Plankton Detection with Adversarial Learning and a Densely Connected Deep Learning Model for Class Imbalanced Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description and Augmentation
2.1.1. Dataset Description
2.1.2. Dataset Augmentation
2.2. Plankton Detection Algorithm
2.2.1. Basic of YOLOV3 Model
2.2.2. Densely Connected Structure
2.2.3. Proposed Plankton Detection Structure
2.3. Performance Evaluation Metrics
3. Experiments and Discussions
3.1. Experimental Dataset Production and Components
3.2. Detection Performance Evaluation
3.2.1. Experiment for the Dataset in Table 2
3.2.2. Experiment for the Dataset in Table 3
3.3. Real-Time Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, Z.; Xia, C.; Fu, L.; Zhang, N.; Li, B.; Song, J.; Chen, L. A cost-effective in situ zooplankton monitoring system based on novel illumination optimization. Sensors 2020, 20, 3471. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lin, F.; Samson, S.; Remsen, A. Binary plankton image classification. IEEE J. Ocean. Eng. 2006, 31, 728–735. [Google Scholar] [CrossRef]
- Ortner, P.B.; Cummings, S.R.; Aftring, R.P. Silhouette photography of oceanic zooplankton. Nature 1979, 277, 50–51. [Google Scholar] [CrossRef]
- Jeffries, H.P.; Sherman, K.; Maurer, R.; Katsinis, C. Computer-processing of zooplankton samples. In Estuarine Perspectives; Academic Press: Cambridge, MA, USA, 1980; pp. 303–316. [Google Scholar]
- Rolke, M.; Lenz, J. Size structure analysis of zooplankton samples by means of an automated image analyzing system. J. Plankton Res. 1984, 6, 637–645. [Google Scholar] [CrossRef]
- Davis, C.S.; Gallager, S.M.; Berman, M.S.; Haury, L.R.; Strickler, J.R. The video plankton recorder (VPR): Design and initial results. Arch. Hydrobiol. Beih 1992, 36, 67–81. [Google Scholar]
- Olson, R.J.; Sosik, H.M. A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot. Limnol. Oceanogr. Methods 2007, 5, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Sieracki, C.K.; Sieracki, M.E.; Yentsch, C.S. An imaging-in-flow system for automated analysis of marine microplankton. Mar. Ecol. Prog. Ser. 1998, 168, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Grosjean, P.; Picheral, M.; Warembourg, C.; Gorsky, G. Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES J. Mar. Sci. 2004, 61, 518–525. [Google Scholar] [CrossRef]
- Jeffries, H.P.; Berman, M.S.; Poularikas, A.D.; Katsinis, C.; Melas, I.; Sherman, K.; Bivins, L. Automated sizing, counting and identification of zooplankton by pattern recognition. Mar. Biol. 1984, 78, 329–334. [Google Scholar] [CrossRef]
- Tang, X.; Stewart, W.K.; Huang, H.; Gallager, S.M.; Davis, C.S.; Vincent, L.; Marra, M. Automatic plankton image recognition. Artif. Intell. Rev. 1998, 12, 177–199. [Google Scholar] [CrossRef]
- Gorsky, G.; Ohman, M.D.; Picheral, M.; Gasparini, S.; Stemmann, L.; Romagnan, J.; Cawood, A.; Pesant, S.; García-Comas, C.; Prejger, F. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 2010, 32, 285–303. [Google Scholar] [CrossRef]
- Dai, J.; Wang, R.; Zheng, H.; Ji, G.; Qiao, X. Zooplanktonet: Deep convolutional network for zooplankton classification. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Cheng, X.; Ren, Y.; Cheng, K.; Cao, J.; Hao, Q. Method for training convolutional neural networks for in situ plankton image recognition and classification based on the mechanisms of the human eye. Sensors 2020, 20, 2592. [Google Scholar] [CrossRef]
