Design and Application of an In Situ Test Device for Rheological Characteristic Measurements of Liquefied Submarine Sediments
Abstract
:1. Introduction
2. Design of the In Situ Test Device
3. Application of the In Situ Test Device
3.1. Field Site
3.2. In Situ Test Results
4. Verification of the Accuracy of the In Situ Test Device
4.1. Laboratory Sediment Samples and Sample Preparation
4.2. Laboratory Test Results
5. Discussion
5.1. Comparison of In Situ and Laboratory Tests
5.2. Applicability of the In Situ Device in the Offshore Area
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeng, D. Wave-induced seabed instability in front of a breakwater. Ocean Eng. 1997, 24, 887–917. [Google Scholar] [CrossRef]
- Berlamont, J.; Ockenden, M.; Toorman, E.; Winterwerp, J. The characterisation of cohesive sediment properties. Coast. Eng. 1993, 21, 105–128. [Google Scholar] [CrossRef] [Green Version]
- Prior, D.B.; Suhayda, J.N.; Lu, N.-Z.; Bornhold, B.D.; Keller, G.H.; Wiseman, W.J.; Wright, L.D.; Yang, Z.-S. Storm wave reactivation of a submarine landslide. Nat. Cell Biol. 1989, 341, 47–50. [Google Scholar] [CrossRef]
- Truong, M.H.; Nguyen, V.L.; Ta, T.K.O.; Takemura, J. Changes in late Pleistocene–Holocene sedimentary facies of the Mekong River Delta and the influence of sedimentary environment on geotechnical engineering properties. Eng. Geol. 2011, 122, 146–159. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, Y.; Liu, X.; Wang, D.; Guo, L.; Wang, D. In situ observation of storm-wave-induced seabed deformation with a submarine landslide monitoring system. Bull. Eng. Geol. Environ. 2018, 77, 1091–1102. [Google Scholar] [CrossRef]
- Guo, X.S.; Nian, T.K.; Wang, F.W.; Zheng, L. Landslides impact reduction effect by using honeycomb-hole submarine pipeline. Ocean Eng. 2019, 187, 106155. [Google Scholar] [CrossRef]
- Anthony, E.J. Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea. Geomorphology 2013, 199, 8–21. [Google Scholar] [CrossRef]
- Maloney, J.M.; Bentley, S.J.; Xu, K.; Obelcz, J.; Georgiou, I.Y.; Jafari, N.H.; Miner, M.D. Mass wasting on the Mississippi River subaqueous delta. Earth Sci. Rev. 2020, 200, 103001. [Google Scholar]
- Randolph, M.F.; Low, H.E.; Zhou, H. In situ testing for design of pipeline and anchoring systems. In Proceedings of the 6th International Conference on Offshore Site Investigation and Geotechnics: Confronting New Challenges and Sharing Knowledge, London, UK, 11–13 September 2007; Society for Underwater Technology: London, UK, 2007; pp. 251–262. [Google Scholar]
- White, D.J.; Randolph, M.F. Seabed characterisation and models for pipeline-soil interaction. Int. J. Offshore Polar Eng. 2007, 17, 193–204. [Google Scholar]
- Mulukutla, G.K.; Huff, L.C.; Melton, J.S.; Baldwin, K.C.; Mayer, L.A. Sediment identification using free fall penetrometer acceleration-time histories. Mar. Geophys. Res. 2011, 32, 397–411. [Google Scholar] [CrossRef]
- Loe, H.E.; Randolph, M.F. Strength measurement for near-seabed surface soft soil using manually operated miniature full-flow penetrometer. J. Geotech. Geoenviron. Eng. 2010, 136, 1565–1573. [Google Scholar]
- Randolph, M.F.; Gaudin, C.; Gourvenec, S.M.; White, D.J.; Boylan, N.; Cassidy, M.J. Recent advances in offshore geotechnics for deep water oil and gas developments. Ocean Eng. 2011, 38, 818–834. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, L.; Guo, Z.; Yuan, F. Drag force of submarine landslides mudflow impacting on a suspended pipeline. Ocean Eng. 2015, 33, 10–19. [Google Scholar]
- Guo, X.S.; Nian, T.K.; Fan, N.; Jiao, H.; Jia, Y. Rheological tests and model for submarine mud flows in South China Sea under low temperatures. Chin. J. Geotech. Eng. 2019, 41, 161–167. (In Chinese) [Google Scholar]
- Boukpeti, N.; White, D.; Randolph, M.; Low, H. Strength of fine-grained soils at the solid-fluid transition. Géotechnique 2012, 62, 213–226. [Google Scholar] [CrossRef]
- Lu, S.; Fan, N.; Nian, T.; Zhao, W.; Wu, H. Test method for testing strength of super soft soil based on rheometer. Chin. J. Geotech. Eng. 2017, 39, 91–95. (In Chinese) [Google Scholar]
