It Often Howls More than It Chugs: Wind versus Ship Noise Under Water in Australia’s Maritime Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ship Data
2.2. Wind Data
2.3. Acoustic Zones
2.4. Source-Receiver Transects
2.5. Sound Propagation Model
2.6. Accumulation of Received Levels
2.7. Ship Noise Map
2.8. Wind Map
2.9. Comparison between Ship and Wind Noise
2.10. Validation
3. Results
Validation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Beginning with a GIS layer of the Australian marine bathymetry.
- Add layers to the grid with ship positions, grouped by ship size (i.e., ship length), yielding one layer per ship class.
- Split the EEZ grid into 28 previously determined acoustic zones.
- For each zone:
- Find all grid cells that contain ships of any class, cast 36,100 km radials in 10-degree intervals, and extract bathymetry along the radials.
- Cluster all extracted bathymetries (over all radials around all cells with ships) with a neural network and subsequent k-means into 64 clusters.
- Compute sound propagation along each cluster centroid, for the centre frequencies of adjacent octave bands.
- For each ship size class:
- Find the cells that contain ships of this class (source cells), cast 36,100 km radials in 10-degree intervals, and extract bathymetry along the radials.
- For each source cell:
- For each radial:
- ○
- Look up into which cluster this radial went;
- ○
- For each frequency:
- ▪
- Retrieve propagation loss as a function of range and depth.
- ▪
- Add octave band source level for this ship class.
- ▪
- Add cumulative time that a ship of this class spent in this source cell to yield sound exposure level as a function of range and depth.
- ▪
- Regrid from polar to Cartesian coordinates.
- Accumulate sound exposure over all radials and source cells to yield a 4-d matrix of cumulative sound exposure level as a function of longitude, latitude, depth, and frequency for each ship class.
- Accumulate sound exposure over all ship classes.
- Accumulate this 4-d matrix over all zones, EEZ-wide.
- Sum over frequency to yield a 3-d matrix of cumulative sound exposure level as a function of longitude, latitude, and depth.
- Pick the maximum cumulative sound exposure level over depth to yield a 2-d map of cumulative sound exposure level versus longitude and latitude.
References
- Mahanty, M.M.; Sanjana, M.C.; Latha, G.; Raguraman, G. An investigation on the fluctuation and variability of ambient noise in shallow waters of south west Bay of Bengal. Indian J. Geo Mar. Sci. 2014, 43, 747–753. [Google Scholar]
- Haver, S.M.; Fournet, M.E.H.; Dziak, R.P.; Gabriele, C.; Gedamke, J.; Hatch, L.T.; Haxel, J.; Heppell, S.A.; McKenna, M.F.; Mellinger, D.K.; et al. Comparing the underwater soundscapes of four U.S. National Parks and Marine Sanctuaries. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Gage, S.H.; Axel, A.C. Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecol. Inform. 2014, 21, 100–109. [Google Scholar] [CrossRef]
- Caruso, F.; Alonge, G.; Bellia, G.; De Domenico, E.; Grammauta, R.; Larosa, G.; Mazzola, S.; Riccobene, G.; Pavan, G.; Papale, E.; et al. Long-term monitoring of dolphin biosonar activity in deep pelagic water of the Mediterranean Sea. Sci. Rep. 2017, 7, 4321. [Google Scholar] [CrossRef]
- Erbe, C.; Verma, A.; McCauley, R.; Gavrilov, A.; Parnum, I. The marine soundscape of the Perth Canyon. Prog. Oceanogr. 2015, 137, 38–51. [Google Scholar] [CrossRef] [Green Version]
- McWilliam, J.N.; McCauley, R.D.; Erbe, C.; Parsons, M.J.G. Patterns of biophonic periodicity on coral reefs in the Great Barrier Reef. Sci. Rep. 2017, 7, 17459. [Google Scholar] [CrossRef]
- Marley, S.A.; Erbe, C.; Salgado Kent, C.P.; Parsons, M.J.G.; Parnum, I.M. Spatial and temporal variation in the acoustic habitat of bottlenose dolphins (Tursiops aduncus) within a highly urbanised estuary. Front. Mar. Sci. 2017, 4, 197. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.A.; Hildebrand, J.A.; Wiggins, S.M.; Ross, D. A 50 year comparison of ambient ocean noise near San Clemente Island: A bathymetrically complex coastal region off Southern California. J. Acoust. Soc. Am. 2008, 124, 1985–1992. [Google Scholar] [CrossRef]
- European Commission. Future Noise Policy. Publications Office of the EU 1996, COM_1996_0540_FIN, Green Paper. Available online: https://op.europa.eu/en/publication-detail/-/publication/8d243fb5-ec92-4eee-aac0-0ab194b9d4f3/language-en (accessed on 15 March 2021).