- Li, X.; Cui, Z. Deep residual networks for plankton classification. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; IEEE: New York, NY, USA, 2016; pp. 1–4. [Google Scholar]
- Py, O.; Hong, H.; Zhongzhi, S. Plankton classification with deep convolutional neural networks. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016; IEEE: New York, NY, USA, 2016; pp. 132–136. [Google Scholar]
- Shi, Z.; Wang, K.; Cao, L.; Ren, Y.; Han, Y.; Ma, S. Study on holographic image recognition technology of zooplankton. DEStech Trans. Comput. Sci. Eng. 2019, 580–594. [Google Scholar] [CrossRef]
- Pedraza, A.; Bueno, G.; Deniz, O.; Cristóbal, G.; Blanco, S.; Borrego-Ramos, M. Automated diatom classification (Part B): A deep learning approach. Appl. Sci. 2017, 7, 460. [Google Scholar] [CrossRef] [Green Version]
- Pedraza, A.; Bueno, G.; Deniz, O.; Ruiz-Santaquiteria, J.; Sanchez, C.; Blanco, S.; Borrego-Ramos, M.; Olenici, A.; Cristobal, G. Lights and pitfalls of convolutional neural networks for diatom identification. In Optics, Photonics, and Digital Technologies for Imaging Applications V; International Society for Optics and Photonics: Strasbourg, France, 2018; Volume 10679, p. 106790G. [Google Scholar]
- Kerr, T.; Clark, J.R.; Fileman, E.S.; Widdicombe, C.E.; Pugeault, N. Collaborative deep learning models to handle class imbalance in FlowCam plankton imagery. IEEE Access 2020, 8, 170013–170032. [Google Scholar] [CrossRef]
- Orenstein, E.C.; Beijbom, O.; Peacock, E.E.; Sosik, H.M. Whoi-plankton-a large scale fine grained visual recognition benchmark dataset for plankton classification. arXiv 2015, arXiv:1510.00745. [Google Scholar]
- Lee, H.; Park, M.; Kim, J. Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: New York, NY, USA, 2016; pp. 3713–3717. [Google Scholar]
- Lumini, A.; Nanni, L. Deep learning and transfer learning features for plankton classification. Ecol. Inform. 2019, 51, 33–43. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Li, Y.; Guo, J.; Guo, X.; Liu, K.; Zhao, W.; Luo, Y.; Wang, Z. A novel target detection method of the unmanned surface vehicle under all-weather conditions with an improved YOLOV3. Sensors 2020, 20, 4885. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Cardie, C.; Howe, N. Improving Minority Class Prediction Using Case-Specific Feature Weights; Computer Science, Faculty Publications, Smith College: Northampton, MA, USA, 1997. [Google Scholar]
- Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. The effects of data sampling with deep learning and highly imbalanced big data. Inf. Syst. Front. 2020, 22, 1113–1131. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Li, Y.; Xia, C.; Lee, J. Detection of small-sized insect pest in greenhouses based on multifractal analysis. Opt. Int. J. Light Electron Opt. 2015, 126, 2138–2143. [Google Scholar] [CrossRef]
Model | Backbone | Input Size | Boxes | Parameters × 106 |
---|---|---|---|---|
YOLOV3-tiny | Conv-MaxPooling | 416 × 416 | 2535 | 8.69 |
YOLOV3 | Darknet-53 | 416 × 416 | 10,647 | 61.56 |
YOLOV3-dense | Darknet-dense | 416 × 416 | 10,647 | 61.94 |
Faster-RCNN | ResNet-101 | 416 × 416 | 300 | 67.66 |
Taxonomic Group | Training Dataset | Testing Dataset | Total | |
