoaling Processes; Final Report to SanFrancisco District US Army Corps of Engineers; University of California, Berkeley: Washington, DC, USA, 1962. [Google Scholar]
- Mehta, A.J.; Partheniades, E. An Investigation Of The Depositional Properties Of Flocculated Fine Sediments. J. Hydraul. Res. 1975, 13, 361–381. [Google Scholar] [CrossRef]
Parameters | RMSE | Difference (%) | MAE | Difference (%) |
---|---|---|---|---|
Water level at CL1 (m) | 0.05 | 2.21 | 0.04 | 1.83 |
Current speed at CL1 (m/s) | 0.11 | 20.54 | 0.07 | 13.60 |
Current direction at CL1 (o) | 81.71 | 27.18 | 58.78 | 19.55 |
Wave height at W1 (m) | 0.39 | 13.13 | 0.27 | 9.12 |
Wave period at W1 (s) | 1.38 | 22.46 | 1.20 | 19.59 |
Wave direction at W1 (o) | 11.41 | 17.07 | 7.02 | 10.50 |
SSC at SSC1 (g/L) | 0.03 | 24.15 | 0.03 | 19.26 |
SSC at SSC2 (g/L) | 0.02 | 17.53 | 0.02 | 14.82 |
Parameters | RMSE | Difference (%) | MAE | Difference (%) |
---|---|---|---|---|
Water level at CL1 (m) | 0.14 | 6.29 | 0.10 | 4.57 |
Water level at CL2 (m) | 0.03 | 1.03 | 0.02 | 0.84 |
Water level at CL3 (m) | 0.06 | 2.58 | 0.05 | 2.08 |
Current speed at CL2 (m/s) | 0.10 | 23.56 | 0.08 | 19.08 |
Current direction CL2 (degree) | 93.89 | 29.52 | 74.18 | 23.32 |
Current speed at CL3 (m/s) | 0.08 | 20.73 | 0.07 | 16.61 |
Current direction CL3 (degree) | 93.83 | 26.55 | 68.93 | 19.51 |
Current speed at CL4 (m/s) | 0.13 | 12.15 | 0.08 | 9.43 |
Current direction CL4 (degree) | 64.13 | 28.89 | 48.09 | 21.66 |
Wave height CL2 (m) | 0.15 | 11.30 | 0.12 | 9.13 |
Wave period CL2 (sec) | 1.16 | 15.57 | 0.98 | 13.20 |
Wave direction CL2 (degree) | 7.38 | 8.25 | 5.19 | 5.80 |
Wave height CL3 (m) | 0.32 | 15.67 | 0.21 | 10.60 |
Wave period CL3 (sec) | 1.73 | 19.56 | 1.56 | 17.60 |
Wave direction CL3 (degree) | 63.72 | 18.81 | 37.73 | 11.13 |
Wave height CL4 (m) | 0.17 | 10.34 | 0.13 | 7.98 |
Wave period CL4 (sec) | 1.15 | 26.96 | 1.12 | 26.17 |
Wave direction CL4 (degree) | 6.23 | 10.03 | 4.89 | 7.88 |
Profile | Max. Ebb Current (m/s) | Max. Flood Current (m/s) | ||
---|---|---|---|---|
Nov-2016 | Mar-2019 | Nov-2016 | Mar-2019 | |
MC1 | 0.41 | 0.51 | 0.26 | 0.40 |
MC2 | 0.20 | 0.60 | 0.18 | 0.27 |
MC3 | 0.15 | 0.46 | 0.12 | 0.18 |
MC4 | 0.16 | 0.57 | 0.14 | 0.23 |
MC5 | 0.19 | 1.09 | 0.17 | 0.40 |
Layer | Density of Bottom Sediment (kg/m3) | (N/m2) | Ti (kg·m−2s−1) | E (kg·m−2s−1) | (mN−1) | Initial Thickness (mm) |
---|---|---|---|---|---|---|
1 | 300.0 | 0.20 | 5 × 10−7 | 3 × 10-6 to 6 × 10-6 (*) | 5.0 | 0–50 (*) |
2 | 900.0 | 0.60 | 5 × 10−7 | 0.4 × 10−4 to 0.8 × 10−4 (*) | 20.0 | 500 |
Parameter of Initial Condition and Bottom Description | Value | |
---|---|---|
NE Monsoon | SE Monsoon | |
SSC at upstream of Cua Lo estuary | 0.10 (kg/m3) | 0.15 (kg/m3) |
SSC at upstream of Cua Hoi estuary | 0.15 (kg/m3) | 0.25 (kg/m3) |
SSC at sea boundary | 0.01 (kg/m3) | 0.01 (kg/m3) |
Offshore boundary | Zero gradient | Zero gradient |
Initial SSC (*) | 0–0.2 (kg/m3) | 0–0.2 (kg/m3) |
Bed roughness | 0.001 (m) | 0.001 (m) |
(*) | 0–0.45 (N/m2) | 0–0.45 (N/m2) |
Settling velocity coefficient | 0.48 (m/s) | 0.70 (m/s) |
Dispersion coefficients | 5 m2/s | 5 m2/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.T.; Vu, M.T.; Zhang, C. Numerical Investigation of Hydrodynamics and Cohesive Sediment Transport in Cua Lo and Cua Hoi Estuaries, Vietnam. J. Mar. Sci. Eng. 2021, 9, 1258. https://doi.org/10.3390/jmse9111258
Nguyen VT, Vu MT, Zhang C. Numerical Investigation of Hydrodynamics and Cohesive Sediment Transport in Cua Lo and Cua Hoi Estuaries, Vietnam. Journal of Marine Science and Engineering. 2021; 9(11):1258. https://doi.org/10.3390/jmse9111258
Chicago/Turabian StyleNguyen, Viet Thanh, Minh Tuan Vu, and Chi Zhang. 2021. "Numerical Investigation of Hydrodynamics and Cohesive Sediment Transport in Cua Lo and Cua Hoi Estuaries, Vietnam" Journal of Marine Science and Engineering 9, no. 11: 1258. https://doi.org/10.3390/jmse9111258
APA StyleNguyen, V. T., Vu, M. T., & Zhang, C. (2021). Numerical Investigation of Hydrodynamics and Cohesive Sediment Transport in Cua Lo and Cua Hoi Estuaries, Vietnam. Journal of Marine Science and Engineering, 9(11), 1258. https://doi.org/10.3390/jmse9111258