- European Commission. Directive 2002/49/EC of the European Parliament and of the Council relating to the assessment and management of environmental noise. Off. J. Eur. Communities 2002, L 189, 12–25. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0049&from=EN (accessed on 15 March 2021).
- van der Graaf, A.J.; Ainslie, M.A.; Andre, M.; Brensing, K.; Dalen, J.; Dekeling, R.P.A.; Robinson, S.M.; Tasker, M.L.; Thomsen, F.; Werner, S. European Marine Strategy Framework Directive—Good Environmental Status (MSFD GES): Report of the Technical Subgroup on Underwater Noise and Other Forms of Energy; TSG Noise & Milieu Ltd.: Brussels, Belgium, 2012. [Google Scholar]
- Erbe, C. Underwater noise from pile driving in Moreton Bay, Qld. Acoust. Aust. 2009, 37, 87–92. [Google Scholar]
- Erbe, C.; King, A.R. Modelling cumulative sound exposure around marine seismic surveys. J. Acoust. Soc. Am. 2009, 125, 2443–2451. [Google Scholar] [CrossRef]
- Farcas, A.; Thompson, P.M.; Merchant, N.D. Underwater noise modelling for environmental impact assessment. Environ. Impact Assess. Rev. 2016, 57, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Aulanier, F.; Simard, Y.; Roy, N.; Gervaise, C.; Bandet, M. Effects of shipping on marine acoustic habitats in Canadian Arctic estimated via probabilistic modeling and mapping. Mar. Pollut. Bull. 2017, 125, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Erbe, C.; MacGillivray, A.O.; Williams, R. Mapping cumulative noise from shipping to inform marine spatial planning. J. Acoust. Soc. Am. 2012, 132, EL423–EL428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalkanen, J.P.; Johansson, L.; Liefvendahl, M.; Bensow, R.; Sigray, P.; Östberg, M.; Karasalo, I.; Andersson, M.; Peltonen, H.; Pajala, J. Modelling of ships as a source of underwater noise. Ocean Sci. 2018, 14, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Sertlek, H.Ö.; Slabbekoorn, H.; ten Cate, C.; Ainslie, M.A. Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea. Environ. Pollut. 2019. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.K.; Howe, B.M.; Mercer, J.A. Long-time trends in ship traffic noise for four sites off the North American West Coast. J. Acoust. Soc. Am. 2011, 129, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Andrew, R.; Bruce, M.H.; James, A.M. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online 2002, 3, 65–70. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.A.; Hildebrand, J.A.; Wiggins, S.M. Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J. Acoust. Soc. Am. 2006, 120, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, N.R.; Price, A. Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 2011, 129, EL161–EL165. [Google Scholar] [CrossRef] [PubMed]
- Miksis-Olds, J.L.; Bradley, D.L.; Niu, X.M. Decadal trends in Indian Ocean ambient sound. J. Acoust. Soc. Am. 2013, 134, 3464–3475. [Google Scholar] [CrossRef]
- Miksis-Olds, J.L.; Nichols, S.M. Is low frequency ocean sound increasing globally? J. Acoust. Soc. Am. 2016, 139, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Erbe, C.; Marley, S.; Schoeman, R.; Smith, J.N.; Trigg, L.; Embling, C.B. The effects of ship noise on marine mammals—A review. Front. Mar. Sci. 2019, 6, 606. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.C.O.; McCormick, M.I.; Meekan, M.G.; Simpson, S.D.; Nedelec, S.L.; Chivers, D.P. School is out on noisy reefs: The effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proc. Biol. Sci. 2018, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusku, H. Acoustic sound–induced stress response of Nile tilapia (Oreochromis niloticus) to long-term underwater sound transmissions of urban and shipping noises. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Williams, R.; Cholewiak, D.; Clark, C.W.; Erbe, C.; George, J.C.C.; Lacy, R.C.; Leaper, R.; Moore, S.E.; New, L.; Parsons, E.C.M.; et al. Chronic ocean noise and cetacean population models. J. Cetacean Res. Manag. 2020, 21, 85–94. [Google Scholar] [CrossRef]