---|---|---|---|---|
Original | Augmentation | |||
Cerataulina | 300 | 0 | 100 | 400 |
Cylindrotheca | 379 | 0 | 100 | 479 |
Dino30 | 411 | 0 | 100 | 511 |
Guinardia_delicatula | 450 | 0 | 100 | 550 |
Guinardia_striata | 300 | 0 | 100 | 400 |
Prorocentrum | 60 | 390 | 100 | 550 |
Total | 1900 | 390 | 600 | 2890 |
Taxonomic Group | Training Dataset | Testing Dataset | Total | |
---|---|---|---|---|
Original | Augmentation | |||
Cerataulina | 300 | 0 | 100 | 400 |
Cylindrotheca | 379 | 0 | 100 | 479 |
Dino30 | 411 | 0 | 100 | 511 |
Dinobryon | 348 | 0 | 100 | 448 |
Guinardia_delicatula | 450 | 0 | 100 | 550 |
Guinardia_striata | 300 | 0 | 100 | 400 |
Pennate | 58 | 362 | 100 | 520 |
Prorocentrum | 60 | 390 | 100 | 550 |
Total | 2306 | 752 | 800 | 3858 |
Model | YOLOV3-Tiny | YOLOV3 | YOLOV3-Dense | Ours | Faster RCNN | |
---|---|---|---|---|---|---|
Taxonomic Group | ||||||
AP | Cerataulina | 85.63% | 94.60% | 94.69% | 93.54% | 86.00% |
Cylindrotheca | 98.81% | 99.00% | 99.00% | 99.00% | 99.00% | |
Dino30 | 99.50% | 99.88% | 98.80% | 100.00% | 99.98% | |
Guinardia_delicatula | 96.67% | 96.00% | 97.98% | 97.94% | 99.66% | |
Guinardia_striata | 89.76% | 97.01% | 96.94% | 96.75% | 99.60% | |
Prorocentrum | 95.00% | 89.00% | 91.87% | 96.00% | 83.00% | |
mAP | 94.23% | 95.92% | 96.55% | 97.21% | 94.54% | |
True positives | 572 | 578 | 581 | 584 | 568 | |
False positives | 28 | 22 | 19 | 16 | 31 |
Model | YOLOV3-Tiny | YOLOV3 | YOLOV3-Dense | Ours | Faster RCNN | |
---|---|---|---|---|---|---|
Taxonomic Group | ||||||
AP | Cerataulina | 85.13% | 92.34% | 91.83% | 93.27% | 82.00% |
Cylindrotheca | 96.59% | 97.62% | 98.88% | 98.97% | 99.00% | |
Dino30 | 98.58% | 99.50% | 99.54% | 99.73% | 99.99% | |
Dinobryon | 98.93% | 99.98% | 99.96% | 99.88% | 100.00% | |
Guinardia_delicatula | 98.61% | 98.76% | 97.65% | 97.88% | 100.00% | |
Guinardia_striata | 87.48% | 98.31% | 94.75% | 96.57% | 97.63% | |
Pennate | 80.01% | 86.76% | 90.89% | 92.82% | 93.76% | |
Prorocentrum | 96.00% | 91.00% | 92.00% | 98.00% | 87.97% | |
mAP | 92.67% | 95.53% | 95.69% | 97.14% | 95.04% | |
True positives | 753 | 768 | 768 | 780 | 762 | |
False positives | 47 | 32 | 32 | 20 | 37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Guo, J.; Guo, X.; Hu, Z.; Tian, Y. Plankton Detection with Adversarial Learning and a Densely Connected Deep Learning Model for Class Imbalanced Distribution. J. Mar. Sci. Eng. 2021, 9, 636. https://doi.org/10.3390/jmse9060636
Li Y, Guo J, Guo X, Hu Z, Tian Y. Plankton Detection with Adversarial Learning and a Densely Connected Deep Learning Model for Class Imbalanced Distribution. Journal of Marine Science and Engineering. 2021; 9(6):636. https://doi.org/10.3390/jmse9060636
Chicago/Turabian StyleLi, Yan, Jiahong Guo, Xiaomin Guo, Zhiqiang Hu, and Yu Tian. 2021. "Plankton Detection with Adversarial Learning and a Densely Connected Deep Learning Model for Class Imbalanced Distribution" Journal of Marine Science and Engineering 9, no. 6: 636. https://doi.org/10.3390/jmse9060636
APA StyleLi, Y., Guo, J., Guo, X., Hu, Z., & Tian, Y. (2021). Plankton Detection with Adversarial Learning and a Densely Connected Deep Learning Model for Class Imbalanced Distribution. Journal of Marine Science and Engineering, 9(6), 636. https://doi.org/10.3390/jmse9060636