- Liu, X.; Jia, Y.; Zheng, J.; Hou, W.; Zhang, L.; Zhang, L.; Shan, H. Experimental evidence of wave-induced inhomogeneity in the strength of silty seabed sediments: Yellow River Delta, China. Ocean Eng. 2013, 59, 120–128. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Jia, Y.; Du, Q.; Sun, Y.; Yin, P.; Shan, H. Rapid consolidation characteristics of Yellow River-derived sediment: Geotechnical characterization and its implications for the deltaic geomorphic evolution. Eng. Geol. 2020, 270, 105578. [Google Scholar] [CrossRef]
- Wang, H.J.; Yang, Z.S.; Li, Y.H.; Guo, Z.G.; Sun, X.X.; Wang, Y. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Cont. Shelf Res. 2007, 27, 854–871. [Google Scholar] [CrossRef]
- Liu, X.; Jia, Y.; Zheng, J.; Shan, H.; Li, H. Field and laboratory resistivity monitoring of sediment consolidation in China’s Yellow River estuary. Eng. Geol. 2013, 164, 77–85. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Zheng, J.; Guo, L.; Jia, Y.; Bian, C.; Li, M.; Ma, L.; Zhang, S. Critical role of wave-seabed interactions in the extensive erosion of Yellow River estuarine sediments. Mar. Geol. 2020, 426, 106208. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Jia, Y.; Shan, Z.; Shan, H.; Zhang, S.; Wen, M.; Liu, X.; Song, Y.; Zhao, D.; et al. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta—initiation and process of sediment failure. Landslides 2020, 17, 1849–1862. [Google Scholar] [CrossRef]
- Barnes, H.A.; Nguyen, Q.D. Rotating vane rheometry: A review. J. Non-Newton. Fluid Mech. 2001, 98, 1–14. [Google Scholar] [CrossRef]
- Santolo, A.S.; Pellegrino, A.M.; Evangelista, A.R. Experimental study on the rheological behaviour of debris flow. Nat. Hazards Earth Syst. Sci. 2010, 10, 2507–2514. [Google Scholar] [CrossRef]
- Einsele, G. Deep-reaching liquefaction potential of marine slope sediments as a prerequisite for gravity mass flows? (results from the DSDP). Mar. Geol. 1990, 91, 267–279. [Google Scholar] [CrossRef]
- Horng, V.; Tanaka, H.; Obara, T. Effects of sampling tube geometry on soft clayey sample quality evaluated by non-destructive methods. Soils Found. 2010, 50, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Horng, V.; Tanaka, H.; Hirabayashi, H.; Tomita, R. Sample disturbance effects on undrained shear strengths—Study from Takuhoku site, Sapporo. Soils Found. 2011, 51, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.-J.; Du, F.-L.; Chen, H.; Mao, J.-Z. Centrifuge modeling of preloading consolidation and dynamic compaction in treating dredged soil. Eng. Geol. 2017, 226, 161–171. [Google Scholar] [CrossRef]
Wet Density (g/cm3) | Water Content (%) | Atterberg Limits | Particle Size Analysis | Water Content/ Liquid Limit | ||||
---|---|---|---|---|---|---|---|---|
Liquid Limit (%) | Plastic Limit (%) | Plastic Index | Clay Content (%) | Silt Content (%) | Sand Content (%) | |||
1.47 | 43.33 | 31.04 | 19.55 | 11.49 | 24.83 | 72.67 | 2.50 | 1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, X.; Chen, A.; Li, W.; Lu, Y.; Guo, X. Design and Application of an In Situ Test Device for Rheological Characteristic Measurements of Liquefied Submarine Sediments. J. Mar. Sci. Eng. 2021, 9, 639. https://doi.org/10.3390/jmse9060639
Zhang H, Liu X, Chen A, Li W, Lu Y, Guo X. Design and Application of an In Situ Test Device for Rheological Characteristic Measurements of Liquefied Submarine Sediments. Journal of Marine Science and Engineering. 2021; 9(6):639. https://doi.org/10.3390/jmse9060639
Chicago/Turabian StyleZhang, Hong, Xiaolei Liu, Anduo Chen, Weijia Li, Yang Lu, and Xingsen Guo. 2021. "Design and Application of an In Situ Test Device for Rheological Characteristic Measurements of Liquefied Submarine Sediments" Journal of Marine Science and Engineering 9, no. 6: 639. https://doi.org/10.3390/jmse9060639
APA StyleZhang, H., Liu, X., Chen, A., Li, W., Lu, Y., & Guo, X. (2021). Design and Application of an In Situ Test Device for Rheological Characteristic Measurements of Liquefied Submarine Sediments. Journal of Marine Science and Engineering, 9(6), 639. https://doi.org/10.3390/jmse9060639