- Erbe, C.; Williams, R.; Sandilands, D.; Ashe, E. Identifying modelled ship noise hotspots for marine mammals of Canada’s Pacific region. PLoS ONE 2014, 9, e89820. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Erbe, C.; Ashe, E.; Clark, C.W. Quiet(er) marine protected areas. Mar. Pollut. Bull. 2015, 100, 154–161. [Google Scholar] [CrossRef]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Farcas, A.; Powell, C.F.; Brookes, K.L.; Merchant, N.D. Validated shipping noise maps of the Northeast Atlantic. Sci. Total Environ. 2020, 735, 139509. [Google Scholar] [CrossRef]
- Wu, L.; Xu, Y.; Wang, Q.; Wang, F.; Xu, Z. Mapping global shipping density from AIS data. J. Navig. 2017, 70, 67–81. [Google Scholar] [CrossRef]
- McCauley, R.D.; Gavrilov, A.N.; Jolliffe, C.D.; Ward, R.; Gill, P.C. Pygmy blue and Antarctic blue whale presence, distribution and population parameters in southern Australia based on passive acoustics. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018. [Google Scholar] [CrossRef]
- Dawbin, W.H. The seasonal migratory cycle of humpback whales. In Whales, Dolphins and Porpoises; Norris, K.S., Ed.; University of California Press: Berkeley, CA, USA, 1966; pp. 145–170. [Google Scholar]
- Bannister, J. Status of southern right whales (Eubalaena australis) off Australia. J. Cetacean Res. Manag. 2020, 103–110. [Google Scholar] [CrossRef]
- Erbe, C.; Peel, D.; Smith, J.N.; Schoeman, R.P. Marine acoustic zones of Australia. J. Mar. Sci. Eng. 2021, 9, 340. [Google Scholar] [CrossRef]
- Whiteway, T.G. Australian Bathymetry and Topography Grid; 2009/21; Geoscience Australia: Canberra, Australia, 2009.
- Peel, D.; Erbe, C.; Smith, J.N.; Parsons, M.J.G.; Duncan, A.J.; Schoeman, R.P.; Meekan, M. Characterising Anthropogenic Underwater Noise to Improve Understanding and Management of Acoustic Impacts to Marine Wildlife; CSIRO: Hobart, Australia, 2021.
- Breeding, J.E.; Pflug, L.A.; Bradley, M.; Herbert, M.; Wooten, M. RANDI 3.1 User’s Guide; Naval Research Laboratory: Washington, DC, USA, 1994. [Google Scholar]
- Durrant, T.; Hemer, M.; Trenham, C.; Greenslade, D. CAWCR Wave Hindcast Extension Jan 2011–May 2013. v7; CSIRO Service Collection: Canberra, Australia, 2013.
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Wenz, G.M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 1962, 34, 1936–1956. [Google Scholar] [CrossRef]
- Mathai, A.; Moschopoulos, P.; Pederzoli, G. Random points associated with rectangles. Rend. Circ. Mat. Palermo 1999, 48, 163–190. [Google Scholar] [CrossRef]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. SOM Toolbox for Matlab 5; Helsinki University of Technology: Helsinki, Finland, 2000. [Google Scholar]
- Vesanto, J.; Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.; Maggi, A.L. A consistent, user friendly interface for running a variety of underwater acoustic propagation codes. In Proceedings of the Acoustics 2006, Christchurch, New Zealand, 20–22 November 2006. [Google Scholar]
- Locarnini, R.A.; Mishonov, A.V.; Baranova, O.K.; Boyer, T.P.; Zweng, M.M.; Garcia, H.E.; Reagan, J.R.; Seidov, D.; Weathers, K.; Paver, C.R.; et al. World Ocean Atlas 2018, Volume 1: Temperature; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2018.
- Zweng, M.M.; Reagan, J.R.; Seidov, D.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V.; Baranova, O.K.; Weathers, K.; Paver, C.R.; et al. World Ocean Atlas 2018, Volume 2: Salinity; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2018.
- Fofonoff, N.P.; Millard, R.C., Jr. Algorithms for the Computation of Fundamental Properties of Seawater; UNESCO Technical Papers in Marine Sciences; UNESCO: Paris, France, 1983; Volume 44. [Google Scholar]
- Duncan, A.; Gavrilov, A.; Li, F. Acoustic propagation over limestone seabeds. In Proceedings of the Acoustics 2009, Adelaide, Australia, 23–25 November 2009. [Google Scholar]
- Torgersen, T.; Jones, M.R.; Stephens, A.W.; Searle, D.E.; Ullman, W.J. Late Quaternary hydrological changes in the Gulf of Carpentaria. Nature 1985, 313, 785–787. [Google Scholar] [CrossRef]
- Jones, M.R.; Torgersen, T. Late Quaternary evolution of Lake Carpentaria on the Australia-New Guinea continental shelf. Aust. J. Earth Sci. 1988, 35, 313–324. [Google Scholar] [CrossRef]
- Roy, P.S.; Cowell, P.J.; Ferland, M.A.; Thom, B.G. Wave-dominated coasts. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Woodroffe, C.D., Carter, R.W.G., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 121–186. [Google Scholar] [CrossRef]
- Heap, A.; Daniell, J.; Mazen, D.; Harris, P.; Sbaffi, L.; Fellows, M.; Passlow, V. Geomorphology and Sedimentology of the Northern Marine Planning Area of Australia: Review and Synthesis of Relevant Literature in Support of Regional Marine Planning; 2004/11; Geoscience Australia: Canberra, Australia, 2004.
- Carter, R.M.; Larcombe, P.; Dye, J.E.; Gagan, M.K.; Johnson, D.P. Long-shelf sediment transport and storm-bed formation by Cyclone Winifred, central Great Barrier Reef, Australia. Mar. Geol. 2009, 267, 101–113. [Google Scholar] [CrossRef]
- Harris, P.T.; Heap, A.D. Cyclone-induced net sediment transport pathway on the continental shelf of tropical Australia inferred from reef talus deposits. Cont. Shelf Res. 2009, 29, 2011–2019. [Google Scholar] [CrossRef]
- Koessler, M.W. An equivalent fluid representation of a layered elastic seafloor for acoustic propagation modelling. In Proceedings of the Acoustics 2017, Perth, Australia, 19–22 November 2017. [Google Scholar]
- Porter, M.B. The KRAKEN Normal Mode Program; NRL/MR/5120-92-6920; Naval Research Laboratory: Washington, DC, USA, 1992. [Google Scholar]
- Fisher, F.H.; Simmons, V.P. Sound absorption in sea water. J. Acoust. Soc. Am. 1977, 62, 558–564. [Google Scholar] [CrossRef]
- Schreer, J.F.; Kovacs, K.M. Allometry of diving capacity in air-breathing vertebrates. Can. J. Zool. 1997, 75, 339–358. [Google Scholar] [CrossRef]
- McCauley, R.D.; Thomas, F.; Parsons, M.J.G.; Erbe, C.; Cato, D.; Duncan, A.J.; Gavrilov, A.N.; Parnum, I.M.; Salgado-Kent, C. Developing an underwater sound recorder. Acoust. Aust. 2017, 45, 301–311. [Google Scholar] [CrossRef]
- Gavrilov, A.N.; Parsons, M.J.G. A Matlab tool for the characterisation of recorded underwater sound (CHORUS). Acoust. Aust. 2014, 42, 190–196. [Google Scholar]
- Erbe, C.; McCauley, R.; Gavrilov, A.; Madhusudhana, S.; Verma, A. The underwater soundscape around Australia. In Proceedings of the Acoustics 2016, Brisbane, Australia, 9–11 November 2016. [Google Scholar]
- Erbe, C.; Dunlop, R.; Jenner, K.C.S.; Jenner, M.-N.M.; McCauley, R.D.; Parnum, I.; Parsons, M.; Rogers, T.; Salgado-Kent, C. Review of underwater and in-air sounds emitted by Australian and Antarctic marine mammals. Acoust. Aust. 2017, 45, 179–241. [Google Scholar] [CrossRef]
- McWilliam, J.N.; McCauley, R.D.; Erbe, C.; Parsons, M.J.G. Soundscape diversity in the Great Barrier Reef: Lizard Island, a case study. Bioacoustics 2018, 27, 295–311. [Google Scholar] [CrossRef]
- Ward, R.; Gavrilov, A.N.; McCauley, R.D. “Spot” call: A common sound from an unidentified great whale in Australian temperate waters. J. Acoust. Soc. Am. 2017, 142, EL231–EL236. [Google Scholar] [CrossRef] [Green Version]
- MacGillivray, A.O.; Li, Z.; Hannay, D.E.; Trounce, K.B.; Robinson, O.M. Slowing deep-sea commercial vessels reduces underwater radiated noise. J. Acoust. Soc. Am. 2019, 146, 340–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacGillivray, A.; de Jong, C. A reference spectrum model for estimating source levels of marine shipping based on Automated Identification System data. J. Mar. Sci. Eng. 2021, 9, 369. [Google Scholar] [CrossRef]
- Chion, C.; Lagrois, D.; Dupras, J.; Turgeon, S.; McQuinn, I.H.; Michaud, R.; Ménard, N.; Parrott, L. Underwater acoustic impacts of shipping management measures: Results from a social-ecological model of boat and whale movements in the St. Lawrence River Estuary (Canada). Ecol. Model. 2017, 354, 72–87. [Google Scholar] [CrossRef]
- Jiang, P.; Lin, J.; Sun, J.; Yi, X.; Shan, Y. Source spectrum model for merchant ship radiated noise in the Yellow Sea of China. Ocean Eng. 2020, 216, 107607. [Google Scholar] [CrossRef]
- Simard, Y.; Roy, N.; Gervaise, C.; Giard, S. Analysis and modeling of 255 source levels of merchant ships from an acoustic observatory along St. Lawrence Seaway. J. Acoust. Soc. Am. 2016, 140, 2002–2018. [Google Scholar] [CrossRef] [PubMed]
- Erbe, C.; Liong, S.; Koessler, M.W.; Duncan, A.J.; Gourlay, T. Underwater sound of rigid-hulled inflatable boats. J. Acoust. Soc. Am. 2016, 139, EL223–EL227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipple, B.; Gabriele, C. Glacier Bay Watercraft Noise; NSWCCD-71-TR-2003/522; Naval Surface Warfare Center: Bremerton, WA, USA, 2003. [Google Scholar]
- Kipple, B.; Gabriele, C. Underwater noise from skiffs to ships. In Proceedings of the Fourth Glacier Bay Science Symposium, Juneau, AK, USA, 26–28 October 2004; Piatt, J.F., Gende, S.M., Eds.; U.S. Geological Survey Scientific Investigations Report 2007-5047: Juneau, AL, USA, 2007; pp. 172–175. [Google Scholar]
- Gervaise, C.; Simard, Y.; Roy, N.; Kinda, B.; Menard, N. Shipping noise in whale habitat: Characteristics, sources, budget, and impact on belugas in Saguenay–St. Lawrence Marine Park hub. J. Acoust. Soc. Am. 2012, 132, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Cato, D.H. Ocean ambient noise: Its measurement and its significance to marine animals. In Proceedings of the Institute of Acoustics—Underwater Noise Measurement, Impact and Mitigation, Southampton, UK, 14–15 October 2008; pp. 1–9. [Google Scholar]
- Marley, S.A.; Salgado Kent, C.P.; Erbe, C.; Thiele, D. A tale of two soundscapes: Comparing the acoustic characteristics of urban versus pristine coastal dolphin habitats in Western Australia. Acoust. Aust. 2017, 45, 159–178. [Google Scholar] [CrossRef]
- Erbe, C.; Dähne, M.; Gordon, J.; Herata, H.; Houser, D.S.; Koschinski, S.; Leaper, R.; McCauley, R.; Miller, B.; Müller, M.; et al. Managing the effects of noise from ship traffic, seismic surveying and construction on marine mammals in Antarctica. Front. Mar. Sci. 2019. [Google Scholar] [CrossRef]
- Erbe, C.; Duncan, A.; Peel, D.; Smith, J.N. Underwater Noise Signatures of Ships in Australian Waters; Centre for Marine Science and Technology, Curtin University: Hobart, Australia, 2020. [Google Scholar]
- Merchant, N.D.; Faulkner, R.C.; Martinez, R. Marine noise budgets in practice. Conserv. Lett. 2018, 11, e12420. [Google Scholar] [CrossRef]
- Southall, B.L.; Finneran, J.J.; Reichmuth, C.; Nachtigall, P.E.; Ketten, D.R.; Bowles, A.E.; Ellison, W.T.; Nowacek, D.P.; Tyack, P.L. Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquat. Mamm. 2019, 45, 125–232. [Google Scholar] [CrossRef]
ID | Location | Longitude | Latitude | Winter | C-SEL [dB re 1 µPa2s] Measured | SPL [dB re 1 µPa] Measured | Ship C-SEL [dB re 1 µPa2s] Modelled | Wind C-SEL [dB re 1 µPa2s] Modelled | Ship + Wind C-SEL [dB re 1 µPa2s] Modelled | C-SEL Difference Measured-Modelled [dB] | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Bonaparte Gulf WA | 128.2 | −13.1 | 2012 | 174 | 102 | 144 | 170 | 170 | 4 | dominated by Omura′s whale chorus throughout winter; some fish choruses; strong wind periods; some ships; distant seismic survey |
2 | NW Shelf | 121.9 | −14.1 | 2008 | 192 | 120 | 140 | 167 | 167 | 25 | dominated by industrial noise at the time |
3 | NW Shelf | 122.2 | −14.3 | 2008 | 184 | 112 | 154 | 167 | 167 | 17 | dominated by 3 seismic surveys at different ranges covering entire winter |
4 | NW Shelf | 124.9 | −14.4 | 2007 | 176 | 104 | 148 | 166 | 166 | 10 | dominated by fish choruses, very little anthropophony; pristine |
5 | NW Shelf | 121.3 | −15.5 | 2013 | 172 | 100 | 151 | 168 | 168 | 4 | 3 seismic surveys overlapping in time at different ranges; Omura’s whales and humpback whales |
6 | NW Shelf | 115.9 | −19.4 | 2013 | 177 | 105 | 155 | 170 | 170 | 7 | strong humpback whale song |
7 | NW Shelf | 115.2 | −19.9 | 2006 | 183 | 111 | 157 | 170 | 170 | 13 | dominated by seismic surveys all winter |
8 | NW Shelf | 115.3 | −19.9 | 2010 | 184 | 112 | 160 | 170 | 170 | 14 | strong industrial noise throughout |
9 | NW Shelf | 115.4 | −20.2 | 2010 | 172 | 100 | 160 | 170 | 170 | 2 | several strong fish choruses and periods of strong wind; pristine |
10 | NW Shelf | 113.9 | −20.2 | 2012 | 184 | 112 | 155 | 169 | 170 | 14 | a lot of industrial noise and seismic survey |
11 | NW Shelf | 114.8 | −20.6 | 2010 | 186 | 114 | 153 | 169 | 170 | 16 | dominated by industrial noise and seismic surveys, near and far |
12 | NW Shelf | 114.8 | −21.4 | 2010 | 180 | 108 | 157 | 169 | 169 | 11 | dominated by humpback whale and fish choruses, also dwarf minke chorus; pristine |
13 | NW Shelf | 115.0 | −21.5 | 2010 | 177 | 105 | 157 | 168 | 168 | 9 | industrial noise, fish choruses throughout, humpback whales from 1 Aug. |
14 | Perth Can yon WA | 115.0 | −31.8 | 2014 | 180 | 108 | 164 | 172 | 172 | 8 | dominated by pygmy blue whale chorus, also strong fish chorus throughout; fin whales in June; spot call in June–July; humpback whales in Sept. |
15 | Perth Can yon WA | 115.0 | −31.9 | 2016 | 179 | 107 | 164 | 172 | 172 | 7 | dominated by pygmy blue whale chorus, also strong fish chorus throughout; fin whales in June; spot call in June–July; humpback whales in Sept. |
16 | Bremer Canyon WA | 119.6 | −34.7 | 2015 | 175 | 103 | 158 | 172 | 172 | 3 | quiet soundscape with blue whale and spot call chorus and wind; distant shipping only noticeable <5% of the time |
17 | Kangaroo Isl. SA | 135.9 | −36.1 | 2016 | 180 | 108 | 156 | 173 | 173 | 7 | dominated by Antarctic blue whale chorus; spot calls; fish; strong wind; very few ships |
18 | Kangaroo Isl. SA | 135.9 | −36.1 | 2017 | 179 | 107 | 156 | 173 | 173 | 6 | dominated by choruses of Antarctic blue whales, pygmy blue whales, spot calls, and fish |
19 | Portland VIC | 141.2 | −38.5 | 2012 | 181 | 109 | 167 | 173 | 174 | 7 | strong wind and ships; Antarctic blue whale chorus entire winter; strong spot call in Aug. |
20 | Portland VIC | 141.2 | −38.5 | 2014 | 179 | 107 | 167 | 173 | 174 | 5 | 3 overlapping whale choruses (Antarctic blue, pygmy blue, spot call); wind and ships |
21 | Portland VIC | 141.2 | −38.5 | 2015 | 184 | 112 | 167 | 173 | 174 | 10 | strong wind; strong fish; Antarctic blue whale chorus for nearly entire winter in the ship noise band; spot call in July–Aug. |
22 | Portland VIC | 141.2 | −38.5 | 2015 | 185 | 113 | 167 | 173 | 174 | 11 | Antarctic blue whale chorus entire winter; spot call; strong fish; strong wind and ships |
23 | Portland VIC | 141.2 | −38.5 | 2016 | 180 | 108 | 167 | 173 | 174 | 6 | broad ship noise hump at 50 Hz; choruses of Antarctic blue whale; pygmy blue whale; spot call, and fish |
24 | Portland VIC | 141.2 | −38.5 | 2017 | 181 | 109 | 167 | 173 | 174 | 7 | Antarctic blue whale chorus and fish all winter; some strong pygmy blue whales; many ships |
25 | Tuncurry NSW | 152.9 | −32.3 | 2016 | 181 | 109 | 177 | 172 | 178 | 3 | full of ships; blue whale choruses in the background |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erbe, C.; Schoeman, R.P.; Peel, D.; Smith, J.N. It Often Howls More than It Chugs: Wind versus Ship Noise Under Water in Australia’s Maritime Regions. J. Mar. Sci. Eng. 2021, 9, 472. https://doi.org/10.3390/jmse9050472
Erbe C, Schoeman RP, Peel D, Smith JN. It Often Howls More than It Chugs: Wind versus Ship Noise Under Water in Australia’s Maritime Regions. Journal of Marine Science and Engineering. 2021; 9(5):472. https://doi.org/10.3390/jmse9050472
Chicago/Turabian StyleErbe, Christine, Renee P. Schoeman, David Peel, and Joshua N. Smith. 2021. "It Often Howls More than It Chugs: Wind versus Ship Noise Under Water in Australia’s Maritime Regions" Journal of Marine Science and Engineering 9, no. 5: 472. https://doi.org/10.3390/jmse9050472
APA StyleErbe, C., Schoeman, R. P., Peel, D., & Smith, J. N. (2021). It Often Howls More than It Chugs: Wind versus Ship Noise Under Water in Australia’s Maritime Regions. Journal of Marine Science and Engineering, 9(5), 472. https://doi.org/10.3390/jmse9050472